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Abstract. In this paper we establish new bounds on the problem of constructing optimum binary 

search trees with zero-key access probabilities (with applications e.g. to point location problems). 

We present a linear-time heuristic for constructing such search trees so that their cost is within a 

factor of 1 + E from the optimum cost, where F is an arbitrary small positive constant. Furthermore, 

by using an interesting amortization argument, we give a simple and practical, linear-time 

implementation of a known greedy heuristics for such trees. 

The above results are obtained in a more general setting, namely in the context of minimum 

length triangulations of so-called semi-circular polygons. They are carried over to binary search 

trees by proving a duality between optimum (m - I)-way search trees and minimum weight 

partitions of infinitely-flat semi-circular polygons into m-gons. With this duality we can also obtain 

better heuristics for minimum length partitions of polygons by using known algorithms for optimum 

search trees. 

1. Introduction 

The problem of constructing optimum binary search trees has been extensively 

studied in the literature (see e.f. [7, 121). Given a set of keys and the access 

probabilities, an optimum binary search trees can be constructed in quadratic time 

[7, 121. The cost of a binary search tree is the average number of comparisons 

performed during a search operation. A binary search tree is optimum if it has 

minimum cost among all binary search trees for the given pair of key-set and access 

distribution. Formal definitions of these terms are given in Section 2. Several 

algorithms and heuristics for constructing optimum binary search trees with zero-key 

access probabilities have been proposed (see e.g. [l, 4,7]). The special case with 

zero-key access probabilities arises, for example, in computing optimal codes [7] 

and in the problem of locating a point on a line [13] when the query point does 

not coincide with any of the points dividing the line. In this case, the algorithms 

producing an optimum search tree run in time 0( n log n) [ 1,4,7]. There are two 

known heuristics for the special case of optimum binary search trees. The “bisection 
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heuristics” due to Mehlhorn, which applies also to the general case, runs in linear 

time and produces solutions within a additive term of two from the optimum [12]. 

Unfortunately, the small additive term does not ensure a low multiplicative factor 

when the cost of an optimum binary search tree is small. Hu and Tucker’s algorithm 

[4] running in time 0( n log n) can be considered as an improvement of the so-called 

greedy heuristics (see [7]). In [7], Knuth gives a simple example, which shows that 

the greedy heuristics does not necessarily produce an optimum tree. 

In the paper, for an arbitrarily small, positive real number E, we construct a 

linear-time heuristics for the special case of optimum binary search trees, yielding 

a cost factor of 1 + E from the optimum. No such heuristics were known before. In 

designing these heuristics, we make use of the linear-time bisection method 

developed by Mehlhorn [12]. 

We also prove that a simple implementation of our greedy heuristics runs in linear 

time. The proof involves an amortization argument. On the other hand, by generaliz- 

ing Knuth’s example [7] illustrating the possible non-optimality of the greedy 

heuristics, we prove that for any number of keys greater than two the greedy heuristics 

may produce search trees whose cost is about 9 times the optimum. To get a good 

upper bound on the approximation factor of the greedy heuristics we use an 

interesting relation between optimum binary search trees and minimum length 

partitions of polygons. This allows us to use an upper bound on the approximation 

factor of the greedy triangulation for a subclass of convex polygons established in 

[8,9]. The duality between binary trees and triangulations of simple polygons is a 

known fact. The triangular faces of a triangulation correspond to the vertices that 

are adjacent if and only if the corresponding faces share an edge. This duality was 

used, for example, in [14] to derive tight bounds on the rotation distance between 

binary trees. It is not difficult to see that (m - I)-ary trees correspond to diagonal 

partitions of polygons into m-gons in the way binary trees correspond to polygon 

triangulations. In this paper, we prove an interesting relation between the cost of 

search trees and the total edge length of partitions of infinitely flat polygons. 

In the context of the above relation, heuristics for minimum weight (length) 

triangulation of polygons can be seen as generalizations of those for optimum binary 

search trees with zero-key access probabilities. For the sake of generality, we derive 

our main results for binary search trees via this geometric generalization using, for 

the triangulation, so-called semi-circular polygons. A convex polygon is called 

semi-circular if it has a unique longest edge and it is contained in a circle whose 

diameter is realized by this edge. For an arbitrarily small, positive real number a, 

we construct a linear-time heuristics for minimum weight triangulation of semi- 

circular polygons whose solutions yield costs that are within a factor of 1-t E from 

the optimum. We show that a simple implementation of the greedy triangulation 

for semi-circular polygons takes linear time. We conjecture that the heuristics for 

minimum weight triangulation of semi-circular polygons can be used to obtain a 

fast heuristics for minimum weight triangulation of convex or even nonconvex 

simple polygons with a low constant approximation factor. 
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The structure of the paper is as follows. In Section 2, we give the notation used 

in the remainder of this paper. In Section 3, we prove the relation between the cost 

of search trees and the length of polygon partitions. In Section 4, we derive all our 

results on the greedy heuristics. In the last section, Section 5, we present the heuristics 

for optimum search trees and minimum weight triangulation of semi-circular 

polygons. 

2. Definitions 

2.1. Optimum multi-way search trees 

Given an integer m 2 2, and m-ary search tree for a set S of real-valued keys 

K,<K,<. * . <K, is an m-ary tree with n + 1 leaves which correspond to the 

consecutive segments induced by the keys. Each internal node of the tree has at 

least two sons. An internal node v is labelled with a non-empty subsequence, L(v), 

of the sequence of keys containing k- 1 elements, where k is the number of sons 

of o. Each leaf ~1 of the tree is labelled by either an open segment of the form 

(Ki, K,+,), O< i < n, or by one of the open half-lines (-00, K,), (K,, +a). For any 

two different nodes zli, 4, the sequences L(q), L(u,) have no common elements. 

This labelling preserves the key order, i.e. if zli (respectively 0,) is the q-th (respec- 

tively (q + 1)-st) son of a node v, than for any reals RiS E L(ui), Rj. E L(uj), and for 

the q-th key K,, in L( v,), it holds that Ri, < K,. < RjS. 

Following [3], the problem of constructing an optimum m-way search tree can 

be posed as follows: We are given a set S of real-valued keys K, < K, < * * . < K, 

together with the access distribution (qO, pl, q,, p2, . . . , p,,, q,,). Let w = 

qO+C:,l (pi + 4,). Then pi/w is the probability that Ki is the search argument and 

qi/ w is the probability that the search argument lies in the interval (K;, K,,,) if 

0 < i < n, or in (-CO, K,) if i = 0, or in (K,, +CO) if i = n. The weighted path length 

of any m-ary search tree for S with respect to the access distribution 

(90, PI, 41, P2.. . . ,pn, q,,) is equal to I:=, p,(l+pd(T, i))+C:=, q;qd(T, 9, where 

pd (T, i) is the depth of the node of T whose label contains K, and qd( T, i) is the 

depth of the leaf of T labelled with ( Ki, K,,,) if 0 < i < n, or (-CO, K,) if i = 0, or 

(K,, +a) if i = n. The problem is to find an optimum m-way search tree for S with 

respect to the access distribution, i.e. an m-ary search tree of minimum weighted 

path length, called cost, with respect to the access distribution among all m-ary 

search trees for S. 

2.2. Minimum length diagonal partitions of polygons 

Let P be a simple polygon; a diagonal of P is a line-segment connecting two 

vertices of P such that the line-segment lies in l? Let m be an integer greater than 

2. A diagonal partition of P into m-gons is a set of non-intersecting diagonals of P 

which, together with the edges of P, partitions the interior of P into (not necessarily 
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non-empty) faces, each containing at most m edges. Unless otherwise stated, parti- 

tion will stand for diagonal partition. For a segment s, the term Is] will denote the 

length of s. The length of a partition D is the sum of the lengths of all diagonals 

forming the partition; it is denoted by IDI. A partition of P into m-gons is a minimum 

length partition if its length is minimum among all partitions of P into m-gons. A 

partition of P into 3-gons will be simply called a triangulation of P. A minimum 

length triangulation of P is traditionally called a minimum weight triangulation of 

P [6, 131. The term M(P) will denote the length of a minimum weight triangulation 

of P. (For a survey on minimum decompositions of polygonal regions see [5].) 

We shall consider two special subclasses of convex polygons called semi-circular 

polygons and q-bent polygons. Following [Ill, a polygon P is semi-circular if it is 

convex and satisfies the following properties: 

(i) the pair of vertices in P furthest apart from each other are the end points of 

an edge e called the base of P; 

(ii) all vertices of P lie inside a circle whose diameter is 2. 

Following [9], given a positive real number q < 90, we say that a polygon P is 

q-bent if P is semi-circular and the sum of degrees of the two interior angles at the 

end points of its base is not greater than 2q degrees. 

We will also allow a degenerate type of a q-bent polygon called a O-bent polygon. 

Formally, a O-bent polygon Q is a sequence of real numbers x, <x2 < . . . <x,. 

The real numbers are called vertices of Q and the segments (x,, x,), 

(x,, x,), . . . , (x,-,, x,) and (x,, x,) are called edges of Q. A diagonal of a O-bent 

polygon Q is any open segment whose endpoints are vertices of Q, different from 

the edges of Q. Let f be a one-to-one mapping of the vertices of Q onto the vertices 

of a regular n-gon such that if (xi,xi+,) is an edge of Q than (f(Xi),f(X,+i)) is an 

edge of the regular n-gon. A set of diagonals D of Q is called a diagonal partition 

of Q into m-gons if the set {(f(xi),f(xj)) 1 (xi, x,) E D} is a partition of the regular 

n-gon into m-gons. The set D is a minimum length partition if it is of smallest total 

diagonal length among all partitions of Q into m-gons. 

3. The relation between optimum search trees and minimum length partitions of O-bent 

polygons 

In this section we will establish a correspondence between a particular class of 

(m - 1)-way search trees and partitions of O-bent polygons into m-gons. 

Let T be an (m - 1)-way search tree for which the cost of accessing an individual 

key is zero. That is, for a given search key K,, the search is to locate that interval 

(Ki, Ki+l) into which K, falls. The probability that lCY falls into such an interval 

(Ki, Ki+,) is given by qi. The access distribution of T is thus given by 

(qo,O, 41,0,. . . , 0, q,,) and such a search tree is called a zero-key probability search 

tree. 
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The correspondence between zero-key probability search trees and partitions of 

O-bent polygons into m-gons can be formally expressed as follows: Let K,< K, < 

. ..<K.<K,+, be sequence of real numbers. Let G be a partition of a O-bent 

polygon Q = (K,, . . . , K,,,) into m-gons induced by a diagonal set D. Associate 

with each edge (Ki, K,) of G, i <j, a distinct node 2, of an (m - 1)-way search tree 

T to be constructed. Such a node u becomes a leaf if j = i + 1 and will be labelled 

by ( Ki, Ki+,). Otherwise, i.e. for if 1 <j, v becomes an internal node of T with 

search keys (K,+, - Ki,Oy Ki+2_Ki+l,O,. . .) Kj -K,_,) and the weighted path length 

is equal to the total length of all diagonals in D properly contained in (Ki, K,), 

plus K, - Ki as shown below. The construction of a partition of a O-bent polygon 

Q into m-gons from a zero-key probability search tree is analogous. 

Theorem 3.1. The above construction establishes a one-to-one correspondence between 

zero-key probability search trees and diagonal partitions of O-bent polygons into m-gons. 

Proof. Figure 1 gives the idea of the relation. 

Let f be any one-to-one mapping of { Ko, K,, . . . , K,,,} onto vertices of a regular 

(n+2)-gonQsuchthat(f(K,),f(K,+,))and(f(K,),f(Ki+1))fori=0,1,...,nare 

edges of the (n + 2)-gon. First suppose that there is given a partition D of the O-bent 

Q = (K,, K,, . . _ , K,,,) into m-gons. By the definition given in Section 2.2, f(D) is 

a partition of the regular (n + 2)-gons into m-gons. 

2% 
4’ Ka-----__--________ 

0 
‘:x K n+l 

Fig. 1. A partition of a flat semi-circular polygon into quadrilaterals and the corresponding 3-way search 
tree. 

Let T be a graph with nodes in one-to-one correspondence with the faces of the 

partition induced by f(D) inside the regular (n +2)-gon such that two nodes of T 

are adjacent in T if and only if the corresponding faces share an edge (i.e. a diagonal 

in f(D)). Root the tree T at the node of T corresponding to the face adjacent to 

(f(&),f(K,+A). For i = 0, 1, . . . , n, augment T by adding a new son labelled by 

(Ki, Ki+,) to the vertex of T corresponding to the face adjacent to the edge 

(f ( Ki), f ( Ki+,)) of the (n + 2)-gon. It is easy to see that the resulting tree T is an 

(m - l)-ary tree. We shall prove by induction on k = j - i that for any ( Ki, Kj), in 

D u Q, i <j, there is a distinct node v in T satisfying the requirements from the thesis. 

If k = 1 then exactly the leaf of T labelled by (Ki, K,) satisfies the requirements. 

Suppose k > 1. Let v be the node of T such that the following two conditions hold: 

(a) The face corresponding to v is adjacent to (f(Ki),f(Kj)). 
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(b) If (Ki, Kj) is different from (K,, K,,,) then v is a son of the node of T 

corresponding to the other face adjacent to (f(Ki),f(Kj)). 

Let (f(K,),f(&)), (f(Ki2),f(K,)), . . . , (f(K_,),f(K,)) be the 0th edges of the 
face corresponding to ~1 where i, = i, it =j. We may inductively assume that for 

m=l .., 1- 1, the son of u in T satisfies 

son isk’ither a leaf labelled (f( Ki,,,),f( Ki,,,+,)), 

the requirements for (K,,,,, K,,,+,). This 

or corresponds to a face which together 

with the face corresponding to z, share the diagonal (f(K,,,,),f(K,,,,+,)). It follows 

that the subtree of T rooted at u is a partial (m -1)-way search tree for the keys 

Ki+l, Kit2,. . .P KjP, with the distribution ( Ki+, - Ki, 0, Ki+z - Ki+,, 0, . . . , K, - 

Kj_l). The weighted path length of this subtree is equal to the total length 

of the segments in D properly contained in one of the edges 

(K,, K2), (Ki>, K,), . . . 9 (Ki,+l, Kj,) plus twice the total length of these edges. Any 

segment in D properly contained in (Ki, Kj) is either properly contained in one of 

the above edges or is itself one such edge. Furthermore, the total length of the above 

edges is Kj - K,. Thus we conclude that the weighted path length of the subtree is 

equal to the total length of the segments in D which are properly contained in 

(Ki, Kj), PlUS Kj- Ki. 

Suppose in turn that an (m - I)-way search tree T for the keys K,, K2,. . . , K, 

and the distribution (K, - KO, 0, Kz - K,, 0, . . . , K,,, - K,) is given. Clearly, 

for any non-leaf node ~1 in T, there are unique indices i(v) and j(v) such 

that the subtree rooted at v is an (m - l)-way search tree for the 

keys Ki(u)+r, Ki(v)+Z, . . . , KjCvj_, with the distribution (KiCvI+, - Kit,), 0, KiCUj+Z- 

x(v)+l, 0, Kj(u) - K,(,,_,). Moreover, for any two nodes u, w of T, either the segments 

Eic”jv Kjcv,) and (K. I(wJ, KjCM,,) are disjoint or one of them is a subsegment of the 

other. Hence, via the mapping f one can easily conclude that the set D = 

{(K,c”,, K,,,,) 1 ZI is neither a leaf nor the root of T} is a partition of the O-bent 

polygon Q = (G, K,,. . . , K,,,) into m-gons. On the other hand, for any node v 

in T, the weighted path length of the subtree T(v) of T rooted at ZI can be expressed 

as the sum of Kit,,,, - Ki(w) over all internal nodes w in T(v). The value of the sum 

is equal to the total length of the segments in D properly contained in (Ki(v), Kjcv,) 

plus KjCU, - KiCv). This observation completes the proof. 0 

The construction of the search tree corresponding to a given diagonal partition 

of Q and vice versa can be easily completed in linear time in the Random Access 

Machine Model (defined e.g. in [ll]) by following the proof of Theorem 3.1. The 

following theorem immediately follows from Theorem 3.1. 

Theorem 3.2. Let K, < K, <. * . < K, < K,,, be a sequence of real numbers. Given 

an (m -1)-way search tree Tfor the keys K,, KZ, . . . , K, and the distribution (K, - 

Ko, 0, Kz - K,, 0, . . . , K+, - K,) of weighted path length W, in linear time, we can 

construct a partition D of the O-bent Q = (K,, K,, . . . , K,+,) into m-gons of total 

length equal to W + K0 - K,+, and vice versa. 
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4. The greedy heuristics 

The greedy triangulation heuristics for a simple polygon P inserts a diagonal of 

P into the plane if it is the shortest among all diagonals of P which are neither 

intersecting nor identical to those previously inserted. The greedy triangulation 

heuristics can be easily adapted to include the class of O-bent polygons. For any 

simple polygon (including O-bent polygons), let /GT(P)I denote the total length of 

the partition produced by the greedy triangulation heuristics for P In [8, lo], the 

following fact has been proved. 

Fact 4.1. Let P be a q-bent polygon P, with 0 < q < 60. Then 

IGT(P)Is I 
cos( q) - 0.5 

M(P). 

The proof of Fact 4.1 in [8,9] can be easily generalized to include O-bent polygons. 

Hence, we have the following lemma. 

Lemma 4.2. For any O-bent polygon P, IGT(P)I s 2M(P). 

By Theorem 3.1, it is easy to see that the greedy triangulation for O-bent polygons 

corresponds to the following heuristics for an optimum binary search tree for 

a set of real-valued keys K, < K, <. . . < K, and an access distribution 

(%YO, 41,0,. . ., 0, %I). 

Algorithm 4.3. Greedy heuristics for optimum binary search trees 

Lethe list ((-CO, K,), (K,, KJ,. ..,(K,,+w)); 

to each pair e in L assign a unique leaf v(e) of the binary tree under construction; 

while there are at least two elements in L do 

begin 

pick two pairs (K,, KjS), (K,,, K,,,) adjacent in L with smallest total access proba- 

bility; 

replace the pairs (K,, Kjz), (K,,, K,,,) in L by ( Kj, K,,.); 

create the vertex V( K,, K,,,) and label it with KjS; 

make v(K,, K,.), v(K,s, KjrS) sons of v(Kj, K,,); 

end ; 

output the resulting binary search tree. 

Combining Lemma 4.2 with Theorem 3.1, we conclude that the following theorem 

holds. 

Theorem 4.4. The greedy heuristics for an optimum binary search tree for a set of 

real-valued keys K, < K2 < . . . < K, with an access distribution (qO, 0, q,, 0, . , . , 0, q,,) 

produces a solution within a factor Iwo from the optimum. 
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In [7, p. 4431, Knuth gives a three-key example illustrating that the greedy 

heuristics (without naming the heuristics so) may not be optimal for binary search 

trees with the probabilities pi equal to zero. We can easily generalize Knuth’s example 

to obtain the following lower bound on the approximation factor of the greedy 

heuristics. 

Theorem 4.5. For every n 2 3, and all positive real-valued F, there is a set of real keys 

K,< K,<* . . < K, and an access distribution (go, 0, ql, 0,. . . ,O, q,,) such that the 

greedy heuristics produces a solution whose cost is greater than 7 - e times the minimum 

cost. 

Proof. Let 6 be an arbitrary positive real number. First, set the distribution values 

90, 41,. . . 3 q,_l,qn such that qo+6=q,, q1+6=qo, q2+q3+..*+q,_,=6, qn-,+ 

26 = q,. It is easy to see that the greedy heuristics produces first the binary search 

subtree for the sequence (Y = q2, q3,. . . , q,_r, then for the sequences p = (Y, q+,, 

y = q,, & C = go, y, and finally for the whole sequence go, q,, . . . , q,_,, q,,. The total 

cost of the resulting search tree is greater than log, - g( 6) where the function g is 

a polynomial without any constant term. Now, if after constructing the subtree for 

the sequence /3, we construct the search subtree for the sequences /3, qn and go, ql, 

and finally for the whole sequence go, q,, . . . , q,,, then the resulting binary search 

tree is of cost not greater than 99, + f( 6) w h ere the function f is a polynomial 

without any constant term. By choosing 6 small enough, we obtain the theorem q 

Via Theorem 3.1, we can obtain a corresponding lower bound on the approxima- 

tion factor of the greedy triangulation for q-bent polygons. 

Now, we shall present a simple linear-time algorithm for the greedy triangulation 

of semi-circular polygons. By Theorem 3.1, the algorithm yields also a linear-time 

implementation of the greedy heuristics for binary search trees with zero-key access 

probabilities. Without loss of generality we may assume that no two diagonals of 

the input semi-circular polygon are of the same length. Note that this implies that 

there is only one greedy triangulation of the input polygon. (If two distinct diagonals 

have equal length, then some consistent rule can be used to treat one of them as 

being shorter.) 

Let P be any semi-circular polygon with vertices vo, u,, . . . , II,-, in clockwise 

order. We may assume without loss of generality that (v,, v,_,) is the longest edge 

of P. We need the following definitions. A diagonal of P is called locally shortest 

if and only if it does not intersect any other shorter diagonal of P. A diagonal of P 

is called proper if and only if it partitions P into two subpolygons, say P’ and P”, 

such that P” is a triangle, and the longest edge of P is also an edge of P’. If it is 

proper, then it is denoted by E(v, P), where v is the vertex of P” which does not 

lie on the diagonal. As a convention, we let E(vo, P) = E(v,_,, P) = (vo, II,_,). 

The following fact is useful in characterizing the shortest diagonals of a semi- 

circular polygon. The fact uses the notion of nearest neighbor (see e.g. [13]); it is 
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defined as follows. Let S be a set of points and p, q be two points in S. Point q is 

nearest neighbor of p if for all other points z in S, I(p, q)l s I(p, z)l. 

Fact 4.6 [ 11, Lemma 21. If v is vertex of a semi-circular polygon P then each nearest 

neighbor of v in the set of vertices of P is adjacent to v in P, i.e. it is incident to one 

of the two edges of P incident to v. 

By using Fact 4.6, we derive the following lemma which suggests a simple algorithm 

for the greedy triangulation of semi-circular polygons. 

Lemma 4.7. Let i be any positive integer not greater than n -2. Zf 

IE(vi, P)I < IE(vi-,, P)[ and IE(vi, P)I < IE(vi+,, P)l, then the diagonal E(vi, P) is 

in GT( P). 

Proof. Suppose that the edge E(vi, P) is not in GT(P). We shall show that either 

P(v,-,, P) or P(r++i, P) is shorter than E(vi, P) to get a contradiction (recall that, 

by our assumption, no two diagonals of P are of the same length). It follows from 

the definition of the greedy triangulation of P that there is some diagonal in P, 

shorter than E(vi, P), which intersects E(vi, P) and, hence, touches vi. Let e be the 

shortest diagonal of P which touches Ui. Thus e is shorter than E(vi, P). By Fact 

4.6, we conclude that the shortest diagonal of P incident to vi is a proper diagonal 

of P, and hence it is either E(v,_,, P) or E(vi+,, P). q 

The simple algorithm for the greedy triangulation of P suggested by Lemma 4.7 

will turn out to require only linear time. We describe the algorithm below. 

The algorithm uses three data structures implemented using the arrays, V, Succ 

and Pred, indexed by integers in the range 0 through n - 1. During the preprocessing 

phase, the i-the entries of the arrays, 0 < is n - 1, are initialized as follows: V(i) 

is set to the (x, y)-coordinates of the vertex ui; Succ( i) is set to (i + l)(mod n), and 

Pred(i) to (n + i - l)(mod n). During the execution of the algorithm only the contents 

of the arrays Succ and Pred may change. The algorithm uses two functions, D and 

L, defined on integers in [0, n - 11. For 0 s is n - 1, the value of D( i) is the distance 

between the points with coordinates V( Succ( i)) and V( Pred (i)), and the value of 

L(i) is an integer, either i, Succ(i) or Pred(i), such that 

D( L(i)) = min( D(Succ( i)), D(i), D( Pred( i))). 

(In a practical algorithm, it would be more efficient and accurate if D would compute 

the squared distances between points.) Finally, there is one variable called j of type 

integer, which is initially set to 1. The whole algorithm for GT(P) will be referred 

to as Algorithm 4.8. It consists of the initialization part and the following loop. 

Algorithm 4.8. Greedy triangulation of semi-circular polygon 

(1) while Succ(Succ(Succ(j))) Zj do 

{The triangulation is not completed} 
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(2) if L(j) =j then 

begin 

{A triangle is cut-off} 

(3) output [ V(SUCC(j)), V( Bed(j))]; 

(4) Pred(Succ(j)) := Red(j); 

(5) Succ(Pred(j)) := Succ( j); 

(6) if Pred( j) = 0 then j := Succ( j) 

(7) else j := Pred( j) 

end 

(8) else j := L(j) 

Od 

We will proceed by stating some general observations concerning the algorithm 

and then establish the correctness of Algorithm 4.8. This will be done by assuming 

that the algorithm runs in at most quadratic time. Then, in Lemma 4.11, we will 

give an amortization argument establishing that the running time of the algorithm 

is linear. 

The arrays Succ and Pred keep the adjacency relations between vertices of the 

subpolygon of P which remains to be triangulated. More precisely, if P’ is the 

subpolygon which remains to be triangulated, and vi is any vertex of P’, then ~~~~~~~~ 

and vPredCi) are the vertices of P’ after vi in clockwise, respectively counter-clockwise 

order. It is easily seen that this is done in a correct way by the algorithm due to 

correctly updating Succ and Pred at lines (4) and (5) after a new diagonal is produced 

at line (3). 

Also, it is easily seen that every time line (3) is executed, the produced diagonal 

“cuts off” exactly one triangle from the subpolygon yet to be triangulated. The 

vertex cut-off is v,,, where j’ is the value of j when the diagonal is produced. Hence, 

after n - 3 executions of line (3) the input polygon is triangulated and the termination 

condition at line (2) is satisfied. On the other hand, the while-loop cannot be 

performed more than n times without line (3) being executed. Hence, we can 

preliminary conclude that the algorithm produces a triangulation of the input 

polygon after O(n’) iterations of the loop. 

Let k be the number of times the termination condition in line (2) is checked. In 

the sequel, for 1 s is k, Sucq, Pred,, and ji denote the values of Succ, Pred, j 

respectively, when the termination condition is checked for the i-th time. Next, 

D,(m) and &(m), 0~ m c n - 1, denote the value which would be returned by the 

function D and L respectively if it would be called with m as argument. Succ and 

Pred would have the values Succ, and Pred, respectively (e.g., Di( m) is the distance 

between the vertices with coordinates V( Pred,( m)) and V( Succ,( m)) respectively). 

Si is the set of diagonals already produced by the algorithm at that time. Finally, 

Pi is the subpolygon of P in the partition induced by S, which contains the edge 

(vO, v,_,). To proceed, we need the following lemma. 
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Lemma 4.9. 7’he value of the variable j used in Algorithm 4.8 lies in [ 1, n - 21, provided 

that at least two diagonals remain to be produced. 

Proof. The lemma is proved by induction. Let k’ be the number of times the 

termination condition of the while-loop in line (1) is checked, such that at least two 

diagonals remain to be output after the checking. We show by induction on i that 

(*) for 1s i G k’, it holds that 1 d j, c n - 2 ( ji denotes the i-th values of j). 

Since j is initialized to 1, statement (*) trivially holds when i = 1. Assume inductively 

that statement (*) holds for 1,2, . . . , i, where i < k’. Now consider the (i + 1)-st 

checking of the condition. By the induction hypothesis and by the definition of 

Algorithm 4.8, the subpolygon of P yet to be triangulated contains the vertices v0 

and vn_,, and hence, it is equal to Pi. Since at least two more diagonals are required 

to complete the triangulation of P,, it follows that Pi has at least five vertices. Clearly, 

we have Succ,(n-1)=0 and Predi(0)=n-1. 

Case 1: Li( j,) = ji. In this case, the diagonal cutting off vj, from Pi is output by 

the algorithm, and j changes its value either in line (6) or in line (7). If Predi(ji) =0 

then, since P, is not a triangle, Succ,( j,) can be neither n - 1 nor 0. Thus it is not 

difficult to see that statement (*) holds in Case 1. 

Case 2: Li(ji) # ji. In this case, during the i-th iteration of the loop, j is set to 

Li(ji) in line (8). So it suffices to show that during the i-th iteration it holds that 

L,(m)#OandLi(m)#n-1foranyintegerm,1~m~n-2,suchthatv,isavertex 

of P,. Since the latter inequality is symmetrical to the first, we show only that 

Li( m) f 0. Suppose that L,(m) = 0. Then, by the definition of Li, v, is adjacent to 

v0 on the boundary of Pi. Since, by our assumptions, m # n - 1, it follows that v, 

is the first vertex of Pi after v0 in clockwise order (i.e. Pred,(m) = 0). Let v’, 

respectively v”, be the first, respectively second vertex of P, after v, in clockwise 

order (i.e. v’= V(Succ,(m)) and v”= V(Succ(Succ(m))). Since Pi has at least five 

vertices, it holds that u’# v,_, and v”# a,_,. Since L,(m) =O, we conclude that 

(%I, v,_,) is shorter than (v,, v’) and shorter than (v,, v”). But since P, is semi- 

circular, (v,, v”) is shorter than (v,, v,_,). We have got a contradiction. 0 

From the definition of Algorithm 4.8 it follows that for 1 G i G k, all subpolygons 

of P other than P, are triangles. Moreover, if Pi is not a triangle, then the first 

diagonal inserted during the i-th iteration is a proper, locally shortest diagonal of 

Pi. Combining this with Lemma 4.7, we obtain the following lemma. 

Lemma 4.10. Algorithm 4.8 produces the greedy triangulation of the input polygon. 

To complete the analysis of the algorithm, we prove the following lemma. 

Lemma 4.11. Algorithm 4.8 terminates within linear time. 

Proof. It is easily seen that the time needed by the algorithm is linearly proportional 

to the number of iterations of the while-loop. During each iteration, either a new 
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diagonal is produced, or line (8) is executed. Since the number of diagonals in n - 3, 

it suffices to show that line (8) is executed O(n) times. 

When the subpolygon which remains to be triangulated has O(1) vertices, the 

algorithm needs only constant time to complete the triangulation. Therefore, to 

simplify the proof, we consider only the number of times line (8) is executed while 

there are at least, say, three diagonals which remain to be produced, i.e. the 

subpolygon yet to be triangulated has at least six vertices. Also, we assume without 

loss of generality that n is larger than, say, 10. Let k” be the smallest positive integer 

such that Pkf, has at most six vertices. It remains to show that until the k”-th iteration, 

line (8) is executed O(n) times. 

To prove this, let us imagine that for every vertex of the input polygon, we have 

a “piggy bank” which is initially empty. For 1 G i G k”, if line (8) is executed during 

the i-th iteration, we insert an “unmarked token” in the “piggy bank” of the vertex 

uji at that time. Otherwise, if lines (3)-(7) are executed, we “mark” all unmarked 

tokens (if there are any) in the piggy banks of the vertices touched by the produced 

diagonal, i.e. uPred, and ~s~~~,(,,), and of the two vertices which are adjacent to 

them in P,,,. We claim the following. 

Claim 4.12. During the performance of Algorithm 4.8, no vertex has more than one 

unmarked token in its piggy bank. 

Before proving Claim 4.12, we show that its correctness implies that of the lemma. 

From Claim 4.12 it follows that every time a diagonal is produced, at most four 

tokens are marked. Since less than n -5 diagonals are produced until the k”-th 

iteration, we infer that at the end of the k”-th iteration, the total number of marked 

tokens in all piggy-banks is not greater than 4n -20. On the other other hand, by 

Claim 4.12 at any time the total number of unmarked tokens is at most n. Hence, 

we conclude that at the end of the k”-th iteration the total number of all tokens, 

marked or unmarked, is bounded by 5n -20, which implies that until the k”-th 

iteration, line (8) is executed at most 5n -20 times, and hence the lemma follows. 

It remains to prove Claim 4.12. To simplify the argument, we use for the proof 

a modified version of the algorithm. For this, an integer array # Tokens is introduced 

to store for every vertex the number of unmarked tokens in its piggy bank. The 

entries of #Tokens are indexed by 0 through n - 1, and are initially set to zero. In 

the modified version of the algorithm, we introduce the following line (3.5) between 

lines (3) and (4): 

(3.5) Set to zero # Tokens(Succ(j)), # Tokens( Pred(j)), # Tokens(Succ(Succ(j))) 

and #Tokens(Pred(Pred(j))). 

Also, line (8) is replaced by (8’) as follows: 

(8’) else begin # Tokens(j) := # Tokens(j) + 1; j := L(j); end 

Analogous to the above, for an integer i in [ 1, k], let # Tokens, denote the values 

of the array # Tokens when the condition in line (1) is checked for the i-th time. 

To prove Claim 4.12, it remains to show the correctness of the following statement. 
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Claim 4.13. For any integer-valued variables i and m, 1 =S i G k”, 0 G m G n - 1, where 

k” is the greatest integer such that PkSz has more than six vertices, it holds that 

#Tokensi(m)sl. 

To prove Claim 4.13, suppose that there are integers i and m, in the appropriate 

ranges, such that # Tokens,(m) > 1. With every execution of line (8’), # Tokens(i) 

is incremented by one. We may thus assume w.1.o.g. that i is the least integer such 

that # Tokens,(m) = 2. By the initialization phase, we have # Tokens,(m) = 0. Let a 

be the largest integer such that a < i and # Tokens,(m) = 0. Thus, we have j, = m, 

J~+~ = L,(m), and m f_i,+, . In the sequel, we will consider only the case when 

Jo+, > m, because the other case is symmetric. Hence, we have jo+, = Succ,(m). Let 

?I*‘, v,, v,,,, v,,s* be consecutive vertices of P, in clockwise order. Note that m” = j,,, . 

By the definition of the function L it follows that [(v,, v,..)] < ](v,,, v,,,)l. By our 

assumptions, the (i - 1)-st iteration is the first after the a-th iteration, in which j 

has the value m and L(m) # m. Combining this with Lemma 4.9, we conclude that 

between the execution of line (8’) in the a-th and in the (i - 2)-nd iteration, the 

values of j fall in the range [m + 1, n -21. Thus all those vertices from v,-I to v,, 

in clockwise order, which are vertices of P, are also vertices of Pi-,. Therefore 

(%I,, v,) is also an edge of Pi_, . On the other hand, by our assumptions, # Tokens(m) 

is not set to zero between the a-th and the i-th iteration, and thus no diagonal 

produced between these iterations touches v, or v,.,. Consequently, v,,, and v,,,,,) 

are vertices of Pi_l, and hence (v,, v,.) and ( vm”, v,!,.) are edges of Pi_, . Combining 

the above we conclude that during consecutive iterations, j is set first to ml” during 

the (i - 3)-rd iteration, then to m” during the (i - 2)-nd iteration, and finally to m 

during the (i- 1)-st iteration. But this would imply that Li_,(m”) = m and, by 

definition of L, that I(v,,,,, v,,,,,)I < I( v,, v,,,~,~)[, w tc contradicts the inequality derived h’ h 

above. This completes the proof of the Claims 4.13, 4.12 and Lemma 4.11. 0 

Combining Lemma 4.10 with Lemma 4.11, we obtain the following theorem which 

is the main result of this section. 

Theorem 4.14. The greedy triangulation of any semi-circular polygon with n vertices 

can be constructed in time O(n). 

By Theorem 3.2, we obtain the following theorem as a corollary from Theorem 4.3. 

Theorem 4.15. The greedy heuristics for constructing-optimum binary search tree for 

a set of real keys K, < K2 < . * . < K, with an access distribution (go, 0, q,, 0,. . . , 0, q,,) 

can be implemented in time O(n). 

Theorem 4.4 and its corollary Theorem 4.5 prove that the greedy heuristics for 

the special case of optimum binary search trees matches the heuristics of Mehlhorn 

[ll] in this case. 
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5. Linear-time heuristics 

In this section, we derive a linear-time heuristics for producing minimum weight 

triangulations of semi-circular polygons and consequently for constructing optimum 

binary search trees with zero-key access probabilities. In both cases, the heuristics 

yield solutions within a factor of 1 + F from the optimum. The idea of the heuristics 

is to cut off “flat” q-bent polygons from the input polygon, triangulate them using 

a method implied by Mehlhorn’s heuristics for optimal binary search trees [12], 

and then find a minimum weight triangulation of the remaining part of the input 

polygon. 

The following theorem presents new heuristics for minimum weight triangulation 

of q-bent polygons. These heuristics make use of the relationship between minimum 

weight triangulation and optimal binary search trees established in Theorem 3.1 

and 3.2. 

Theorem 5.1. Let P = ( uo, zl, , v2, . . . , on+, ) be a q-bent polygon where q < 90. We can 

find a triangulation T, of P for which ITI1 s M(P)/cos q in time O(n log n), and a 

triangulation T2 of P for which 

IT+ M(P)lcos q+-21(vo, ~,+,)l/cos q 

in time O(n). 

Proof. Following [8], we may assume without loss of generality that P is placed 

such that the slope of every edge and diagonal of P is in the range [-tan(q), tan(q)]. 

Let e be the edge of P which is adjacent to the base which forms the maximum 

angle with the base. We can find such a placement by turning P until the base of 

P lies below all other edges, and the slope of e, in absolute value, is equal to tan(q). 

For i = 0, . . . , n, let xi be the x-coordinate of the vertex vi. Consider any triangulation 

T ofthe O-bent polygon Q = (x,, x,, . . . , x,). It is easy to see that T’= {(vi, v,) 1 (xi, x,) 
is in T} is a triangulation of P and that I T’I < I Tl/cos q. Now, by Theorem 3.2, the 

first part of Theorem 5.1. follows from the fact that an optimal binary search tree 

for the keys x,, x2,. . . , x, with distribution (x, -x0, 0, x2-x, , 0, . . . , x,,, -x,) can 

be constructed in time 0( n log n) by the algorithm of Hu and Tucker [4] or Garsia 

and Wachs [l]. Analogously, the second part follows from the fact that a binary 

search tree for the above trees and the above distribution of weighted path length 

not greater than the optimum plus 2 can be constructed in time O(n) using the 

bisection algorithm of Mehlhorn (see [12, Theorem 91). 0 

The following lemma will be useful when applying Theorem 5.1 to construct 

nearly optimal triangulations of semi-circular polygons. 

Lemma 5.2. Let P= (v,, vl, uz,. . . , v,,,) be a semi-circular polygon. For any three 

indices i, j, k where O<i<j<kcn+l, the inequalities I(vi, vi)1 < I(vi, vk)l and 

I(v~, ok)I < /(vi, Q)I hold. 
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Proof. To prove the inequalities, we use Fact 4.6 which states that in a semi-circular 

polygon, the nearest neighbor of any vertex v is adjacent to V. Let us consider the 

subpolygon (u,, 4, vj+i,. . . , v,+l ) of P. It is easy to see that this subpolygon is also 

semi-circular and its base is (vi, v,,+r ). Since vJ is adjacent to vi in the subpolygon 

and I(vi, nj)I < I(S, u,+r)I, we conclude that I(v,, v,)(< [(vi, vk)l by the above fact. 

Analogously, we can prove the inequality I(v,, vk)l < I(vi, vk)l. q 

The following lemma gives a lower bound on the length of any triangulation of 

a O-bent polygon in terms of the ratio between the length of the base and the length 

of a longest non-base edge of the polygon. 

Lemma 5.3. Let P be a O-bent polygon, let r denote the length of the base of P, and 

let 1 be the length of a longest edge of P different from the base. Then, the inequality 

M(P)2 r(log(r/l)-1) holds. 

Proof. Consider a minimum weight triangulation T of P. We shall inductively prove 

the following statement for all segments d in Tu P, in order of non-increasing 

length: The total length of the segments in T u P that are proper subsegments of d 

is not less than log()dl/l)ldl. 

The above statement clearly holds if d is an edge of P that is not the base of P. 

Therefore, suppose that d is either a diagonal in T or the base of l? Then, there 

exists a triangle in T adjacent to d such that the other edges of the triangle, say d, 

and dZ, satisfy IdI = ld,l+ Id,(. By the induction hypothesis, the total length of the 

subsegments of d in T u P is no less than 

By straightforward calculations, the above sum is no less than log(ldl/l)ldl. Since 

all diagonals are in T, and all edges are proper subsegments of the base, we have 

M(P) + r a log(r/Z)r. The latter inequality proves the theorem. q 

The next lemma will enable us to eliminate a perimeter factor that will occur in 

the analysis of the approximation behavior of the heuristics for minimum weight 

triangulation of semi-circular polygons to be presented in this section. In the 

remainder, the length of the perimeter of a polygon P is denoted by p(P). 

Lemma 5.4. Let P={uO ,..., v,+,} be a semi-circular polygon satisfying M(P)> 

p(P)/20. Let c be any positive real number greater than 16. Furthermore, let E(c) 

denote the set of edges of P of length no greater than 2-‘.p(P). Then, it holds that 

M(P)2 clE(c)l/lO. 

Proof. Let z be the real number for which the following equality holds: 

(i) M(P) = czp(P)/lO. 
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Clearly, we have IE(c)lSp(P). Thus, if z 3 1 then the lemma trivially holds. Further- 

more, by our assumption, M(P) >p(P)/20, and consequently z 2 1/(2c) holds. It 

follows that we may assume that z satisfies 

(ii) l> z and z> 1/(2c). 

To prove the lemma, it is sufficient to derive the inequality IE(c)l G zp(P). Suppose 

otherwise, i.e. that the opposite inequality holds: 

(iii) IE(c)J> zp(P). 

We will derive a contradiction between (i), (ii) and (iii) as follows. 

Rotate P such that its base is horizontal. Let u0 and u,,+~ be the left, respectively 

the right endpoint of the base of P Let vk be a vertex of P which is furthest from 

the base. Next, let P’ be the subpolygon ( uO, u, , . . . , u,+,) of P Then, let E’(c) be 

the set of all edges in E(c) which lie to the left of C. We may assume without loss 

of generality that 

(iv) JE’(c)(~~/E(c)]. 

We claim that M(P’) s M(P). To see this, let T be a minimum weight triangulation 

of P, and consider the following triangulation T’ of P’. First, insert into T’ all edges 

of T which lie entirely within P’. Then, shift each edge in T that intersects ( oO, vk) 

such that its end point to the right of uk is moved to uk, while its end point to the 

left of vk remains unchanged. Note that every shifted edge is shorter than the original 

one. In this way, we have proved the claim M( P’) G M(P). 
By a simple geometric argument, we infer that the sum of the degrees of the 

interior angles of P’ at v0 and uk is at most 90, i.e. P’ is 45-bent. Now, rotate P’, if 

necessary, to obtain a position such that the slope of every edge of P’ is between 

-1 and 1. Consider the O-bent polygon P” resulting from a vertical projection of 

P’ onto some horizontal line. It is easily seen that M(P”) s M(P’). Hence, since 

M(P’)s M(P), we obtain 

(v) M(P”) s M(P). 
Let E”(c) be the set of edges of P” obtained by the vertical projections of the 

edges in E’(c). By a straightforward trigonometric argument, we obtain that IE”( c)l a 
JE’(c)(/&. Hence, from inequalities (iii) and (iv), we derive the following inequality: 

(vi) IE”(c)l> zp(P)/2Jz. 

Let P” be a horizontal O-bent polygon with the same edge set as P” (in the graph 

sense), with the only difference that all non-base edges of P” are “shrunk” to have 

length less than, say, the length of a longest edge in E”(c) (of course, the base of 

P* is of appropriate length to connect its leftmost with its rightmost vertex). It is 

easily seen that the length of a triangulation of P* corresponding to a minimum 

weight triangulation of P” is not greater than M(P”). Hence, M( P*) s M(P”) holds. 

In consequence, by the equalities (i) and (v), we obtain 

(vii) M(P*) G zcp(P)/lO. 

Next, we estimate the ratio between the length of the base of P” and the length 

of its longest non-base edge. The base has length at least IE”(c)l, and, by the 

definition of P*, each non-base edge of P” is of length not greater than p(P)/2-‘. 

Hence, the above ratio is not less than 2’lE”( c)l/p(P). Combining the latter estimate 
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with inequality (vi), we infer that the above ratio is not less than z2’/2&. On the 

other hand, by the assumptions of the lemma, we have c > 16. Combining this with 

the above estimation of the ratio and inequality (ii), we conclude that the logarithm 

of the ratio is not less than 0.6~. Hence, by Lemma 5.3, we obtain 

M(P*) 3 (0.6~ - l)]E”(c)l 

The latter inequality together with inequality (v) and c 2 16 yield 

P(P) M( P*) z= 0.5~~~. 

Thus, we can conclude that M( P*) > p( P)cz/ 10 which contradicts inequality (vii) 

derived above. Cl 

In estimating the approximation factor of the nearly optimal heuristics, the 

following fact from [8] will be useful. 

Lemma 5.5. Let P be any lo-bent polygon with base (I.+,, v,,+~), and let V(P) be the 

set of non-base vertices of P. For any real number r, , 0 < r, < 0.5, there is some constant 

r2 (depending on r,), such that the inequality 

M(P)cr, C min(l(v, 4, Ku, u,+&+ r,p(P) 
UE V(P) 

holds 

Proof. To prove the lemma it is shown that there exists a subpolygon P’ of P, 

induced by diagonals of P, such that 

(a) M(P’) = O(p(P)lrr), and 
(b) the pieces of P which are outside P’, if there are any, can be triangulated by 

inserting diagonals whose total length does not exceed 

rl CvtV min(l(u, ~41, Ku, ~+r)l). 
We choose P’ so that it is the polygon describing the convex hull of V’u {vO, o,+,}, 

where V’ is some subset of V yet to be determined. To define V’, we specify the 

sets VO, Vntl, VA, K+,, and we also need some auxiliary definitions. 

We may assume without loss of generality that the base (vO, v,+r) is horizontal, 

v0 is to the left of z),,+r, and all other edges of P lie above the base. Let V,, respectively 

V nt, 3 be the set of non-base vertices which are closer to uO, respectively to u,,, . In 

addition, if there is some non-base vertex of P whose distance from u0 is equal to 

its distance from u,+r , then that vertex is in both V, and V,,,, (there is at most one 

such vertex). Let u be any vertex in V,, other than the rightmost vertex in V,. The 

right rI-successor of V, where r, is the real number in the statement of the lemma, 

is defined as follows. Let U be the set of vertices u in V, satisfying )( U, v)l< rr I( v, vO)l. 

If U is non-empty then the right r,-successor of u is the rightmost vertex in U 

different from U, otherwise it is the next vertex to the right of ZI. VA is a subset of 
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Vo, and VL+, a subset of V,,,,. If V, contains no more than two elements, then 

V&= V,,. Otherwise, Vb is defined to be the set of vertices {vi, ~4,. . . , II;}, such that 

vi is the leftmost vertex of V,, vk is the rightmost vertex of V,, and vi, for 2~ is m, 

is the r,-successor of ZI_,. 

The set VL+,c V,,,, is defined symmetrically to Vh, by exchanging “left” with 

“right” in the definition of VA, and replacing “Q” by “z),+,” and “V,” by “ Vntl”, 

including the definition of the r,-successor (in this way also the left r,-successor of 

a vertex in V,,, is defined, provided that V,,, has more than two elements). 

Let V’ denote V&u Vk,,. As mentioned above, P’ is defined to be the convex 

hull of V’u {v,,, v,,.,}. If P’ f P, then let P, , P2, . . . , Pk be the subpolygons of P 

other than P’ in the partition of P induced by the perimeter of P’. To prove the 

lemma it suffices to prove the following: 

(I) M(P’) = O(p(P)lr,); 

(II) ClSiSk M(P,)s rl LV min(l(c UJl, I(v, %+,)I) for P'# P. 

Proof of (I). For i E (0, n + l}, let T, be the set of edges (0, vi), u E Vi. Let T be 

the set of edges in T,u T,,, which are diagonals of P’. It is easily seen that to 

obtain a triangulation of P’ it is sufficient to add at most one diagonal of P’ to T. 

Hence, it remains to show that 

(i) ITo1 =O(p(P)lrJ, and 
(4 lT,+d =O(P(p)lrd. 

Since (i) is symmetrical to (ii), we only prove (i). By the definition of V& and by 

the fact that P is lo-bent, it follows easily that there exists a positive constant c 

such that 

1(4+2, vO)I~I(v~,vO)((l+crI) for lsism-2. 

In this way we obtain a geometric progression, yielding that 

J_ lb4 4 = o( I( 00, v,)l C Cl-Sri)' =O(llr,*I(v,, vm)l)=O(l/rl.p(P)). 
LGisim ) 

Proof of (II). No vertex of P is a non-base vertex of more than one subpolygon 

of P in the partition of P induced by P’. Hence to prove this proposition it suffices 

to show for any integer i, 1 G is k, that 

M(P;) s rr C min(l(u, vo)l, Ku, v,+~)IL “F V” 
where V” is the set of non-base vertices of Pi. This inequality trivially holds if P, is 

a triangle. For the sequel, we may assume that Pi has at least two non-base vertices. 

By the definition of V’, either all vertices of Pi are in V,, or all are in V,,,, . Since 

both cases are symmetrical, throughout the rest of the proof we may assume that 

they are in V,. Thus it suffices to show that M(P,) s r, CutV” I(v, v,)l . 
Let v’, v”, be the left, respectively right, end point of the base of Pi. Let T be the 

set of all diagonals of Pi which are in the set lJvE v,, {(v, v’)}. Clearly, T is a 

triangulation of Pi. The length of T is not greater than CutV’. I(v, v’)l. So, to prove 

(II), it suffices to show that for any v in V”, it holds that I(v, v’)l s r,l(v, vo)l. Since 
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P is semi-circular, we obtain 

Ku’, uO)l G I(v, r+Jl and I(u, n’)ls Ku’, 4. 
Hence, it remains to show that I(v’, ,“)I s rll(u’, vO)l. This inequality holds by the 

definition of V,, since U” is the right successor of 2)‘. 

This completes the proof of Lemma 5.5. 0 

The above lemmas are sufficient to derive the linear-time heuristics claimed. 

Theorem 5.6. Let P = (v,,, v,, . . . , ZJ,,+~ ) be a semi-circular polygon. Given any positive 

real number F, we can$nd a triangulation of P of length not greater than (1 + F) M( P), 

in time O(n). 

Proof. We may assume without loss of generality that the base (v,, v,+,) of P is 

horizontal, and v,+, is to the right of vO. Let r denote the length of the base. 

First, suppose that there is a non-base edge e of P adjacent to the base of length 

greater than &r. In this case, our heuristics inserts the diagonal d of P that together 

with e and the base forms a triangle. Note that the diagonal d is in any minimum 

weight triangulation T of P. To see this, move the endpoint of each diagonal in T 

that crosses d and is incident to the base of P to the end point of d which is not 

incident to the base. We may assume without loss of generality that such diagonals 

exist. Clearly, one of the diagonals, after moving its end point, overlaps with an 

edge of P or with another diagonal in T. Therefore it can be removed. Now, it is 

sufficient to insert the diagonal d to obtain a complete triangulation of P Note that 

by the semi-circular property of P, the diagonal d is of length less than &r, whereas 

this removed diagonal has originally been of length greater than &r as it crossed d 

and touched the base. The other diagonals whose end points have been moved 

become shorter, by Lemma 5.2. The resulting triangulation of P is shorter than T, 

which is a contradiction. 

Consequently, we may assume without loss of generality that the length of each 

edge incident to the base of P is not greater than hr. Note that in this case, in any 

triangulation of P, the triangulation face adjacent to the base is bounded by at least 

one diagonal longer than &r. Hence, we have M(P) >p(P)/20 which enables us 

to use Lemma 5.4 here. 

To present our heuristics, we need set several constants. The setting of the constants 

will be clarified during the analysis of the approximation factor. In the definition 

of the constants, we assume without loss of generality that E < 1. 

(Dl) c, is the smallest integer value of rz such that Lemma 5.5 holds for rl = &/32 

and r,. 

(D2) c = 48Oc,/ E. 

(D3) q=arccos((l+~/16))‘). 

(D4) 6 = 2-‘p( P). 

To use Theorem 5.1, we split P into at most [180/q] q-bent polygons and at 

most one ([180/q]+l)-gon by inserting no more than [18O/ql diagonals. The 



200 C. Levcopoulos et al. 

splitting follows an idea discussed in [8]. First, we find the largest index i not greater 

than tit-1 for which (v,, u ,,..., Ui) is a q-bent polygon. Next, if i is smaller than 

n + 1, we find the largest index j not greater than n + 1 such that (u,, vi+i,. . . , v,) 

is also a q-bent polygon. We iterate this procedure until we reach u,,+~. To estimate 

the number of q-bent subpolygons produced, let us define the exterior angle between 

two edges (ukr ~k+~), (u,, u,+] ) of P where k < m, as the angle formed by the 

boundaries of the intersection of the half-planes induced by (uk, Us+,), (u,, v,+,) 

respectively, that does not contain P Now, observe that for k < m < o, the sum of 

the exterior angles between ( uk, v~+,) and (v,, v,+, ) with the exterior angle between 

(u,, u,+,) and (u,, o,+r) is equal to the exterior angle between (ok, uk+,) and 

(v,, u,+~). Furthermore, the exterior angle between (v,., vi,+,) and (vi’, u,,,,), where 

(vi,, 0,‘) is the base of a q-bent produced, is larger than q degrees, whereas the 

exterior angle between (u,, u,) and (v,, v,+, ) is less than 180 degrees. It follows 

that P is split into at most [180/q 1 q-bent polygons and at most one ( [180/q] + 

1)-gon by inserting the bases of the q-bent polygons. 

Next, we split each of the q-bent polygons (vi, vi+, , . . . , vi) that are nondegenerate 

and whose bases are longer than 6, into smaller q-bent polygons (v,, . . . , vi,), 

bi,r...r vi,), . . . , (vi,,_,,, . . . , q,) such that i. = 1, i, =j and, for k = 1, . . . , I- 1, if 

iktl > ik + 1 then I(uilr uil+,)l c 6, and I(u,,, u,,+,+,)/> S or ik+, = i,. Then, we attach all 

these resulting inner subpolygons (q,,, Viol, . . . , q,) to Q to obtain a larger subpoly- 

gon R of P. In effect, P is split into nondegenerate q-bent polygons Q,,,, m = 

1 .., n(q), whose bases are each of length ~6, and into the inner subpolygon R. 

Sfnce the total length of the bases of two consecutive polygons Qm and Qm+, is 

greater then 6, we have n(q) s 2]E( c)]/S, by (D4) where E(c) is defined as in Lemma 

5.5. Clearly, the two-phase splitting of P can be done in linear time. 

Next, we separately triangulate each of the q-bent polygons Qm, using the second 

algorithm from Theorem 5.1. This takes linear time in total. Then, we triangulate 

R using the cubic-time algorithm of Gilbert [2], or Klincsek [6] for minimum weight 

triangulation of polygons. As R has at most ]2p( P)/8] s 2’+’ vertices by (D4), and 

as c is independent of P, the construction of a minimum weight triangulation of R 

takes constant time. 

To derive the 1 + E upper bound on the approximation factor of our heuristics, 

consider a minimum weight triangulation T of P Let T-, be the set of all diagonals 

d in T such that d lies within one of the q-bent polygons. We need prove that 

(i) the total length of minimum weight triangulations of the q-bent polygons Qm 

is not greater than IT_,~+JEM(P)/M; 

(ii) M(R)<(M(P)-IT_,1)+$rM(P). 

First, we prove (i). By (D2) and Lemma 5.4, we have c,lP(c)l~~~(P)/16. 

Therefore, it is sufficient to prove that the total length of minimum weight triangula- 

tions of the q-bent polygons is not greater than 

(T_,~+EM(P)/~~+~c,~E(c)~. 

We use Lemma 5.5 to prove the above inequality. Let S be the set of nontriangular 
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subpolygons of P induced by T-r within the q-bent polygons Q,,,. Clearly, each 

polygon Q,,, includes at most one subpolygon in S and each subpolygon in S is 

q-bent. Hence, each subpolygon in S is in particular lo-bent. The sum of the lengths 

of minimum weight triangulations of the polygons Qm is not greater than ( T_,[ plus 

the sum of minimum weight triangulations of the subpolygons in S. Note that the 

total length of the perimeters of the subpolygons in S is not greater than 2E(c). 

Thus, by Lemma 5.5 for r, = ~132 and r2 = c,, to prove (i), it is sufficient to show 

that the sum of the sums Cuev(91 min(l(v, u,~)I, I(v, v,,,)l) over the subpolygons Pk 

in S with bases (v,~, vhi), k= 1,. . . , #S, is not greater than 2M( P). (We denote the 

cardinality of a set S by #S.) For each of the subpolygons Pk, k = 1, . . , #S, let 

Dk be the set of diagonals in T incident to non-base vertices of Pk, intersecting the 

base of Pk. Move the end points of the diagonals in Dk that are outside Pk to the 

closest end point of the base of Pk. By Lemma 5.2, the diagonals in T whose end 

points have been moved are shorter than the original ones. Since each diagonal in 

T is in at most two sets Dk, we conclude that the sum of 

c utV(p,) min(l(u, q)l, I( u, v,,,)l) over the subpolygons Pk in S, k = 1,. . . , #S, is not 

greater than 2M(P). 

To prove (ii), we consider the q-bent polygons Q,,, and the inner polygon R 

resulting from the two-phase splitting. For m = 1,. . . , n(q), let E, be the set of the 

diagonals in T incident to non-base vertices of Qm that intersect the base of Q,,,. 

Form=l,..., n(q), move the end points of the diagonals in E, outside R towards 

the leftmost vertex of Q,,,. Any quadrilateral within R formed by T and the sides 

of R is transformed to a triangle and, as a result, after removal of superfluous 

diagonals, we obtain a triangulation T’ of R. For a diagonal e in T’- T, let em’ be 

the diagonal in T that became e after moving one, or two, of its end points. Clearly, 

moving one end point of e-’ can lengthen e-’ by at most 6. Therefore, each diagonal 

e in T’- T is of length not greater than 26 + le-‘I. 

Let To denote T’n T. Next, let Tl denote the set of the edges e in T’ that originated 

from the edges e -’ in T which crossed the base of at least one of the subpolygons 

Q,,,. Note that T_, is disjoint from To, T,. By the above considerations and 

definitions, we have I T’j c 1 ToI + I T,( + 2# T,S and consequently 

IT’I+‘kf(P)-IT_,I)+2#T,6. 

As the edges e in Tl form a planar graph of at most 21 E (c)1/6 vertices, their number 

is not greater than 61 E(c)l/ 6. Consequently, we obtain # T,6 G 61 E (c)l, and by 

Lemma 5.4 and (D2), # T,6 <{&M(P). Since M(R) < IT’[, we obtain (ii). 

Recall that out heuristics triangulates q-bent polygons using the method induced 

by Mehlhorn’s bisection heuristics for optimal binary search trees. The method is 

characterized in Theorem 5.1. Clearly, the total length of the diagonals that form 

the bases of the polygons Q,,, is not greater than IE(c)[. Hence, by (i), Theorem 5.1, 

(D3), that total length of the triangulations of the q-bent subpolygons Q,,, produced 

by our heuristics is not greater than 
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Thus, by (D2) and Lemma 5.4, we can conclude that the total length of the 

triangulations of the q-bent polygons is not greater than 1 T_,I + (1 +$&)M(P). Next, 

the total length of the bases of the polygons Qm bounded by II?(c)] is less than 

~EM( P) again by (D2) and Lemma 5.4. Finally, by (ii), the length of the triangulation 

of the inner subpolygon R produced by our heuristics is not greater than M(P) - 

1 T_,I +~EM( P). Combining the three above facts, we conclude that the total length 

of the triangulation produced by our heuristics is not greater than M(P)( 1 + E) 

which completes the proof of the theorem. 0 

Combining Theorem 5.6 with Theorem 3.2, we conclude that the following theorem 

holds. 

Theorem 5.7. Given a positive real number e, we can construct a heuristics for an 

optimal binary search tree for a set of real keys K, < K2 < ’ . . < K, and an access 

distribution (qO, 0, q, , 0, . . . , 0, q,,) that produces a solution within a factor of 1 + E 

from the optimum in time O(n). 

6. Final remarks 

It would be interesting to generalize the derived heuristics for optimum binary 

search trees to include binary search trees with non-zero key access probabilities. 

Although Levcopoulos and Lingas have recently proved that the greedy triangula- 

tion for convex polygons approximates the minimum weight triangulation, they 

have not derived any low upper bound on the approximation factor but for the case 

of the q-bent polygons [9].’ The heuristics for minimum weight triangulation of 

semi-circular polygons derived in this paper opens another way of obtaining a fast 

heuristics for a minimum weight triangulation of convex or even non-convex simple 

polygons with a low constant approximation factor. 
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