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Abstract

C. Thomassen showed that powers of certain cycles are counterexamples to Hajós’ conjecture. We prove
that powers of cycles and their complements satisfy Hadwiger’s conjecture, that is, every k-chromatic graph
has a k-clique as a minor.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Hadwiger conjectured that every k-chromatic graph G has a complete graph Kk on k
vertices as a minor, that is, there are k connected subgraphs A1, A2, . . . , Ak of G, such that
V (Ai ∩ A j ) = ∅ and there is at least one edge between V (Ai ) and V (A j ), for 1 ≤ i < j ≤ k.
This conjecture is maybe one of the most intriguing conjectures in graph theory. For more details
about the conjecture, the reader is referred to [4].

Recently, Thomassen in [3] has given some new classes of graphs which are counterexamples
to Hajós’ conjecture. These include some certain line graphs, powers of cycles, and complements
of Kneser graphs. If Hadwiger’s conjecture is false, then counterexamples can be found among
the counterexamples to Hajós’ conjecture. Reed and Seymour in [2] showed that Hadwiger’s
conjecture holds for line graphs. In this note, we prove that Hadwiger’s conjecture holds for
powers of cycles and their complements. For the complements of Kneser graphs, we give some
examples which satisfy Hadwiger’s conjecture too.
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Let xy be an edge of graph G. The edge contraction of xy is obtained be deleting x and y and
all incident edges from G and adding a new vertex u and an edge uv from u to v for each vertex
v that is a neighbor of x or y or both in G. A graph is a minor of G if it is either a subgraph of G,
or can be obtained from one by a series of edge contractions. The complement of G is the graph
with vertex set V (G) and edge set E(Ḡ) = E(Kn) − E(G), that is, two vertices x1 and x2 are
adjacent in Ḡ if and only if they are not adjacent in G. The p-th power of a cycle Cn , denoted
by C p

n , is the graph with vertex set {1, 2, . . . , n} in which two vertices i and j are adjacent if and
only if |i − j | (mod n) ≤ p. Let A1 and A2 be two connected subgraphs; we use e(A1, A2) to
denote the number of edges with one end in A1 and the other end in A2. The k-clique is a set of
k-vertices which are pairwise adjacent. For other notation we refer the reader to [6].

2. Powers of cycles

Theorem 1. Let C p
n be the p-th power of Cn. Then C p

n satisfies the Hadwiger’s conjecture.

Before we prove the theorem, we need some lemmas.

Lemma 1. Let C p
p+k+r be the p-th power of Cp+k+r for 2 ≤ k < r ≤ p. Then C p

p+k+r has a
(p + �(r + k − 1)/2� + 1)-clique as a minor.

Proof. Let Ai = {i} for 1 ≤ i ≤ p + 1, A p+2 = {p + 2, p + 2 + �(r + k − 1)/2�},
A p+3 = {p + 3, p + 3 + �(r + k − 1)/2�}, . . . , A p+1+�(r+k−1)/2� = {p + 1 + �(r + k −
1)/2�, p + 1 + 2�(r + k − 1)/2�}.

Each Ai induces a connected subgraph since r + k − 1 < 2 p − 1. A1, A2, . . ., and A p+1
induce a (p + 1)-clique and A p+i for 2 ≤ i ≤ 1 + �(r + k − 1)/2� induce a �(r + k − 1)/2�-
clique. Since i − (p + i + 1 + �(r + k − 1)/2�) + p + r + k = �(r + k − 1)/2	 < p for
2 ≤ i ≤ 1 + �(r + k − 1)/2� and 1 ≤ j ≤ p + 1, we have e(Ai , A j ) > 0 for i 
= j . Then we
obtain a (p + 1 + �(r + k − 1)/2�)-clique as a minor. �

Lemma 2. For integers p, r, k satisfying 2 ≤ k < r ≤ p, we have �r/k	 ≤ �(r + k − 1)/2�.

Proof. If k = 2, �r/2	 ≤ �(r + 1)/2� whenever r is odd or even. If k ≥ 3, �r/k	 ≤ �r/3	 ≤
(r + 2)/3 < �(r + 2)/2� ≤ �(r + k − 1)/2�. �

Proof of Theorem 1. For the p-th power of the cycle Cn , if n ≤ 2 p + 1, C p
n is isomorphic to

the complete graph Kn . If p + 1 divides n, the chromatic number of C p
n is p + 1, and K p+1 is an

induced subgraph of C p
n . If n = (p+1)k+r , and 0 < r ≤ k, the chromatic number of C p

n is p+2.
We partition the vertex set as follows: Vi = {(i −1)(p +2)+1, (i −1)(p +2)+2, . . . , i(p +2)}
for 1 ≤ i ≤ r , Vr+ j = {r(p +2)+ ( j −1)(p +1)+1, r(p +2)+ ( j −1)(p +1)+2, . . . , r(p +
2)+ j (p + 1)} for 1 ≤ j ≤ k − r . Color Vi with p + 2 colors such that vertex (i − 1)(p + 2)+ s
receives color s, and color Vr+ j with p + 1 colors such that vertex r(p + 2)+ ( j − 1)(p + 1)+ t
receives color t , for 1 ≤ s ≤ p + 2, 1 ≤ t ≤ p + 1. Now let Ai = {i} for 1 ≤ i ≤ p + 1, and
A p+2 = {p + 2, p + 3, . . . , n}. Obviously, C p

n has a p + 2-clique as a minor.
For the last case n = (p+1)k+r and k < r ≤ p, we write n = (p+�r/k	)k+(r −k(�r/k	−

1)). As in the above cases, let s = r − k(�r/k	 − 1), |V1| = · · · = |Vs | = p + �r/k	 + 1,
|Vs+1| = · · · = |Vk | = p + �r/k	. So χ(C p

n ) ≤ p + �r/k	 + 1.
Now we show that C p

n admits a (p+�r/k	+1)-clique as a minor. By Lemma 2, we show that
it admits a (p+1+�(r +k−1)/2�)-clique as a minor. Let Ai = {i, p+i, 2 p+i, . . . , (k−1)p+i}
for 1 ≤ i ≤ p. Let A p+1 = {kp + 1}, and let A p+2 = {kp + 2, kp + 2 + �(r + k − 1)/2�},
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A p+3 = {kp + 3, kp + 3 + �(r + k − 1)/2�}, . . . , A p+1+�(r+k−1)/2� = {kp + 1 + �(r + k −
1)/2�, kp + 1 + 2�(r + k − 1)/2�}. Proceeding as in Lemma 1, we can check that C p

n has a
(p + 1 + �(r + k − 1)/2�)-clique as a minor. �

3. Complements of power of cycles

We define a graph Gd
k with vertex set {i : 1 ≤ i ≤ k}, and edge set {i j : d ≤ | j − i | ≤ k − d}

for positive integers k, d and k ≥ 2d . Obviously, the complement of C p
n is isomorphic to G p+1

n .
Now we consider Gd

k . If d = 1, Gd
k is the complete graph Kk . So we may assume d ≥ 2. Define a

coloring of Gd
k as the following: c(i) = �i/d� for 0 ≤ i ≤ k −1. It is easy to see that c is a proper

coloring, and the chromatic number of Gd
k is at most �k/d	. Let gcd(k, d) = s, k ′ = k/s, and

d ′ = d/s. Note that Gd ′
k′ is an induced subgraph of Gd

k and χ(Gd ′
k′ ) ≤ χ(Gd

k ) ≤ �k/d	 = �k ′/d ′	.
In what follows, we assume gcd(k, d) = 1, and k = pd + r (0 < r < d), we need to find a
(p + 1)-clique as a minor of Gd

k . Since �k/d	 = 2 or 3, it is trivial; we assume that p ≥ 3.

Lemma 3. G2
2p+1 has a (p + 1)-clique as a minor.

Proof. Let A0 = {0}. We split the proof into two cases according to the parity of p.
Case 1. p is even. Assume p = 2s. Let A2i−1 = {4i − 3, 4i − 1}, A2i = {4i − 2, 4i} for

1 ≤ i ≤ s. Each Ai induces a connected subgraph, V (Ai ∩ A j ) = ∅ and e(Ai , A j ) > 0 for
i 
= j .

Case 2. p is odd. Assume p = 2s + 1. If s = 1, G2
2p+1 = G2

7, and let A1 = {1, 3},
A2 = {2, 5}, A3 = {4, 6}. If s ≥ 2, let A1 = {1, 3}, A2 = {2, 5}, A3 = {4, 6}, and for other Ai ’s,
let A2i = {4i − 1, 4i + 1}, A2i+1 = {4i, 4i + 2} for 2 ≤ i ≤ s. Like in Case 1, each Ai induces
a connected graph and e(Ai , A j ) > 0 for i 
= j . �

Lemma 4. Gd
k has a (p +1)-clique as a minor, where k = pd +r , 1 ≤ r < d, d ≥ 3 and p ≥ 3.

Proof. Let Ai = {id2, (id + 1)d, . . . , ((i + 1)d − 1)d} for 0 ≤ i ≤ p − 1, A p =
{pd2, (pd + 1)d, . . . , (p − 1)d + r}. Obviously, |Ai | = d for 0 ≤ i ≤ p − 1, and |A p| = r , and
each Ai induces a connected subgraph. Now we show that e(Ai , A j ) > 0 for 0 ≤ i < j ≤ p.

Case 1. i 
= p and j 
= p. If d ≤ id2 − jd2 ≤ pd + r − d , then id2 is adjacent to jd2. If
0 ≤ (i − j)d2 < d , since (id + 1)d ∈ Ai , d ≤ (i − j)d2 + d < 2d , then we have (id + 1)d
is adjacent to jd2. If pd + r − d < (i − j)d2 < pd + r , −d < (i − j)d2 − (pd + r) < 0,
and d < (i − j)d2 + 2d (mod pd + r) < 2d , then (id + 2)d is adjacent to jd2. So we have
e(Ai , A j ) > 0.

Case 2. One of i and j is p, say j = p. pd +r −d = −d ∈ A p . If d ≤ id2 +d ≤ pd +r −d ,
i.e. 0 ≤ id2 ≤ pd + r − 2d , we have e(Ai , A j ) > 0; otherwise we have either 0 < id2 + d < d
or pd + r − d < id2 + d < pd + r . For 0 < id2 + d < d , (id + 1)d is adjacent to −d , and for
the case pd + r − d < id2 + d < pd + r , (id + 2)d is adjacent to −d .

Then Gd
k has a (p + 1)-clique as a minor. �

Theorem 2. Hadwiger’s conjecture holds for Gd
k .

Proof. If gcd(k, d) = s ≥ 2, let k ′ = k/s, and d ′ = d/s. Since Gd ′
k′ is a minor of Gd

k , Gd ′
k′

has a χ(Gd ′
k′ )-minor and so does Gd

k . If gcd(k, d) = 1, by Lemmas 3 and 4, the theorem is
straightforward. �
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4. Remarks

C. Thomassen pointed out that all Kneser graphs satisfy Hajós’ conjecture while some
complements of certain Kneser graphs are counterexamples to this conjecture. We do not know
whether Hadwiger’s conjecture holds for the complements of all Kneser graphs. For some
classes, the conjecture holds. In what follows, we give some examples. Suppose that n ≥ k ≥ 1
are integers and let [n] = {1, 2, . . . , n}. Then Kneser graph K (n, k) has as vertices the k-subset of
[n]. Two vertices are adjacent if the corresponding k-subsets are disjoint. Suppose that k divides

n, and let n = pk. Observe that
( n

k

) = p
(

n−1
k−1

)
. Let M =

(
n−1
k−1

)
. A Baranyai partition (see [5])

of the complete hypergraph
( [n]

k

)
is a family of M partitions of [n] such that for any given i ,

1 ≤ i ≤ M , Ai = {A1
i , A2

i , . . . , A p
i } and A1

i ∪ A2
i ∪ · · · ∪ A p

i = [n] and |A1
i | = · · · = |A p

i | = k

and that each k subset of [n] occurs among the A j
i ’s exactly once. Obviously, a Baranyai partition

is a clique partition of K (n, k) since each Ai for 1 ≤ i ≤ M induces a p-clique of the graph.
Then we have that the chromatic number of the complement of K (n, k) is at most M . By the
Erdös–Ko–Rado theorem in [1], the independence number of K (n, k) is M . Then the chromatic
number of the complement of K (n, k) is M and the complement of K (n, k) has an M-clique as
an induced subgraph. For such a class of Kneser graphs, Hadwiger’s conjecture holds.

The Petersen graph is the graph with vertex set {xi , yi : 0 ≤ i ≤ 4} and edge set
{xi xi+1 : 0 ≤ i ≤ 4} ∪ {y0y2, y2 y4, y4 y1, y1y3, y3y0}. It is well known that the Petersen
graph has clique number two. The chromatic number of the complement of the Petersen graph
is five. Let Ai = {xi yi+1} for 0 ≤ i ≤ 4. Then the complement of the Petersen graph has
a 5-clique as a minor. K (7, 2) has a clique partition as follows: B1 = {{1, 2}, {3, 4}, {5, 6}},
B2 = {{1, 3}, {2, 4}, {7, 6}}, B3 = {{3, 2}, {6, 4}, {5, 7}}, B4 = {{1, 5}, {7, 4}, {2, 6}}, B5 =
{{1, 7}, {2, 4}, {3, 6}}, B6 = {{1, 6}, {7, 3}, {2, 5}}, and B7 = {{1, 4}, {7, 2}, {3, 5}}. By the
Erdös–Ko–Rado theorem, the independence number of K (7, 2) is 7. Then the chromatic number
of the complement of K (7, 2) is 7. Let Ai = {1, i + 1} for 1 ≤ i ≤ 6, and A7 =
V (K (7, 2))−∪6

i=1 Ai . It is easy to see that V (Ai ∩A j ) = ∅ and e(Ai , A j ) > 0. Then Hadwiger’s
conjecture holds for the complement of K (7, 2). Furthermore, for the complement of K (n, 2), let
p = �n/2�. The chromatic number of the complement of K (n, 2) is

( n
2

)
/p, and it has a minor

of size n as follows: Ai = {1, i + 1} for 1 ≤ i ≤ n − 1, and An = V (K (n, 2)) − ∪n−1
i=1 Ai .

Let �n/k� = p. p divides
( n

k

)
, and let M = ( n

k

)
/p. We wonder whether the Kneser graph

K (n, k) admits a p-clique partition Ai for 1 ≤ i ≤ M .
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