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Abstract

Let B(#’) denote the algebra of operators on a Hilbert . Let Ay € B(B(#)) and
E € B(B()) denote the elementary operators Agp(X) = AXB — X and E(X) = AXB —
CXD. We answer two questions posed by TurnSek [Mh. Math. 132 (2001) 349-354] to
prove that: (i) if A, B are contractions, then B(#) = AZ}i (0) ® Aap(B(K)) if and only
if A'AB(B(%”)) is closed for some integer n > 1; (ii) if A, B, C and D are normal operators
such that A commutes with C and B commutes with D, then B(#') = E-! 0)® E(B(X))
if and only if 0 € isoo (E).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and notation

If T is a Banach space operator, 7 € B(7"), then a necessary condition for 7" to
have closed range complemented by its kernel T-10) is that 0 € iso o (T) (i.e., 0 is
an isolated point of the spectrum o (T") of T'). If ¥~ = B(’), the algebra of operators
on a complex infinite dimensional Hilbert space #, and T = §4p € B(B(H)) is
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the generalized derivation §45(X) = AX — X B, then this condition translates to
0Oeiso{o(A) —o(B)} <= 0€{0(A) —o(B)}and o (A) N o (B) is finite. For nor-
mal A, B € B(), or (more generally) scalar operators (in the sense of Dunford)
A, B € B(), the condition 0 € iso o (64 p) is also sufficient for B(#) = 81}}3 ((OX)
SaB(B(A)) [3].

If M and N are subspaces of 77, then M is said to be orthogonal to N, denoted
M L N,if |m| < |lm +n| forallm € M andn € N [12, p. 93]. Recall from Ander-
son [2] thatif A, B € B(’) are normal, then 8;}; (0) L 845 (B()). Various exten-
sions of this orthogonality to the elementary operators Ap(X) = AXB — X and
Ea(X) = Z;"zl A; X B; are to be found in the literature (see, for example, [9,15,
19]). Observe that

TN LTV) = T'ONT#)={0 < asc(T) <1

for an operator 7 € B(7"). (Here, and in the sequel, asc(7') denotes the ascent, and
T (7") denotes the range, of T'.) T-10) L T(#") does not however imply that 7 (7")
is closed, or even when T'(7") is closed that " = T~1(0) 4+ T(V). In his study of the
range-kernel orthogonality of the elementary operators Asp and &ap in von Neu-
mann-Schatten p-classes €, (#°) [20], TurnSek has posed the following problems:
Find conditions (i) for B(#') = Azg (0) & Aap(B(S) to hold, given that A, B €
B () are contractions; (ii) for B(#') = é";ll} (0) ® &aB(B() to hold, given that
m =2, and (A1, A2) and (B, B») are tuples of mutually commuting normal oper-
ators in B(). These problems were partially answered in [8]. In this note we use
techniques from local spectral theory to provide a complete answer to these prob-
lems by proving that the equality in (i) holds if and only if either A 45 is Kato type
or A" p(B(#)) is closed for some integer n > 1, and that the equality in (ii) holds
if and only if O € isoo (7).

In addition to the notation and terminology already introduced, we shall use the
following further notation and terminology.

The (algebra) numerical range W (B(?"), T) of an operator T € B(?") is the set

{f(D): feBOIfI=f)=1},

where B(7”)* denotes the (Banach space) dual of B(¥"); W(B(?"), T) = co V(T),
where co V(T') denotes the closed convex hull of the spatial numerical range

VD) ={F(Ty): Fe7™,ye? |F|=lyl=F@y =1}

of T [6, Theorem 9.4]. If we denote the (Banach space) conjugate operator of 7' by
T*, then co V(T) = co V(T*) [6, Corollary 9.6(ii)]. Hence:

Proposition 1.1. W(B(7"), T) = W(B(¥™), T*).

If M is a linear subspace of 7", let
Mt ={pe 7™ :¢(m)=0forallm e M}
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denote the annihilator of M (in the dual space #), and if N is a linear subspace of
v, let

IN={ve? :¢()=0forall¢ € N}

denote the pre-annihilator of N (in 7”). By the bi-polar theorem, LML) is the
norm closure of M and (*N)* is the weak-x-closure of N. For every T € B(7"),
T*10) = T(¥)* and T1(0) =L T*(v™).

The ascent (descent) of 7' € B(7"), denoted asc(T) (resp., dsc(T)), is the least
non-negative integer n such that 7="(0) = 7=+ (0) (resp., T"(¥") = T"1(¥")).
The deficiency indices «(7T) and B(T) of T are the integers a(7) = dim(7 ~'(0))
and B(T) = dim(7"/T(7")). Let C denote the set of complex numbers. An operator
T has SVEP (short for the single-valued extension property) at a point Ag € C if for
every open disc &;,, centered at Ao the only analytic function f : &;, — ¥ which
satisfies

(T =2 f() =0 forall ke %,

is the function f = 0. Trivially, every operator 7 has SVEP at points of the resolvent
p(T)=C\o(T);also T has SVEP at A € isoo (T). The quasi-nilpotent part Hy(T)
and the analytic core K(T) of T are defined by

Ho(T) = [v e : lim [T || :0}
n—oo
and

K(T) = {v € 7" : there exists a sequence {v,} C ¥~ and § > 0 for which
v =10, TUpt1 = vy and ||v, || < 8" |Jv|| foralln =1,2,...}.

We note that Hy(T) and K (T') are (generally) non-closed hyperinvariant subspaces
of T such that T79(0) € Ho(T) forallg =0,1,2,...and TK(T) = K(T) [17].
An operator T is said to be semi-regular if T(7") is closed and T~1(0) C T>®(7") =
NpeNT" (?7); T admits a generalized Kato decomposition, G K D for short, if there
exists a pair of 7-invariant closed subspaces (M, N) such that ¥" = M & N, the
restriction 7'|ps is quasinilpotent and 7|y is semi-regular. An operator T € B(?")
has a GK D at every A € isoo (T), namely ¥~ = Ho(T — X)) ® K(T — 1). We say
that T is Kato type at a point A if (T — A)|y is nilpotent in the GK D for (T — A).
Recall that every Fredholm operator is Kato type (with the additional property that
dim M < o0) [14, Theorem 4].

2. Results

Let 77, denote either of the Banach spaces B(#') and 6, where 4, 1 < p <
00, is the von Neumann—Schatten p-class %, (). (Here it is assumed that % is
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separable in the case in which V"), = % ,().) The following theorem answers [20,
Question 2]. (We use the convention that if 0 ¢ o (T'), then O € isoo (T).)

Theorem 2.1. If A, B € B(J’) are contractions, then either of the following con-
ditions is necessary and sufficient for V", = Agg 0) ® Asp (¥ p):

(1) Aap is Kato type.
(i) A"y g (V")) is closed for some integern > 1.

Proof. If A, B € B(H) are contractions, then
W(B(/ p), Aap) S{reC: A+ 1] < 1]}

(This is proved in [8, Theorem 1] for the case in which ¥, = B(’); the proof for
the case in which 7", =%, follows from this since W(B(%,), Aap) =
W(B(B(H)), Aap).) Inparticular, the point O (whenever itisin o (7)) is a boundary
point of both o(Asp) and o (A% ) (see Proposition 1.1). Applying the Nirschl-
Schneider theorem [4, Theorem 10.10] it follows that asc(A 4p) < 1 and asc(A";‘B) <
1, both A 45 and A 2p* have SVEP at 0, and

Ayp©O) N AL ) = {0} = A%~ (0) N AG (1)

[5, p- 25].

(i) The only if part being obvious, we prove the if part. If T is Kato type, then there
exists a GKD (M, N) such that ¥", = M @ N, Aap|y is nilpotent and Ap|n is
semi-regular. Since asc(A 4p) < 1, Aap|py is 1-nilpotent. Again, since A% , has SVEP
at 0 (and A 4p is Kato type), dsc(Agp) < oo [1, Theorem 2.9]. Thus asc(Aap) =
dsc(Aap) < land V") = AZ}B(O) @ Aap(?"p) [16, Proposition 4.10.4].

(ii) Once again, the only if part being obvious, we prove the if part. Recall from
[16, Lemma 4.10.2] that if asc(7T) < 1 and T~1(0) + T(¥") is closed for a Banach
space operator T € B(7"), then T(7") is closed; again, if asc(7) < 1 and T"(7")
is closed for some integer n > 1, then T7'(0) + T(7") is closed [16, Proposition
4.10.4]. Hence the hypothesis A" , (7)) is closed for some integer n > 1 implies
that Azg (0) + Aag (¥ p) is closed, which in turn implies that Aap(¥" ), and so
also A% » ("I/";,), is closed. Since

[ATLO) + Aap(F DY = Aas(r )N AL
= AZB_I(O) N {lAj&B(%;)}L
=A% )N AR =(0),
it follows that
Ayp©O) + Aap(Vp) =7

Hence dsc(Aap) < 1, which (see above) implies that ¥, = AZII;(O) © Aap(V p).
O
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Theorem 2.1 subsumes [8, Theorem 2], as the following corollary shows.

Corollary 2.2. If A, B € B(X’) are contractions such that the isolated points A of
0 (A) and o (B) with || = 1 are eigen-values, then we have the implications

B(#) = Ay p(0)® Aag(B(#)) <= 0¢cisoo(Aap).

Proof. The forward implication being obvious, we prove the reverse implication.
For this it will suffice to prove that A 4 g (B()) is closed: the proof will then follow
from Theorem 2.1(ii). Since a large part of the argument is the same as that of the
proof of [8, Theorem 2], we shall be economical with the detail. Thus assume that
0 € isoo (A 4p). Arguing as in [8] it is seen that A 4p has a matrix representation
Aap(X) = [AAiBj(Xij)]zz,j:I,T where 0 ¢ U(AA,-Bj) for all i, j #+ 1, and where
Ay, By are unitary operators with finite spectrum. Consequently, A4, p; has closed
range for all 0 < 7, j < 2; hence A p(B()) is closed. [

Examples of operators in B(#’) for which isolated points of the spectrum are
eigen-values of the spectrum occur in abundance. Call an operator T € B(#) totally
hereditarily normaloid, T € T HN, if every part of T (i.e., its restriction to an invari-
ant subspace, including ), and Tp’1 for every invertible part T), of T, is normaloid:
if T € THN, then isolated points of the spectrum of T are eigen-values of T [11,
Lemma 2.1]. Hyponormal operators T (|T*|> < |T|?) and (more generally) para-
normal operators T (|| Tx ||2 < T2x || for every unit vector x € ) are examples of
T HN operators.

Theorem 2.1 extends to the operator #(X) = sz=1 A; XB; — X, where A;, B; €

B(A') are such that {|| > /L, A;AX|III Xie, Bl.*B,-||}% <c, c=1if ® € B(B(X))
—1
andc=m 7 if ® € B(%)).

Corollary 2.3. [f the operators A;, B; € B(X), 1 <i < m, and the operator @ €
B(V")) are defined as above, then either of the conditions (i) and (ii) of Theorem 2.1
is both necessary and sufficient for V", = o~ 10) @ DV ).

Proof. Define the row vector A and the column vector B by A = [A1, A2, ..., A,
and B = [By, By, ..., By]'. Then ¢(X) = Z;”Zl A; XB; = A(X ® I,,)B, where I,
is the identity of M,, (C). Clearly, ¢ is a contraction, and the argument of the proof
of Theorem 2.1 applies. [

Remark 2.4. The conclusion 77, = AZ};(O) @ Aap(?"p) implies that 0 €
iso 0 (A s ). Thus, the hypothesis 0 € iso o (A o) is necessary for V", = A;}g ((OX)
AaB (Y p): the following example shows that this condition is not sufficient. Let V
denote the Voltera (integral) operator on % = L?(0, 1). Define A, B € B(A#) by
A=(I+V)"! and B=1. Then A, B are contractions and o (A4p) = {0}.
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Obviously, A4p has the GKD (B(4),0), Aap is injective, Aap(B(H)) is not
closed and B(#') #= 0@ Aap(B(HX)).

Remark 2.5. The hypothesis O € isoo (T), T € B(?"), implies that ¥~ = Ho(T) @
K (T), where both Hy(T) and K (T) are closed. The following argument shows that if
also dim(Hy(T')) < oo, then there exists an integer n > 1 such that ¥~ = T7"(0) ®
T"(¥"). Recall that T~ (0) € Ho(T) and K (T) € T (7");if dim(Hy(T)) < oo, then
the deficiency indices «(7") and B(T') are (both) finite, and 7 is Fredholm. Obviously,
both T and T* have SVEP at 0; hence asc(7) and dsc(7T) are finite [1, Theorems 2.6
and 2.9]. There exists an integer n > 1 such that asc(7) = dsc(7T) < n < oo and
v =T7"0) & T"(7") [16, Proposition 4.10.6]. The condition dim(Hy(T)) < oo
is fairly restrictive: a more general, but in many ways equally restrictive, condition
is that Hy(T') = T7"(0). In the following we consider just such an operator.

Elementray operator &ap. Let A = (A1, Aa, ..., Ay) and B = (By, Ba, ...,
B;,) be m-tuples of mutually commuting normal operators A;, B; € B(). The ele-
mentary operator &ap € B(B(#)) is defined by

m
Eag(X) = Z A; X B;.
i=1

Recall that an operator T € B(7") is a generalized scalar operator if there exists
a continuous algebra homomorphism @ : C*° — B(#") for which ®(1) = I and
&(Z) = T, where C®°(C) is the Fréechet algebra of all infinitely differentiable func-
tions on C (endowed with its usual topology of uniform convergence on compact sets
for the functions and their partial derivatives) and Z is the identity function on C (see
[7] or [16, p. 4]).

Let L4 and R4, A € B(7Y"), denote the operators of “left multiplication by A” and
“right multiplication by A”, respectively. If A, B are generalized scalar operators, then
L 4 and Rp are commuting generalized scalar operators with two commuting spectral
distributions, and L 4 Rp and L 4 + Rp are generalized scalar operators (see [7, The-
orem 3.3, Proposition 4.2 and Theorem 4.3, Chapter 4]). Let A = (A1, A2, ..., Ap)
and B = (By, Bo, ..., B,) be m-tuples of mutually commuting generalized scalar
operators in B(7"). Since L 4, commutes with R B; for all 1 < i, j < m, the mutual
commutativity of the m-tuples implies that L 4, R g, commutes with L A; R B, forall1 <
i, j < m, the generalized scalar operators L 4, Rp, and L 4 i Rs; have two commuting
spectral distributions, and (hence) L 4, Rp, + L 4 i Rp i is a generalized scalar operator.
Since normal operators are generalized scalar operators, a finitely repeated application
of this argument implies that &4 is a generalized scalar operator.

Theorem 2.6. A necessary and sufficient condition for
7p=Exp0) @ Exp(77))

for some integer n > 1 is that 0 € is0 0 (EAB).



B.P. Duggal / Linear Algebra and its Applications 402 (2005) 199-206 205

Proof. The operator &ap being a generalized scalar operator, there exists an integer
n > 1 such that Hy(6AB) = @@X]';(O) [7, Theorem 4.4.5]. If 0 € iso o (&AB), then

V" p = Ho(EaB) ® K(EaB) = &,5(0) ® K(EaB)
= g7 p) =08 E\g(K(EaB)) = 0@ K(EaB)
— V= 600 B EL (V).

Since the necessity of the conditon is obvious, the proof is complete. [

One cannot always choose n = 1 in Theorem 2.6, for the reason that there exist
elementary operators & ap with asc(&ap) > 1 [18]. However, if we restrict the length
of &ap to 2 (i.e., if m = 2), then asc(éap) < 1 is guaranteed [9, Theorem 2.7].
Hence:

Corollary 2.7. IfA = (A1, A2) and B = (By, By) are tuples of commuting normal
operators in B(J'), then a necessary and sufficient condition for

V= Exp0) @ EA(Y )

is that 0 € iS00 (6 AB)-

Corollary 2.7 answers [20, Question 1]; it was proved in [8] under the more
restrictive hypothesis that 0 € o (&ap) is isolated in the set S = {a1b| + axb> : a; €
0(Aj),bj € 0(B;),i =1,2}.(Observe that o (§ap) S [13].) Variants of Corollary
2.7 for A 4, and the generalized derivations ,5(X) = AX — X B, have been con-
sidered in [8,10]. Observe that for the generalized derivation 45, 0 € isoo (84p) if
and only if 0 (A) No(B) is finite. Thus, if A, B are totally hereditarily normaloid
operators in B(#) for which isolated points are normal eigen-values (in particu-
lar, if A, B are hyponormal), then B(#) = 8;113 (0) ® 45 (B(H)) if and only if
o(A) No(B) is finite.
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