Available online at www.sciencedirect.com

Linear Algebra and its Applications 402 (2005) 199-206

On the range closure of an elementary operator

B.P. Duggal *
Department of Mathematics, College of Science UAEU, P.O. Box 17551, Al Ain, United Arab Emirates
Received 18 October 2004; accepted 27 December 2004
Available online 1 February 2005
Submitted by R. Bhatia
To Professor Carl Pearcy on his Seventieth

Abstract

Let $B(\mathscr{H})$ denote the algebra of operators on a Hilbert \mathscr{H}. Let $\Delta_{A B} \in B(B(\mathscr{H}))$ and $E \in B(B(\mathscr{H}))$ denote the elementary operators $\Delta_{A B}(X)=A X B-X$ and $E(X)=A X B-$ $C X D$. We answer two questions posed by Turnšek [Mh. Math. 132 (2001) 349-354] to prove that: (i) if A, B are contractions, then $B(\mathscr{H})=\Delta_{A B}^{-1}(0) \oplus \Delta_{A B}(B(\mathscr{H}))$ if and only if $\Delta_{A B}^{n}(B(\mathscr{H}))$ is closed for some integer $n \geqslant 1$; (ii) if A, B, C and D are normal operators such that A commutes with C and B commutes with D, then $B(\mathscr{H})=E^{-1}(0) \oplus E(B(\mathscr{H}))$ if and only if $0 \in$ iso $\sigma(E)$.
© 2005 Elsevier Inc. All rights reserved.
AMS classification: Primary 47B47, 47B10, 47A10, 47B40
Keywords: Hilbert space; Elementary operator; Contraction; Generalized scalar operator; SVEP

1. Introduction and notation

If T is a Banach space operator, $T \in B(\mathscr{V})$, then a necessary condition for T to have closed range complemented by its kernel $T^{-1}(0)$ is that $0 \in$ iso $\sigma(T)$ (i.e., 0 is an isolated point of the spectrum $\sigma(T)$ of $T)$. If $\mathscr{V}=B(\mathscr{H})$, the algebra of operators on a complex infinite dimensional Hilbert space \mathscr{H}, and $T=\delta_{A B} \in B(B(\mathscr{H}))$ is

[^0]0024-3795/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.12.019
the generalized derivation $\delta_{A B}(X)=A X-X B$, then this condition translates to $0 \in \operatorname{iso}\{\sigma(A)-\sigma(B)\} \Longleftrightarrow 0 \in\{\sigma(A)-\sigma(B)\}$ and $\sigma(A) \cap \sigma(B)$ is finite. For normal $A, B \in B(\mathscr{H})$, or (more generally) scalar operators (in the sense of Dunford) $A, B \in B(\mathscr{H})$, the condition $0 \in$ iso $\sigma\left(\delta_{A B}\right)$ is also sufficient for $B(\mathscr{H})=\delta_{A B}^{-1}(0) \oplus$ $\delta_{A B}(B(\mathscr{H}))$ [3].

If M and N are subspaces of \mathscr{V}, then M is said to be orthogonal to N, denoted $M \perp N$, if $\|m\| \leqslant\|m+n\|$ for all $m \in M$ and $n \in N$ [12, p. 93]. Recall from Anderson [2] that if $A, B \in B(\mathscr{H})$ are normal, then $\delta_{A B}^{-1}(0) \perp \delta_{A B}(B(\mathscr{H}))$. Various extensions of this orthogonality to the elementary operators $\Delta_{A B}(X)=A X B-X$ and $\mathscr{E}_{\mathbf{A B}}(X)=\sum_{i=1}^{m} A_{i} X B_{i}$ are to be found in the literature (see, for example, $[9,15$, 19]). Observe that

$$
T^{-1}(0) \perp T(\mathscr{V}) \Longrightarrow T^{-1}(0) \cap T(\mathscr{V})=\{0\} \Longleftrightarrow \quad \operatorname{asc}(T) \leqslant 1
$$

for an operator $T \in B(\mathscr{V})$. (Here, and in the sequel, $\operatorname{asc}(T)$ denotes the ascent, and $T(\mathscr{V})$ denotes the range, of T.) $T^{-1}(0) \perp T(\mathscr{V})$ does not however imply that $T(\mathscr{V})$ is closed, or even when $T(\mathscr{V})$ is closed that $\mathscr{V}=T^{-1}(0)+T(V)$. In his study of the range-kernel orthogonality of the elementary operators $\Delta_{A B}$ and $\mathscr{E}_{\mathbf{A B}}$ in von Neu-mann-Schatten p-classes $\mathscr{C}_{p}(\mathscr{H})$ [20], Turns̆ek has posed the following problems: Find conditions (i) for $B(\mathscr{H})=\Delta_{A B}^{-1}(0) \oplus \Delta_{A B}(B(\mathscr{H})$ to hold, given that $A, B \in$ $B(\mathscr{H})$ are contractions; (ii) for $B(\mathscr{H})=\mathscr{E}_{\mathbf{A} \mathbf{B}}^{-1}(0) \oplus \mathscr{E}_{\mathbf{A B}}(B(\mathscr{H})$ to hold, given that $m=2$, and $\left(A_{1}, A_{2}\right)$ and $\left(B_{1}, B_{2}\right)$ are tuples of mutually commuting normal operators in $B(\mathscr{H})$. These problems were partially answered in [8]. In this note we use techniques from local spectral theory to provide a complete answer to these problems by proving that the equality in (i) holds if and only if either $\Delta_{A B}$ is Kato type or $\Delta_{A B}^{n}(B(\mathscr{H}))$ is closed for some integer $n \geqslant 1$, and that the equality in (ii) holds if and only if $0 \in$ iso $\sigma(T)$.

In addition to the notation and terminology already introduced, we shall use the following further notation and terminology.

The (algebra) numerical range $W(B(\mathscr{V}), T)$ of an operator $T \in B(\mathscr{V})$ is the set

$$
\left\{f(T): f \in B(\mathscr{V})^{*},\|f\|=f(I)=1\right\}
$$

where $B(\mathscr{V})^{*}$ denotes the (Banach space) dual of $B(\mathscr{V}) ; W(B(\mathscr{V}), T)=\overline{\operatorname{co} V(T)}$, where $\overline{\operatorname{co~} V(T)}$ denotes the closed convex hull of the spatial numerical range

$$
V(T)=\left\{F(T y): F \in \mathscr{V}^{*}, y \in \mathscr{V},\|F\|=\|y\|=F(y)=1\right\}
$$

of T [6, Theorem 9.4]. If we denote the (Banach space) conjugate operator of T by T^{*}, then $\overline{\operatorname{co} V(T)}=\overline{\operatorname{co} V\left(T^{*}\right)}[6$, Corollary 9.6(ii)]. Hence:

Proposition 1.1. $W(B(\mathscr{V}), T)=W\left(B\left(\mathscr{V}^{*}\right), T^{*}\right)$.
If M is a linear subspace of \mathscr{V}, let

$$
M^{\perp}=\left\{\phi \in \mathscr{V}^{*}: \phi(m)=0 \text { for all } m \in M\right\}
$$

denote the annihilator of M (in the dual space \mathscr{V}^{*}), and if N is a linear subspace of \mathscr{V}^{*}, let

$$
{ }^{\perp} N=\{v \in \mathscr{V}: \phi(v)=0 \text { for all } \phi \in N\}
$$

denote the pre-annihilator of N (in \mathscr{V}). By the bi-polar theorem, ${ }^{\perp}\left(M^{\perp}\right)$ is the norm closure of M and $\left({ }^{\perp} N\right)^{\perp}$ is the weak- - -closure of N. For every $T \in B(\mathscr{V})$, $T^{*-1}(0)=T(\mathscr{V})^{\perp}$ and $T^{-1}(0)=^{\perp} T^{*}\left(\mathscr{V}^{*}\right)$.

The ascent (descent) of $T \in B(\mathscr{V})$, denoted $\operatorname{asc}(T)$ (resp., $\operatorname{dsc}(T)$), is the least non-negative integer n such that $T^{-n}(0)=T^{-(n+1)}(0)\left(\right.$ resp., $\left.T^{n}(\mathscr{V})=T^{n+1}(\mathscr{V})\right)$. The deficiency indices $\alpha(T)$ and $\beta(T)$ of T are the integers $\alpha(T)=\operatorname{dim}\left(T^{-1}(0)\right)$ and $\beta(T)=\operatorname{dim}(\mathscr{V} / T(\mathscr{V}))$. Let C denote the set of complex numbers. An operator T has SVEP (short for the single-valued extension property) at a point $\lambda_{0} \in \mathrm{C}$ if for every open disc $\mathscr{D}_{\lambda_{0}}$ centered at λ_{0} the only analytic function $f: \mathscr{D}_{\lambda_{0}} \rightarrow \mathscr{V}$ which satisfies

$$
(T-\lambda) f(\lambda)=0 \quad \text { for all } \lambda \in \mathscr{D}_{\lambda_{0}}
$$

is the function $f \equiv 0$. Trivially, every operator T has SVEP at points of the resolvent $\rho(T)=\mathrm{C} \backslash \sigma(T)$; also T has SVEP at $\lambda \in$ iso $\sigma(T)$. The quasi-nilpotent part $H_{0}(T)$ and the analytic core $K(T)$ of T are defined by

$$
H_{0}(T)=\left\{v \in \mathscr{V}: \lim _{n \rightarrow \infty}\left\|T^{n} v\right\|^{\frac{1}{n}}=0\right\}
$$

and

$$
\begin{aligned}
& K(T)=\left\{v \in \mathscr{V}: \text { there exists a sequence }\left\{v_{n}\right\} \subset \mathscr{V} \text { and } \delta>0\right. \text { for which } \\
& \\
& \left.v=v_{0}, T v_{n+1}=v_{n} \text { and }\left\|v_{n}\right\| \leqslant \delta^{n}\|v\| \text { for all } n=1,2, \ldots\right\} .
\end{aligned}
$$

We note that $H_{0}(T)$ and $K(T)$ are (generally) non-closed hyperinvariant subspaces of T such that $T^{-q}(0) \subseteq H_{0}(T)$ for all $q=0,1,2, \ldots$ and $T K(T)=K(T)$ [17]. An operator T is said to be semi-regular if $T(\mathscr{V})$ is closed and $T^{-1}(0) \subset T^{\infty}(\mathscr{V})=$ $\cap_{n \in \mathbf{N}} T^{n}(\mathscr{V}) ; T$ admits a generalized Kato decomposition, $G K D$ for short, if there exists a pair of T-invariant closed subspaces (M, N) such that $\mathscr{V}=M \oplus N$, the restriction $\left.T\right|_{M}$ is quasinilpotent and $\left.T\right|_{N}$ is semi-regular. An operator $T \in B(\mathscr{V})$ has a $G K D$ at every $\lambda \in$ iso $\sigma(T)$, namely $\mathscr{V}=H_{0}(T-\lambda) \oplus K(T-\lambda)$. We say that T is Kato type at a point λ if $\left.(T-\lambda)\right|_{M}$ is nilpotent in the $G K D$ for $(T-\lambda)$. Recall that every Fredholm operator is Kato type (with the additional property that $\operatorname{dim} M<\infty)$ [14, Theorem 4].

2. Results

Let \mathscr{V}_{p} denote either of the Banach spaces $B(\mathscr{H})$ and \mathscr{C}_{p}, where $\mathscr{C}_{p}, 1 \leqslant p<$ ∞, is the von Neumann-Schatten p-class $\mathscr{C}_{p}(\mathscr{H})$. (Here it is assumed that \mathscr{H} is
separable in the case in which $\mathscr{V}_{p}=\mathscr{C}_{p}(\mathscr{H})$.) The following theorem answers [20, Question 2]. (We use the convention that if $0 \notin \sigma(T)$, then $0 \in$ iso $\sigma(T)$.)

Theorem 2.1. If $A, B \in B(\mathscr{H})$ are contractions, then either of the following conditions is necessary and sufficient for $\mathscr{V}_{p}=\Delta_{A B}^{-1}(0) \oplus \Delta_{A B}\left(\mathscr{V}_{p}\right)$:
(i) $\Delta_{A B}$ is Kato type.
(ii) $\Delta_{A B}^{n}\left(\mathscr{V}_{p}\right)$ is closed for some integer $n \geqslant 1$.

Proof. If $A, B \in B(H)$ are contractions, then

$$
W\left(B\left(\mathscr{V}_{p}\right), \Delta_{A B}\right) \subseteq\{\lambda \in C:|\lambda+1| \leqslant 1 \mid\} .
$$

(This is proved in [8, Theorem 1] for the case in which $\mathscr{V}_{p}=B(\mathscr{H})$; the proof for the case in which $\mathscr{V}_{p}=\mathscr{C}_{p}$ follows from this since $W\left(B\left(\mathscr{C}_{p}\right), \Delta_{A B}\right)=$ $\left.W\left(B(B(\mathscr{H})), \Delta_{A B}\right).\right)$ In particular, the point 0 (whenever it is in $\left.\sigma(T)\right)$ is a boundary point of both $\sigma\left(\Delta_{A B}\right)$ and $\sigma\left(\Delta_{A B}^{*}\right)$ (see Proposition 1.1). Applying the NirschlSchneider theorem $\left[4\right.$, Theorem 10.10] it follows that $\operatorname{asc}\left(\Delta_{A B}\right) \leqslant 1$ and $\operatorname{asc}\left(\Delta_{A B}^{*}\right) \leqslant$ 1 , both $\Delta_{A B}$ and $\Delta_{A B}{ }^{*}$ have SVEP at 0 , and

$$
\Delta_{A B}^{-1}(0) \cap \Delta_{A B}\left(\mathscr{V}_{p}\right)=\{0\}=\Delta_{A B}^{*}{ }^{-1}(0) \cap \Delta_{A B}^{*}\left(\mathscr{V}_{p}^{*}\right)
$$

[5, p. 25].
(i) The only if part being obvious, we prove the if part. If T is Kato type, then there exists a GKD (M, N) such that $\mathscr{V}_{p}=M \oplus N,\left.\Delta_{A B}\right|_{M}$ is nilpotent and $\left.\Delta_{A B}\right|_{N}$ is semi-regular. Since $\operatorname{asc}\left(\Delta_{A B}\right) \leqslant 1,\left.\Delta_{A B}\right|_{M}$ is 1-nilpotent. Again, since $\Delta_{A B}^{*}$ has SVEP at 0 (and $\Delta_{A B}$ is Kato type), $\operatorname{dsc}\left(\Delta_{A B}\right)<\infty$ [1, Theorem 2.9]. Thus asc $\left(\Delta_{A B}\right)=$ $\operatorname{dsc}\left(\Delta_{A B}\right) \leqslant 1$ and $\mathscr{V}_{p}=\Delta_{A B}^{-1}(0) \oplus \Delta_{A B}\left(\mathscr{V}_{p}\right)$ [16, Proposition 4.10.4].
(ii) Once again, the only if part being obvious, we prove the if part. Recall from [16, Lemma 4.10.2] that if $\operatorname{asc}(T) \leqslant 1$ and $T^{-1}(0)+T(\mathscr{V})$ is closed for a Banach space operator $T \in B(\mathscr{V})$, then $T(\mathscr{V})$ is closed; again, if $\operatorname{asc}(T) \leqslant 1$ and $T^{n}(\mathscr{V})$ is closed for some integer $n>1$, then $T^{-1}(0)+T(\mathscr{V})$ is closed [16, Proposition 4.10.4]. Hence the hypothesis $\Delta_{A B}^{n}\left(\mathscr{V}_{p}\right)$ is closed for some integer $n \geqslant 1$ implies that $\Delta_{A B}^{-1}(0)+\Delta_{A B}\left(\mathscr{V}_{p}\right)$ is closed, which in turn implies that $\Delta_{A B}\left(\mathscr{V}_{p}\right)$, and so also $\Delta_{A B}^{*}\left(\mathscr{V}_{p}^{*}\right)$, is closed. Since

$$
\begin{aligned}
\left\{\Delta_{A B}^{-1}(0)+\Delta_{A B}\left(\mathscr{V}_{p}\right)\right\}^{\perp} & =\Delta_{A B}\left(\mathscr{V}_{p}\right)^{\perp} \cap \Delta_{A B}^{-1}(0)^{\perp} \\
& =\Delta_{A B}^{*}(0) \cap\left\{^{\perp} \Delta_{A B}^{*}\left(\mathscr{V}_{p}^{*}\right)\right\}^{\perp} \\
& =\Delta_{A B}^{*}-1(0) \cap \Delta_{A B}^{*}\left(\mathscr{V}_{p}^{*}\right)=\{0\},
\end{aligned}
$$

it follows that

$$
\Delta_{A B}^{-1}(0)+\Delta_{A B}\left(\mathscr{V}_{p}\right)=\mathscr{V}_{p}
$$

Hence $\operatorname{dsc}\left(\Delta_{A B}\right) \leqslant 1$, which (see above) implies that $\mathscr{V}_{p}=\Delta_{A B}^{-1}(0) \oplus \Delta_{A B}\left(\mathscr{V}_{p}\right)$.

Theorem 2.1 subsumes [8, Theorem 2], as the following corollary shows.
Corollary 2.2. If $A, B \in B(\mathscr{H})$ are contractions such that the isolated points λ of $\sigma(A)$ and $\sigma(B)$ with $|\lambda|=1$ are eigen-values, then we have the implications

$$
B(\mathscr{H})=\Delta_{A B}^{-1}(0) \oplus \Delta_{A B}(B(\mathscr{H})) \Longleftrightarrow 0 \in \text { iso } \sigma\left(\Delta_{A B}\right) .
$$

Proof. The forward implication being obvious, we prove the reverse implication. For this it will suffice to prove that $\Delta_{A B}(B(\mathscr{H}))$ is closed: the proof will then follow from Theorem 2.1(ii). Since a large part of the argument is the same as that of the proof of [8, Theorem 2], we shall be economical with the detail. Thus assume that $0 \in$ iso $\sigma\left(\Delta_{A B}\right)$. Arguing as in [8] it is seen that $\Delta_{A B}$ has a matrix representation $\Delta_{A B}(X)=\left[\Delta_{A_{i} B_{j}}\left(X_{i j}\right)\right]_{i, j=1,2}^{2}$, where $0 \notin \sigma\left(\Delta_{A_{i} B_{j}}\right)$ for all $i, j \neq 1$, and where A_{1}, B_{1} are unitary operators with finite spectrum. Consequently, $\Delta_{A_{i} B_{j}}$ has closed range for all $0 \leqslant i, j \leqslant 2$; hence $\Delta_{A B}(B(\mathscr{H}))$ is closed.

Examples of operators in $B(\mathscr{H})$ for which isolated points of the spectrum are eigen-values of the spectrum occur in abundance. Call an operator $T \in B(\mathscr{H})$ totally hereditarily normaloid, $T \in T H N$, if every part of T (i.e., its restriction to an invariant subspace, including \mathscr{H}), and T_{p}^{-1} for every invertible part T_{p} of T, is normaloid: if $T \in T H N$, then isolated points of the spectrum of T are eigen-values of T [11, Lemma 2.1]. Hyponormal operators $T\left(\left|T^{*}\right|^{2} \leqslant|T|^{2}\right)$ and (more generally) paranormal operators $T\left(\|T x\|^{2} \leqslant\left\|T^{2} x\right\|\right.$ for every unit vector $\left.x \in \mathscr{H}\right)$ are examples of THN operators.

Theorem 2.1 extends to the operator $\Phi(X)=\sum_{i=1}^{m} A_{i} X B_{i}-X$, where $A_{i}, B_{i} \in$ $B(\mathscr{H})$ are such that $\left\{\left\|\sum_{i=1}^{m} A_{i} A_{i}^{*}\right\|\left\|\sum_{i=1}^{m} B_{i}^{*} B_{i}\right\|\right\}^{\frac{1}{2}} \leqslant c, c=1$ if $\Phi \in B(B(\mathscr{H}))$ and $c=m^{\frac{-1}{p}}$ if $\Phi \in B\left(\mathscr{C}_{p}\right)$.

Corollary 2.3. If the operators $A_{i}, B_{i} \in B(\mathscr{H}), 1 \leqslant i \leqslant m$, and the operator $\Phi \in$ $B\left(\mathscr{V}_{p}\right)$ are defined as above, then either of the conditions (i) and (ii) of Theorem 2.1 is both necessary and sufficient for $\mathscr{V}_{p}=\Phi^{-1}(0) \oplus \Phi\left(\mathscr{V}_{p}\right)$.

Proof. Define the row vector \mathbf{A} and the column vector \mathbf{B} by $\mathbf{A}=\left[A_{1}, A_{2}, \ldots, A_{m}\right]$ and $\mathbf{B}=\left[B_{1}, B_{2}, \ldots, B_{m}\right]^{\mathrm{T}}$. Then $\phi(X)=\sum_{i=1}^{m} A_{i} X B_{i}=\mathbf{A}\left(X \otimes I_{m}\right) \mathbf{B}$, where I_{m} is the identity of \mathbf{M}_{m} (C). Clearly, ϕ is a contraction, and the argument of the proof of Theorem 2.1 applies.

Remark 2.4. The conclusion $\mathscr{V}_{p}=\Delta_{A B}^{-1}(0) \oplus \Delta_{A B}\left(\mathscr{V}_{p}\right)$ implies that $0 \in$ iso $\sigma\left(\Delta_{A B}\right)$. Thus, the hypothesis $0 \in$ iso $\sigma\left(\Delta_{A B}\right)$ is necessary for $\mathscr{V}_{p}=\Delta_{A B}^{-1}(0) \oplus$ $\Delta_{A B}\left(\mathscr{V}_{p}\right)$: the following example shows that this condition is not sufficient. Let V denote the Voltera (integral) operator on $\mathscr{H}=L^{2}(0,1)$. Define $A, B \in B(\mathscr{H})$ by $A=(I+V)^{-1}$ and $B=I$. Then A, B are contractions and $\sigma\left(\Delta_{A B}\right)=\{0\}$.

Obviously, $\Delta_{A B}$ has the $\operatorname{GKD}(B(\mathscr{H}), 0), \Delta_{A B}$ is injective, $\Delta_{A B}(B(\mathscr{H}))$ is not closed and $B(\mathscr{H}) \neq 0 \oplus \Delta_{A B}(B(\mathscr{H}))$.

Remark 2.5. The hypothesis $0 \in$ iso $\sigma(T), T \in B(\mathscr{V})$, implies that $\mathscr{V}=H_{0}(T) \oplus$ $K(T)$, where both $H_{0}(T)$ and $K(T)$ are closed. The following argument shows that if also $\operatorname{dim}\left(H_{0}(T)\right)<\infty$, then there exists an integer $n \geqslant 1$ such that $\mathscr{V}=T^{-n}(0) \oplus$ $T^{n}(\mathscr{V})$. Recall that $T^{-1}(0) \subseteq H_{0}(T)$ and $K(T) \subseteq T(\mathscr{V})$; if $\operatorname{dim}\left(H_{0}(T)\right)<\infty$, then the deficiency indices $\alpha(T)$ and $\beta(T)$ are (both) finite, and T is Fredholm. Obviously, both T and T^{*} have SVEP at 0 ; hence asc (T) and $\operatorname{dsc}(T)$ are finite [1, Theorems 2.6 and 2.9]. There exists an integer $n \geqslant 1$ such that $\operatorname{asc}(T)=\operatorname{dsc}(T) \leqslant n<\infty$ and $\mathscr{V}=T^{-n}(0) \oplus T^{n}(\mathscr{V})$ [16, Proposition 4.10.6]. The condition $\operatorname{dim}\left(H_{0}(T)\right)<\infty$ is fairly restrictive: a more general, but in many ways equally restrictive, condition is that $H_{0}(T)=T^{-n}(0)$. In the following we consider just such an operator.

Elementray operator $\mathscr{E}_{\mathbf{A B}}$. Let $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, \ldots\right.$, B_{m}) be m-tuples of mutually commuting normal operators $A_{i}, B_{i} \in B(\mathscr{H})$. The elementary operator $\mathscr{E}_{\mathbf{A} \mathbf{B}} \in B(B(\mathscr{H}))$ is defined by

$$
\mathscr{E}_{\mathbf{A B}}(X)=\sum_{i=1}^{m} A_{i} X B_{i}
$$

Recall that an operator $T \in B(\mathscr{V})$ is a generalized scalar operator if there exists a continuous algebra homomorphism $\Phi: C^{\infty} \rightarrow B(\mathscr{V})$ for which $\Phi(1)=I$ and $\Phi(Z)=T$, where $C^{\infty}(\mathrm{C})$ is the Fréchet algebra of all infinitely differentiable functions on C (endowed with its usual topology of uniform convergence on compact sets for the functions and their partial derivatives) and Z is the identity function on C (see [7] or [16, p. 4]).

Let L_{A} and $R_{A}, A \in B(\mathscr{V})$, denote the operators of "left multiplication by A " and "right multiplication by A ", respectively. If A, B are generalized scalar operators, then L_{A} and R_{B} are commuting generalized scalar operators with two commuting spectral distributions, and $L_{A} R_{B}$ and $L_{A}+R_{B}$ are generalized scalar operators (see [7, Theorem 3.3, Proposition 4.2 and Theorem 4.3, Chapter 4]). Let $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ be m-tuples of mutually commuting generalized scalar operators in $B(\mathscr{V})$. Since $L_{A_{i}}$ commutes with $R_{B_{j}}$ for all $1 \leqslant i, j \leqslant m$, the mutual commutativity of the m-tuples implies that $L_{A_{i}} R_{B_{i}}$ commutes with $L_{A_{j}} R_{B_{j}}$ for all $1 \leqslant$ $i, j \leqslant m$, the generalized scalar operators $L_{A_{i}} R_{B_{i}}$ and $L_{A_{j}} R_{B_{j}}$ have two commuting spectral distributions, and (hence) $L_{A_{i}} R_{B_{i}}+L_{A_{j}} R_{B_{j}}$ is a generalized scalar operator. Since normal operators are generalized scalar operators, a finitely repeated application of this argument implies that $\mathscr{E}_{\mathbf{E B}}$ is a generalized scalar operator.

Theorem 2.6. A necessary and sufficient condition for

$$
\mathscr{V}_{p}=\mathscr{E}_{\mathbf{A B}}^{-n}(0) \oplus \mathscr{E}_{\mathbf{A B}}^{n}\left(\mathscr{V}_{p}\right)
$$

for some integer $n \geqslant 1$ is that $0 \in$ iso $\sigma\left(\mathscr{E}_{\mathbf{A B}}\right)$.

Proof. The operator $\mathscr{E}_{\mathbf{A B}}$ being a generalized scalar operator, there exists an integer $n \geqslant 1$ such that $H_{0}\left(\mathscr{E}_{\mathbf{A B}}\right)=\mathscr{E}_{\mathbf{A B}}^{-n}(0)$ [7, Theorem 4.4.5]. If $0 \in$ iso $\sigma\left(\mathscr{E}_{\mathbf{A B}}\right)$, then

$$
\begin{aligned}
& \mathscr{V}_{p}=H_{0}\left(\mathscr{E}_{\mathbf{A B}}\right) \oplus K\left(\mathscr{E}_{\mathbf{A B}}\right)=\mathscr{E}_{\mathbf{A B}}^{-n}(0) \oplus K\left(\mathscr{E}_{\mathbf{A B}}\right) \\
& \quad \Longrightarrow \mathscr{E}_{\mathbf{A B}}\left(\mathscr{V}_{p}\right)=0 \oplus \mathscr{E}_{\mathbf{A B}}^{n}\left(K\left(\mathscr{E}_{\mathbf{A B}}\right)\right)=0 \oplus K\left(\mathscr{E}_{\mathbf{A B}}\right) \\
& \quad \Longrightarrow \mathscr{V}_{p}=\mathscr{E}_{\mathbf{A B}}^{-n}(0) \oplus \mathscr{E}_{\mathbf{A B}}^{n}\left(\mathscr{V}_{p}\right) .
\end{aligned}
$$

Since the necessity of the conditon is obvious, the proof is complete.
One cannot always choose $n=1$ in Theorem 2.6, for the reason that there exist elementary operators $\mathscr{E}_{\mathbf{A B}}$ with $\operatorname{asc}\left(\mathscr{E}_{\mathbf{A B}}\right)>1$ [18]. However, if we restrict the length of $\mathscr{E}_{\mathbf{A B}}$ to 2 (i.e., if $m=2$), then $\operatorname{asc}\left(\mathscr{E}_{\mathbf{A B}}\right) \leqslant 1$ is guaranteed [9, Theorem 2.7]. Hence:

Corollary 2.7. If $\mathbf{A}=\left(A_{1}, A_{2}\right)$ and $\mathbf{B}=\left(B_{1}, B_{2}\right)$ are tuples of commuting normal operators in $B(\mathscr{H})$, then a necessary and sufficient condition for

$$
\mathscr{V}_{p}=\mathscr{E}_{\mathbf{A B}}^{-1}(0) \oplus \mathscr{E}_{\mathbf{A B}}\left(\mathscr{V}_{p}\right)
$$

is that $0 \in$ iso $\sigma\left(\mathscr{E}_{\mathbf{A B}}\right)$.
Corollary 2.7 answers [20, Question 1]; it was proved in [8] under the more restrictive hypothesis that $0 \in \sigma\left(\mathscr{E}_{\mathbf{A B}}\right)$ is isolated in the set $S=\left\{a_{1} b_{1}+a_{2} b_{2}: a_{i} \in\right.$ $\left.\sigma\left(A_{i}\right), b_{i} \in \sigma\left(B_{i}\right), i=1,2\right\}$. (Observe that $\sigma\left(\mathscr{E}_{\mathbf{A B}}\right) \subseteq S[13]$.) Variants of Corollary 2.7 for $\Delta_{A B}$, and the generalized derivations $\delta_{A B}(X)=A X-X B$, have been considered in $[8,10]$. Observe that for the generalized derivation $\delta_{A B}, 0 \in$ iso $\sigma\left(\delta_{A B}\right)$ if and only if $\sigma(A) \cap \sigma(B)$ is finite. Thus, if A, B are totally hereditarily normaloid operators in $B(\mathscr{H})$ for which isolated points are normal eigen-values (in particular, if A, B are hyponormal), then $B(\mathscr{H})=\delta_{A B}^{-1}(0) \oplus \delta_{A B}(B(\mathscr{H}))$ if and only if $\sigma(A) \cap \sigma(B)$ is finite.

References

[1] P. Aiena, O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001) 461-477.
[2] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973) 136-140.
[3] J. Anderson, C. Foiaş, Properties which normal operators share with normal derivations and related operators, Pac. J. Math. 61 (1975) 313-325.
[4] F.F. Bonsall, J. Duncan, Numerical ranges I, Lond. Math. Soc. Lecture Notes Series 2 (1971).
[5] F.F. Bonsall, J. Duncan, Numerical ranges II, Lond. Math. Soc. Lecture Notes Series 10 (1973).
[6] F.F. Bonsall, J. Duncan, Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete Band, vol. 80, Springer-Verlag, 1973.
[7] I. Colojoařa, C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
[8] B.P. Duggal, Robin E. Harte, Range-kernel orthogonality and range closure of an elementary operator, Monatsh. Math. 143 (2004) 179-187.
[9] B.P. Duggal, Skew exactness, subspace gaps and range-kernel orthogonality, Linear Algebra Appl. 383 (2004) 93-106.
[10] B.P. Duggal, Weyl's theorem for a generalized derivation and an elementary operator, Math. Vesnik 54 (2002) 71-81.
[11] B.P. Duggal, S.V. Djordjević, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. Royal Irish Acad. 104A (2004) 75-81.
[12] N. Dunford, J.T. Schwartz, Linear Operators, Part I, Interscience, New York, 1964.
[13] M.R. Embry, M. Rosenblum, Spectra, tensor products, and linear operator equations, Pac. J. Math. 53 (1974) 95-107.
[14] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Math. Anal. 6 (1958) 261-322.
[15] Dragoljub Kec̆kić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000) 3369-3377.
[16] K.B. Laursen, M.M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs (N.S.), Oxford University Press, 2000.
[17] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987) 159-175.
[18] V.S. Shulman, On linear equations with normal coefficients, Dokl. Akad. Nauk USSR 270-5 (1983). 1070-1073, English transl. in Soviet Math. Dokl. 27 (1983) 726-729.
[19] A. Turns̆ek, Generalized Anderson's inequality, J. Math. Anal. Appl. 263 (2001) 121-134.
[20] A. Turns̆ek, Orthogonality in \mathscr{C}_{p} classes, Mh. Math. 132 (2001) 349-354.

[^0]: * Tel./fax: +971 37544821.

 E-mail address: bpduggal@uaeu.ac.ae

