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Abstract

Let B(H) denote the algebra of operators on a Hilbert H. Let �AB ∈ B(B(H)) and
E ∈ B(B(H)) denote the elementary operators �AB(X) = AXB − X and E(X) = AXB −
CXD. We answer two questions posed by Turnšek [Mh. Math. 132 (2001) 349–354] to
prove that: (i) if A,B are contractions, then B(H) = �−1

AB
(0) ⊕ �AB(B(H)) if and only

if �n
AB

(B(H)) is closed for some integer n � 1; (ii) if A,B,C and D are normal operators

such that A commutes with C and B commutes with D, then B(H) = E−1(0) ⊕ E(B(H))

if and only if 0 ∈ iso σ(E).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and notation

If T is a Banach space operator, T ∈ B(V), then a necessary condition for T to
have closed range complemented by its kernel T −1(0) is that 0 ∈ iso σ(T ) (i.e., 0 is
an isolated point of the spectrum σ(T ) of T ). If V = B(H), the algebra of operators
on a complex infinite dimensional Hilbert space H, and T = δAB ∈ B(B(H)) is
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the generalized derivation δAB(X) = AX − XB, then this condition translates to
0 ∈ iso{σ(A) − σ(B)} ⇐⇒ 0 ∈ {σ(A) − σ(B)} and σ(A) ∩ σ(B) is finite. For nor-
mal A,B ∈ B(H), or (more generally) scalar operators (in the sense of Dunford)
A,B ∈ B(H), the condition 0 ∈ iso σ(δAB) is also sufficient forB(H) = δ−1

AB(0) ⊕
δAB(B(H)) [3].

If M and N are subspaces of V, then M is said to be orthogonal to N , denoted
M ⊥ N , if ‖m‖ � ‖m + n‖ for allm ∈ M and n ∈ N [12, p. 93]. Recall from Ander-
son [2] that if A,B ∈ B(H) are normal, then δ−1

AB(0) ⊥ δAB(B(H)). Various exten-
sions of this orthogonality to the elementary operators �AB(X) = AXB − X and
EAB(X) = ∑m

i=1 AiXBi are to be found in the literature (see, for example, [9,15,
19]). Observe that

T −1(0) ⊥ T (V) �⇒ T −1(0) ∩ T (V) = {0} ⇐⇒ asc(T ) � 1

for an operator T ∈ B(V). (Here, and in the sequel, asc(T ) denotes the ascent, and
T (V) denotes the range, of T .) T −1(0) ⊥ T (V) does not however imply that T (V)

is closed, or even when T (V) is closed that V = T −1(0) + T (V ). In his study of the
range-kernel orthogonality of the elementary operators �AB and EAB in von Neu-
mann–Schatten p-classes Cp(H) [20], Turns̆ek has posed the following problems:
Find conditions (i) for B(H) = �−1

AB(0) ⊕ �AB(B(H) to hold, given that A,B ∈
B(H) are contractions; (ii) for B(H) = E−1

AB(0) ⊕ EAB(B(H) to hold, given that
m = 2, and (A1, A2) and (B1, B2) are tuples of mutually commuting normal oper-
ators in B(H). These problems were partially answered in [8]. In this note we use
techniques from local spectral theory to provide a complete answer to these prob-
lems by proving that the equality in (i) holds if and only if either �AB is Kato type
or �n

AB(B(H)) is closed for some integer n � 1, and that the equality in (ii) holds
if and only if 0 ∈ iso σ(T ).

In addition to the notation and terminology already introduced, we shall use the
following further notation and terminology.

The (algebra) numerical range W(B(V), T ) of an operator T ∈ B(V) is the set
{
f (T ) : f ∈ B(V)∗, ‖f ‖ = f (I) = 1

}
,

where B(V)∗ denotes the (Banach space) dual of B(V); W(B(V), T ) = coV (T ),
where coV (T ) denotes the closed convex hull of the spatial numerical range

V (T ) = {
F(Ty) : F ∈ V∗, y ∈ V, ‖F‖ = ‖y‖ = F(y) = 1

}

of T [6, Theorem 9.4]. If we denote the (Banach space) conjugate operator of T by
T ∗, then coV (T ) = coV (T ∗) [6, Corollary 9.6(ii)]. Hence:

Proposition 1.1. W(B(V), T ) = W(B(V∗), T ∗).

If M is a linear subspace of V, let

M⊥ = {
φ ∈ V∗ : φ(m) = 0 for all m ∈ M

}
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denote the annihilator of M (in the dual space V∗), and if N is a linear subspace of
V∗, let

⊥N = {
v ∈ V : φ(v) = 0 for all φ ∈ N

}

denote the pre-annihilator of N (in V). By the bi-polar theorem, ⊥(M⊥) is the
norm closure of M and (⊥N)⊥ is the weak-∗-closure of N . For every T ∈ B(V),
T ∗−1(0) = T (V)⊥ and T −1(0) =⊥ T ∗(V∗).

The ascent (descent) of T ∈ B(V), denoted asc(T ) (resp., dsc(T )), is the least
non-negative integer n such that T −n(0) = T −(n+1)(0) (resp., T n(V) = T n+1(V)).
The deficiency indices α(T ) and β(T ) of T are the integers α(T ) = dim(T −1(0))
and β(T ) = dim(V/T (V)). Let C denote the set of complex numbers. An operator
T has SVEP (short for the single-valued extension property) at a point λ0 ∈ C if for
every open disc Dλ0 centered at λ0 the only analytic function f : Dλ0 → V which
satisfies

(T − λ)f (λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. Trivially, every operator T has SVEP at points of the resolvent
ρ(T ) = C \ σ(T ); also T has SVEP at λ ∈ iso σ(T ). The quasi-nilpotent part H0(T )

and the analytic core K(T ) of T are defined by

H0(T ) =
{
v ∈ V : lim

n→∞ ‖T nv‖ 1
n = 0

}

and

K(T ) = {
v ∈ V : there exists a sequence {vn} ⊂ V and δ > 0 for which

v = v0, T vn+1 = vn and ‖vn‖ � δn‖v‖ for all n = 1, 2, . . .
}
.

We note that H0(T ) and K(T ) are (generally) non-closed hyperinvariant subspaces
of T such that T −q(0) ⊆ H0(T ) for all q = 0, 1, 2, . . . and TK(T ) = K(T ) [17].
An operator T is said to be semi-regular if T (V) is closed and T −1(0) ⊂ T∞(V) =
∩n∈NT

n(V); T admits a generalized Kato decomposition, GKD for short, if there
exists a pair of T -invariant closed subspaces (M,N) such that V = M ⊕ N , the
restriction T |M is quasinilpotent and T |N is semi-regular. An operator T ∈ B(V)

has a GKD at every λ ∈ iso σ(T ), namely V = H0(T − λ) ⊕ K(T − λ). We say
that T is Kato type at a point λ if (T − λ)|M is nilpotent in the GKD for (T − λ).
Recall that every Fredholm operator is Kato type (with the additional property that
dimM < ∞) [14, Theorem 4].

2. Results

Let Vp denote either of the Banach spaces B(H) and Cp, where Cp, 1 � p <

∞, is the von Neumann–Schatten p-class Cp(H). (Here it is assumed that H is
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separable in the case in which Vp = Cp(H).) The following theorem answers [20,
Question 2]. (We use the convention that if 0 /∈ σ(T ), then 0 ∈ iso σ(T ).)

Theorem 2.1. If A,B ∈ B(H) are contractions, then either of the following con-
ditions is necessary and sufficient for Vp = �−1

AB(0) ⊕ �AB(Vp):

(i) �AB is Kato type.
(ii) �n

AB(Vp) is closed for some integer n � 1.

Proof. If A,B ∈ B(H) are contractions, then

W(B(Vp),�AB) ⊆ {λ ∈ C : |λ + 1| � 1|}.
(This is proved in [8, Theorem 1] for the case in which Vp = B(H); the proof for
the case in which Vp = Cp follows from this since W(B(Cp),�AB) =
W(B(B(H)),�AB).) In particular, the point 0 (whenever it is in σ(T )) is a boundary
point of both σ(�AB) and σ(�∗

AB) (see Proposition 1.1). Applying the Nirschl-
Schneider theorem [4, Theorem 10.10] it follows that asc(�AB)� 1 and asc(�∗

AB)�
1, both �AB and �AB

∗ have SVEP at 0, and

�−1
AB(0) ∩ �AB(Vp) = {0} = �∗

AB
−1
(0) ∩ �∗

AB(V
∗
p)

[5, p. 25].
(i) The only if part being obvious, we prove the if part. If T is Kato type, then there

exists a GKD (M,N) such that Vp = M ⊕ N , �AB |M is nilpotent and �AB |N is
semi-regular. Since asc(�AB) � 1,�AB |M is 1-nilpotent. Again, since�∗

AB has SVEP
at 0 (and �AB is Kato type), dsc(�AB) < ∞ [1, Theorem 2.9]. Thus asc(�AB) =
dsc(�AB) � 1 and Vp = �−1

AB(0) ⊕ �AB(Vp) [16, Proposition 4.10.4].
(ii) Once again, the only if part being obvious, we prove the if part. Recall from

[16, Lemma 4.10.2] that if asc(T ) � 1 and T −1(0) + T (V) is closed for a Banach
space operator T ∈ B(V), then T (V) is closed; again, if asc(T ) � 1 and T n(V)

is closed for some integer n > 1, then T −1(0) + T (V) is closed [16, Proposition
4.10.4]. Hence the hypothesis �n

AB(Vp) is closed for some integer n � 1 implies
that �−1

AB(0) + �AB(Vp) is closed, which in turn implies that �AB(Vp), and so
also �∗

AB(V
∗
p), is closed. Since

{
�−1
AB(0) + �AB(Vp)

}⊥ =�AB(Vp)
⊥ ∩ �−1

AB(0)
⊥

=�∗
AB

−1
(0) ∩ {⊥

�∗
AB(V

∗
p)

}⊥

=�∗
AB

−1
(0) ∩ �∗

AB(V
∗
p) = {0},

it follows that

�−1
AB(0) + �AB(Vp) = Vp.

Hence dsc(�AB) � 1, which (see above) implies that Vp = �−1
AB(0) ⊕ �AB(Vp).

�



B.P. Duggal / Linear Algebra and its Applications 402 (2005) 199–206 203

Theorem 2.1 subsumes [8, Theorem 2], as the following corollary shows.

Corollary 2.2. If A,B ∈ B(H) are contractions such that the isolated points λ of
σ(A) and σ(B) with |λ| = 1 are eigen-values, then we have the implications

B(H) = �−1
AB(0) ⊕ �AB(B(H)) ⇐⇒ 0 ∈ iso σ(�AB).

Proof. The forward implication being obvious, we prove the reverse implication.
For this it will suffice to prove that �AB(B(H)) is closed: the proof will then follow
from Theorem 2.1(ii). Since a large part of the argument is the same as that of the
proof of [8, Theorem 2], we shall be economical with the detail. Thus assume that
0 ∈ iso σ(�AB). Arguing as in [8] it is seen that �AB has a matrix representation
�AB(X) = [�AiBj

(Xij )]2
i,j=1,2, where 0 /∈ σ(�AiBj

) for all i, j /= 1, and where
A1, B1 are unitary operators with finite spectrum. Consequently, �AiBj

has closed
range for all 0 � i, j � 2; hence �AB(B(H)) is closed. �

Examples of operators in B(H) for which isolated points of the spectrum are
eigen-values of the spectrum occur in abundance. Call an operator T ∈ B(H) totally
hereditarily normaloid, T ∈ THN , if every part of T (i.e., its restriction to an invari-
ant subspace, including H), and T −1

p for every invertible part Tp of T, is normaloid:
if T ∈ THN , then isolated points of the spectrum of T are eigen-values of T [11,
Lemma 2.1]. Hyponormal operators T (|T ∗|2 � |T |2) and (more generally) para-
normal operators T (‖T x‖2 � ‖T 2x‖ for every unit vector x ∈ H) are examples of
THN operators.

Theorem 2.1 extends to the operator �(X) = ∑m
i=1 AiXBi − X, where Ai, Bi ∈

B(H) are such that {‖ ∑m
i=1 AiA

∗
i ‖‖

∑m
i=1 B

∗
i Bi‖} 1

2 � c, c = 1 if � ∈ B(B(H))

and c = m
−1
p if � ∈ B(Cp).

Corollary 2.3. If the operators Ai, Bi ∈ B(H), 1 � i � m, and the operator � ∈
B(Vp) are defined as above, then either of the conditions (i) and (ii) of Theorem 2.1
is both necessary and sufficient for Vp = �−1(0) ⊕ �(Vp).

Proof. Define the row vector A and the column vector B by A = [A1, A2, . . . , Am]
and B = [B1, B2, . . . , Bm]T. Then φ(X) = ∑m

i=1 AiXBi = A(X ⊗ Im)B, where Im
is the identity of Mm(C). Clearly, φ is a contraction, and the argument of the proof
of Theorem 2.1 applies. �

Remark 2.4. The conclusion Vp = �−1
AB(0) ⊕ �AB(Vp) implies that 0 ∈

iso σ(�AB). Thus, the hypothesis 0 ∈ iso σ(�AB) is necessary for Vp = �−1
AB(0) ⊕

�AB(Vp): the following example shows that this condition is not sufficient. Let V
denote the Voltera (integral) operator on H = L2(0, 1). Define A,B ∈ B(H) by
A = (I + V )−1 and B = I . Then A,B are contractions and σ(�AB) = {0}.
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Obviously, �AB has the GKD (B(H), 0), �AB is injective, �AB(B(H)) is not
closed and B(H) /= 0 ⊕ �AB(B(H)).

Remark 2.5. The hypothesis 0 ∈ iso σ(T ), T ∈ B(V), implies that V = H0(T ) ⊕
K(T ), where bothH0(T ) andK(T ) are closed. The following argument shows that if
also dim(H0(T )) < ∞, then there exists an integer n � 1 such that V = T −n(0) ⊕
T n(V). Recall that T −1(0) ⊆ H0(T ) andK(T ) ⊆ T (V); if dim(H0(T )) < ∞, then
the deficiency indices α(T ) and β(T ) are (both) finite, and T is Fredholm. Obviously,
both T and T ∗ have SVEP at 0; hence asc(T ) and dsc(T ) are finite [1, Theorems 2.6
and 2.9]. There exists an integer n � 1 such that asc(T ) = dsc(T ) � n < ∞ and
V = T −n(0) ⊕ T n(V) [16, Proposition 4.10.6]. The condition dim(H0(T )) < ∞
is fairly restrictive: a more general, but in many ways equally restrictive, condition
is that H0(T ) = T −n(0). In the following we consider just such an operator.

Elementray operator EAB. Let A = (A1, A2, . . . , Am) and B = (B1, B2, . . . ,

Bm) be m-tuples of mutually commuting normal operators Ai, Bi ∈ B(H). The ele-
mentary operator EAB ∈ B(B(H)) is defined by

EAB(X) =
m∑
i=1

AiXBi.

Recall that an operator T ∈ B(V) is a generalized scalar operator if there exists
a continuous algebra homomorphism � : C∞ → B(V) for which �(1) = I and
�(Z) = T , where C∞(C) is the Fréchet algebra of all infinitely differentiable func-
tions on C (endowed with its usual topology of uniform convergence on compact sets
for the functions and their partial derivatives) and Z is the identity function on C (see
[7] or [16, p. 4]).

Let LA and RA, A ∈ B(V), denote the operators of “left multiplication by A” and
“right multiplication byA”, respectively. IfA,B are generalized scalar operators, then
LA andRB are commuting generalized scalar operators with two commuting spectral
distributions, and LARB and LA + RB are generalized scalar operators (see [7, The-
orem 3.3, Proposition 4.2 and Theorem 4.3, Chapter 4]). Let A = (A1, A2, . . . , Am)

and B = (B1, B2, . . . , Bm) be m-tuples of mutually commuting generalized scalar
operators in B(V). Since LAi

commutes with RBj
for all 1 � i, j � m, the mutual

commutativity of them-tuples implies thatLAi
RBi

commutes withLAj
RBj

for all 1 �
i, j � m, the generalized scalar operators LAi

RBi
and LAj

RBj
have two commuting

spectral distributions, and (hence)LAi
RBi

+ LAj
RBj

is a generalized scalar operator.
Since normal operators are generalized scalar operators, a finitely repeated application
of this argument implies that EAB is a generalized scalar operator.

Theorem 2.6. A necessary and sufficient condition for

Vp = E−n
AB(0) ⊕ En

AB(Vp)

for some integer n � 1 is that 0 ∈ iso σ(EAB).
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Proof. The operator EAB being a generalized scalar operator, there exists an integer
n � 1 such that H0(EAB) = E−n

AB(0) [7, Theorem 4.4.5]. If 0 ∈ iso σ(EAB), then

Vp = H0(EAB) ⊕ K(EAB) = E−n
AB(0) ⊕ K(EAB)

�⇒ En
AB(Vp) = 0 ⊕ En

AB(K(EAB)) = 0 ⊕ K(EAB)

�⇒ Vp = E−n
AB(0) ⊕ En

AB(Vp).

Since the necessity of the conditon is obvious, the proof is complete. �

One cannot always choose n = 1 in Theorem 2.6, for the reason that there exist
elementary operators EAB with asc(EAB) > 1 [18]. However, if we restrict the length
of EAB to 2 (i.e., if m = 2), then asc(EAB) � 1 is guaranteed [9, Theorem 2.7].
Hence:

Corollary 2.7. If A = (A1, A2) and B = (B1, B2) are tuples of commuting normal
operators in B(H), then a necessary and sufficient condition for

Vp = E−1
AB(0) ⊕ EAB(Vp)

is that 0 ∈ iso σ(EAB).

Corollary 2.7 answers [20, Question 1]; it was proved in [8] under the more
restrictive hypothesis that 0 ∈ σ(EAB) is isolated in the set S = {a1b1 + a2b2 : ai ∈
σ(Ai), bi ∈ σ(Bi), i = 1, 2}. (Observe that σ(EAB) ⊆ S [13].) Variants of Corollary
2.7 for �AB , and the generalized derivations δAB(X) = AX − XB, have been con-
sidered in [8,10]. Observe that for the generalized derivation δAB , 0 ∈ iso σ(δAB) if
and only if σ(A) ∩ σ(B) is finite. Thus, if A,B are totally hereditarily normaloid
operators in B(H) for which isolated points are normal eigen-values (in particu-
lar, if A,B are hyponormal), then B(H) = δ−1

AB(0) ⊕ δAB(B(H)) if and only if
σ(A) ∩ σ(B) is finite.
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