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SUMMARY

Plant viruses often encode suppressors of host RNA
silencing machinery, which occasionally function as
avirulence factors that are recognized by host resis-
tance (R) proteins. For example, the Arabidopsis R
protein, hypersensitive response to TCV (HRT), rec-
ognizes the turnip crinkle virus (TCV) coat protein
(CP). HRT-mediated resistance requires the RNA-
silencing component double-stranded RNA-binding
protein 4 (DRB4) even though it neither is associated
with the accumulation of TCV-specific small RNA nor
requires the RNA silencing suppressor function of
CP. HRT interacts with the cytosolic fraction of
DRB4. Interestingly, TCV infection both increases
the cytosolic DRB4 pool and inhibits the HRT-DRB4
interaction. The virulent R8A CP derivative, which
induces a subset of HRT-derived responses, also
disrupts this interaction. The differential localization
of DRB4 in the presence of wild-type and R8A CP
implies the importance of subcellular compartmen-
talization of DRB4. The requirement of DRB4 in resis-
tance to bacterial infection suggests a universal role
in R-mediated defense signaling.

INTRODUCTION

The various modes of defense induced upon the recognition of

pathogen-derived molecules provide species-level resistance

to nonhost pathogens, local and systemic resistance to race-

specific pathogens, and basal resistance to virulent pathogens.

Resistance (R) gene-mediated or species-specific immunity is

induced when a strain-specific avirulence (avr) effector from

the pathogen associates directly/indirectly with a cognate plant

R protein (Kachroo et al., 2006). R proteins mediating defense
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against bacteria, fungi, viruses, oomycetes, nematodes, and in-

sects have been identified from a variety of plants. A majority of

the known R proteins belong either to the coiled coil (CC)-nucle-

otide binding site (NBS)-leucine rich repeat (LRR) or toll-inter-

leukin 1 receptor (TIR)-NBS-LRR class.

Plants lacking cognate R proteins can activate the less robust

basal defense response. In case of viruses, this form of defense

often involves RNA silencing (reviewed in Carr et al., 2010; Ding,

2010). RNA silencing is induced upon the formation of double-

stranded RNA (dsRNA), which is processed to small (s) 20–30

nucleotide (nt) dsRNA with staggered ends. The ribonuclease-

type III enzymes called Dicers mediate the processing of dsRNA

into sRNA. Arabidopsis plants encode four Dicer-like proteins

(DCL1–DCL4), and of these DCL2, DCL3, and DCL4 process

long dsRNA molecules of various cellular origins into sRNA

that are 22, 24, or 21 nt in length, respectively. One strand of

the dsRNA is then incorporated into a large ribonucleoprotein

complex called the RNA-induced silencing complex (RISC),

which then cleaves the target viral RNA. RISC complexes are

formed of sRNA strand and a member of the Argonaute (AGO)

protein family, which are also called slicer proteins because

they cleave target single-stranded RNA at the duplex formed

with the guide-strand sRNA. Emerging results show a role for

some AGOproteins and small RNAs in R protein-mediated resis-

tance (Navarro et al., 2006; Katiyar-Agarwal et al., 2007; Bhatta-

charjee et al., 2009), although the relationship between R pro-

tein-mediated signaling and RNA silencing pathway remains

largely unclear.

Viruses, in turn, have evolved to express suppressors that

target host RNA silencing components and thereby ensure repli-

cation in the host (Carr et al., 2010; Ding, 2010). Interestingly, in

many cases these suppressors of silencing also acts as avr fac-

tors, and their interaction with the host R proteins leads to acti-

vation of defense responses. Many R-avr protein interactions

are thought to occur indirectly and involve other host proteins

that are targeted by the pathogen-encoded effector proteins.

The interaction between R-avr proteins is thought to follow the
thors
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‘‘guard model’’ or modified version thereof, where R protein

guards other host protein(s) referred to as ‘‘guardee’’ (Van der

Biezen and Jones, 1998; van der Hoorn and Kamoun, 2008).

Any alteration in the ‘‘guardee’’ protein, brought about by avr fac-

tor, is thought to activate the R protein, resulting in initiation of

defense responses against the pathogen.

HRT, a CC-NBS-LRR protein, confers resistance to turnip

crinkle virus (TCV), a single-stranded, positive-sense RNA virus.

Most Arabidopsis ecotypes are susceptible to TCV; however, a

resistant line, designated Di-17, was isolated from the Dijon

(Di) ecotype (Dempsey et al., 1997). Following TCV infection,

Di-17 plants develop hypersensitive response (HR), express

several defense genes, including pathogenesis-related 1

(PR-1), and accumulate salicylic acid (SA) (Dempsey et al.,

1997; Kachroo et al., 2000; Chandra-Shekara et al., 2004). In

contrast, plants lacking the dominant gene HRT fail to develop

these phenotypes and allow systemic spread of the virus result-

ing in death of the plant (Kachroo et al., 2000; Chandra-Shekara

et al., 2004). However, HRT alone is not sufficient to confer TCV

resistance, because all F1 plants and�75%of HR-developing F2
plants derived from a cross between resistant (Di-17) and sus-

ceptible (Col-0) ecotypes succumb to disease. Furthermore,

�90% of transgenic Col-0 plants expressing the HRT transgene

are susceptible to TCV even though these plants develop HR

upon TCV inoculation (Cooley et al., 2000). The recessive allele

of a second, as-yet-unidentified locus designated rrt (regulates

resistance to TCV) is also required for resistance (Kachroo

et al., 2000; Chandra-Shekara et al., 2004).

Even though SA acts downstream of HRT, exogenous treat-

ment with SA is unable to confer TCV resistance in hrt plants.

Thus, SA likely operates via a feedback loop with HRT and this

SA-induced expression of HRT is dependent on PAD4 (phyto-

alexin deficient) (Chandra-Shekara et al., 2004). Consistent

with these observations, NPR1 (nonexpressor of PR-1), which

acts downstream of SA, is not required for TCV resistance (Kach-

roo et al., 2000). Interestingly, HR and resistance are two distinct

phenotypes in the Arabidopsis-TCV interaction that do not

necessarily share all downstream signaling components (Chan-

dra-Shekara et al., 2004; Venugopal et al., 2009; Jeong et al.,

2010). These observations suggest that HRT triggers at least

two distinct sets of events that culminate in HR and resistance

responses.

HRT-mediated signaling is activated in response to coat

protein (CP) of the virus (Cooley et al., 2000; Zhao et al., 2000;

Jeong et al., 2008). However, direct interaction between HRT

and TCV CP has not been detectable (Zhu et al., 2011).

Resistance to TCV is dependent upon SA pathway and blue-

light photoreceptors, of which CRY2 (cryptochrome) and

PHOT2 (phototropin) are required for the stability of HRT (Chan-

dra-Shekara et al., 2006; Jeong et al., 2010). HRT interacts with

CRT1 (compromised for recognition of TCV), and a mutation in

CRT1 compromises resistance to TCV (Kang et al., 2008).

More recently, we showed that HRT also associates with

EDS1 (enhanced disease susceptibility), which facilitates CP-

triggered HR (Zhu et al., 2011). Although EDS1 forms a ternary

complex with two other related proteins, SAG101 (senes-

cence-associated gene) and PAD4, neither of these facilitate

HRT-CP-triggered HR (Zhu et al., 2011).
Cell Re
Here, we evaluated the role of components of RNA silencing

pathway in HRT-mediated resistance to TCV. We show that

RDR6, DCL4, and DRB4 are required for the HRT-mediated

resistance to TCV. Biochemical analysis showed that HRT forms

a complex containing DRB4 andDRB4 is required for the stability

of HRT. DRB4 is also required for resistance signaling mediated

by RPS2 and RPM1 proteins. These results, together with our

findings that the silencing suppressor function of CP is not

required for the activation of resistance response against TCV

and that accumulation of viral-specific small RNAs is inversely

related to activation of HRT, suggest a specific role for DRB4

in R-mediated defense.

RESULTS

TCV CP Mutants Deficient in Silencing Suppressor
Function Can Activate HRT-Mediated Signaling
The TCV CP, which activates resistance signaling via HRT, also

serves as a suppressor of RNA silencing (Choi et al., 2004; Cao

et al., 2010). To determine if the RNA silencing suppressor func-

tion of CPwas required for the activation of HRT-mediated resis-

tance, we analyzed the response of Di-17 (resistant ecotype)

plants inoculated with TCV mutants carrying the R130T (CPB)

or R137H (CPC) mutations in CP. These mutant proteins are

impaired in RNA silencing suppressor activity (Cao et al.,

2010). Typical phenotypes associated with the activation of

HRT include HR development on the inoculated leaf, which is

associated with induction of PR-1 expression. Inoculation of

wild-type (WT) and CPB and CPC TCVmutants induced discrete

visible necrotic lesions with trypan blue staining showing dead

cells characteristic of an HR similar to that seen on Di-17 leaves

(Figures 1A and 1B). Furthermore, the HR correlated with the

levels of PR-1 expression in the inoculated leaves of Di-17 plants

(Figure 1C), suggesting thatWT andmutant viruses elicit compa-

rable response on Di-17 plants. Neither WT nor mutant viral

strains were able to induce a high level of PR-1 expression in

plants lacking HRT (Col-0; susceptible ecotype) (Figure 1C).

Like WT TCV, the CPB and CPC mutants were unable to cause

disease on Di-17 plants (Figure 1D). Consistent with their

impaired RNA silencing suppressor activity, CPB and CPC

mutants showed reduced virulence onCol-0 plants, which corre-

lated with their reduced replication (Figure 1C, left panels). In

comparison, replication of CPB and CPC viruses in Di-17 leaves

was either slightly lower or comparable to plants inoculated with

WT TCV, respectively (Figure 1C, right panels). Together, these

results suggest that the silencing suppressor activity of TCV

CP is not required for its ability to activate HRT-mediated

resistance.

RDR6 and DCL4 Are Required for HRT-Mediated
Resistance but Not HR
Next, we evaluated whether RNA silencing components are

required for HRT-mediated signaling. The rdr1, rdr2, rdr6, dcl1,

dcl2, dcl3, and dcl4 alleles (Col-0 ecotype) were crossed into

the Di-17 background. F2 progeny derived from these crosses

were genotyped and inoculated with TCV. All of the HRT-con-

taining F2 progeny from these crosses developed visible and

microscopic HR following TCV infection (Figures 2A and 2B)
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Figure 1. RNA Silencing Suppressor Func-

tion Is Not Required for the Activation of

HRT-Mediated Resistance

(A) Visual phenotypes in Col-0 and Di-17 leaf at

3 days postinoculation (dpi) withWT-TCV, CPB, or

CPC strains of TCV. The HR phenotype was

evaluated in at least 35 plants in four separate

experiments.

(B) Trypan-blue-stained leaves from Di-17 and

Col-0 plants inoculated with WT-TCV, or CPB and

CPC mutants. Leaves were sampled at 3 dpi,

and the arrows indicate isolated cell death zones

corresponding to visible HR lesions. This exper-

iment was repeated three times with similar

results.

(C) RNA gel blot analysis showing expression of

PR-1 and TCV CP in indicated genotypes after

inoculation with buffer (mock), WT-TCV, or CPB

and CPC mutants. Total RNA was extracted from

inoculated leaves at 1 or 3 dpi. Ethidium bromide

staining of rRNA was used as the loading control.

The experiment was repeated twice with similar

results.

(D) Typical morphological phenotypes of Di-17

and Col-0 plants inoculated with WT-TCV, CPB,

or CPC viruses. Plants were photographed at 18

dpi. Approximately 30–40 plants were inoculated

in three separate experiments and analyzed for

disease phenotypes.

(E) Western blot showing relative CP levels in

Col-0 and Di-17 plants at 1 or 3 dpi with WT-TCV,

CPB, or CPC viruses. Ponceau-S staining of the

western blot was used as the loading control. This

experiment was repeated three times with similar

results.
and exhibited induced PR-1 gene expression (Figure 2C). These

results suggested that these RNA silencing components are not

required for HR development or the associatedPR-1 expression.

As expected, all hrt/hrt and�75% ofHRT/- (homo/heterozygous

for HRT) of F2 progeny from a Di-17 3 Col-0 control cross

showed typical phenotypes associated with susceptible plants.

Furthermore, only 25% (homo/heterozygous for HRT, but homo-

zygous for rrt) of these HR-developing progeny were able to

resist TCV infection (Table S1). The resistance phenotype in F2

progeny obtained fromDi-173 rdr1/rdr2/dcl1/dcl2/dcl3 crosses

also showed expected Mendelian segregation (Table S1), sug-

gesting that mutations in RDR1, RDR2, DCL1, DCL2, or DCL3

do not affect HRT-mediated resistance (Figure 2D). In contrast,
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mutations in RDR6 or DCL4 abrogated

HRT-mediated resistance; all plants con-

taining HRT and rdr6 or dcl4 alleles

showed typical disease phenotypes

associated with susceptible plants (Fig-

ure 2D; Table S1). The appearance of dis-

ease symptoms also correlated with the

presence of TCV transcript in the uinocu-

lated tissues (Figure S1A). Together,

these data suggest that RDR6 and

DCL4 are required for HRT-mediated

resistance.
Next, we determined the effect of rdr6 and dcl4 mutations on

viral replication as assessed by CP levels in the inoculated

leaves. CP levels in the inoculated leaves of HRT rdr6 and HRT

dcl4 plants were similar to that in resistant Di-17 even though

the mutant plants showed typical systemic viral symptoms (Fig-

ure 2E). Likewise, CP levels in the inoculated leaves of rdr6 and

dcl4 plants were similar to that in Col-0 plants (Figure 2E).

Together, these results suggest that the rdr6 and dcl4mutations

do not affect viral replication in the inoculated leaves of Col-0 or

Di-17 plants but do enable escape of the virus to systemic tis-

sues in the HRT background.

SA accumulation is a critical signaling event required for resis-

tance to TCV. Both free and conjugated (SAG) forms of SA



Figure 2. HRT-Mediated Resistance to TCV Is Dependent on RDR6 and DCL4

(A) HR formation inmock- or TCV-inoculatedWTplants (Col-0 andDi-17) or F2 progeny derived from various crosses at 3 dpi. The HR phenotypewas evaluated in

at least 100 F2 progeny.

(B) Trypan-blue-stained leaves showingmicroscopic cell death phenotype after TCV inoculation. Scale bars, 270 mm. The cell death phenotype in TCV-inoculated

HRT dcl1 plants was similar to Di-17. At least five independent leaves were analyzed with similar results.

(C) RNA gel blot analysis showing expression of PR-1 transcript in indicated genotypes after mock or TCV inoculation. Total RNA was extracted from inoculated

leaves at 3 dpi. This experiment was repeated twice with similar results. Ethidium bromide staining of rRNA was used as the loading control. The PR-1 levels in

TCV-inoculated HRT dcl1 plants were similar to Di-17.

(legend continued on next page)
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increase by �10- and �15-fold, respectively, in TCV-inoculated

Di-17 plants (Kachroo et al., 2000). Therefore, SA/SAG levels in

TCV-inoculated HRT rdr6 and HRT dcl4 plants were tested to

determine if the loss of resistance in these mutants was due to

defects in TCV-induced SA accumulation. No defects in SA or

SAG accumulation were evident (Figure 2F), which correlated

with normal expression of the SA responsive PR-1 expression

seen in TCV-inoculated HRT rdr6 and HRT dcl4 (Figure 2C).

The effects of mutations in the RDR6 or DCL4 genes on HRT

levels were analyzed using Di-17 HRT-FLAG plants containing

the rdr6 or dcl4 mutations. Neither mutation significantly altered

basal levels of HRT-FLAG (Figure S1B). In addition, as in Di-17

plants, HRT-FLAG in HRT rdr6 and HRT dcl4 backgrounds was

only detected in the membranous fraction (Figure S1C), and

the HRT levels did not change after TCV inoculation (Figure S1D).

The DCL4-Interacting DRB4 Is Required for Normal HR
and Resistance to TCV
We next assessed whether the interacting partner of DCL4, the

double-stranded RNA-binding protein 4 (DRB4) (Hiraguri et al.,

2005; Fukudome et al., 2011), contributed to HRT-mediated

resistance. The drb4 mutant in Col-0 background was crossed

with Di-17, and the F2 progeny were evaluated for HR and resis-

tance. All of the HRT/- drb4/drb4 F2 progeny developed a HR

(Figures 3A and 3B) and exhibited induced PR-1 gene expres-

sion following TCV infection (Figures 3C and S2A). However, un-

like Di-17,HRT rdr6, andHRT dcl4 plants,HRT drb4 developed a

spreading HR, characterized by more extensive cell death with

eventual collapse of inoculated leaves by 10 days postinocula-

tion (dpi) (Figures 3A and 3B). Absence of necrotic lesions on

Col-0 leaves suggested that spreading lesion seen on HRT

drb4 leaves were associated with HR phenotype (Figure S2B).

The spreading HR phenotype was similar to that of Di-17 crt1

mutant (Kang et al., 2008). Because HRT drb4 plants were

derived from a cross between Di-17 and Col-0 plants, whereas

crt1 was isolated in the Di-17 background, it was important to

determine if genetic background difference(s) contributed to

the spreading HR phenotype. To this end, we generated a homo-

zygous T-DNA KO line for CRT1 in the Col-0 background and

crossed it to Di-17. Several F3 pools of HRT crt1 plants were

created, two of which were evaluated for their HR phenotypes

(Figure 3A). Both of the F3 pools consistently showed spreading

HR in response to TCV inoculation, similar to the Di-17 crt1

mutant (Kang et al., 2008). Comparison of HR phenotypes

showed that HRT drb4 plants displayed a more pronounced

spreading HR (Figure 3A), which correlated with increased repli-

cation of the virus in their inoculated leaves (Figures 3C, 3D, and

S2C); the HRT drb4 plants showed higher CP transcript and CP

protein levels compared to HRT crt1 plants. Additionally,

compared to Di-17 plants, the avirulent strains CPB and CPC

also replicated to higher levels in HRT drb4 plants (Figure 3E).
(D) Typical morphological phenotypes of TCV-inoculated HRT (Di-17), HRT rdr, H

(E) Time-course analysis of TCV CP levels in the inoculated leaves of indicated ge

quantify the CP levels. This experiment was repeated three times with similar res

(F) SA and SAG levels in mock- or TCV-inoculated plants at 3 dpi. Asterisks indicat

error bars indicate SD. The experiment was repeated twice with similar results.

See also Figure S1.
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Consistent with the avirulence function of CP in HRT plants,

mutant virus carrying a null mutation in CP (designated TCV-

stop) neither produced visible symptoms on the inoculated

leaves of HRT drb4, HRT crt1, Col-0, or Di-17, nor did it induce

PR-1 expression (Figures 3F and 3G, also see Figures 3A and

3C). As expected, no CP protein was detected in TCV-stop-inoc-

ulated plants, even though all genotypes accumulated low levels

of CP transcript (Figure 3G). We next evaluated replication of

mutant R8A virus, which contains an arginine (R) to alanine (A)

substitution at amino acid 8 of CP and is virulent on Di-17 plants

(Choi et al., 2004). Like WT-TCV, CPB, and CPC, the R8A deriv-

ative also replicated to higher levels in the inoculated leaves of

HRT drb4 plants than in the Di-17 plants (Figures 3E and S2C).

This correlated with increased CP levels in the inoculated leaves

of drb4 as compared to Col-0 plants (Figures S2D and S2E).

Notably, in spite of the increased accumulation of R8A in the

inoculated tissues, the drb4 plants showed Col-0-like suscepti-

bility and accumulated Col-0-like levels of CP in the systemic

bolt tissues (Figure S2F). Together, these data suggest that

DRB4 regulates HR to TCV and a mutation in DRB4 increases

TCV levels in the inoculated leaves of HRT plants.

Unlike HRT drb4 and HRT crt1, a number of TCV-susceptible

genotypes tested here or in our earlier studies (including HRT

pad4, HRT sid2, HRT eds1, HRT sag101, HRT rdr6, HRT dcl4)

accumulate similar levels of CP in their inoculated leaves as

the resistant Di-17 plants (Kachroo et al., 2000; Chandra-Shek-

ara et al., 2007; Venugopal et al., 2009; Zhu et al., 2011; Fig-

ure 2E). This, and the fact that both DRB4 and CRT1 are

involved in host RNA silencing pathways (Hiraguri et al., 2005;

Fukudome et al., 2011; Moissiard et al., 2012), prompted us

to check the effect of drb4 and crt1 mutations on viral-specific

small RNA (VsRNA) levels in the HRT background. Notably,

VsRNA only accumulated in the TCV-inoculated Col-0 plants

but not in the HRT backgrounds, regardless of TCV levels in

the inoculated leaves or their resistant (Di-17) or susceptible

(HRT drb4, HRT crt1, HRT dcl4, HRT sag101, HRT eds1)

response to TCV (Figures 3H, left panel, S2G, also see Figures

3C–3E and S2C). This suggested that the lack of accumulation

of VsRNA was likely associated with the presence/activation of

HRT. To test this further, we assayed VsRNA levels in TCV-

stop-inoculated Col-0, Di-17, HRT drb4, and HRT crt1 plants.

All these hosts accumulated VsRNA when infected with TCV-

stop (Figure 3H, middle panel). Next, we assayed VsRNA in

CPB and R8A-inoculated Di-17 and HRT drb4 plants. Like

TCV-stop, R8A-infected Di-17, HRT drb4, or HRT crt1 plants

accumulated significant amounts of VsRNA (Figure 3H, right

panel, S2G), but CPB behaved like WT-TCV and did not induce

accumulation of VsRNA. Together these results suggested that

accumulation of VsRNA was inversely associated with the

presence/activation of HRT and was independent of disease

phenotype.
RT dcl, and hrt (Col-0) genotypes. Plants were photographed at 18 dpi.

notypes at 1, 2, and 3 dpi. Enzyme-linked immunosorbent assay was used to

ults. The error bars indicate SD.

e data statistically significant frommock-inoculated plants (p < 0.05, n = 6). The

thors



Figure 3. The HRT drb4 Plants Show Spreading HR and Support Increased Replication of Virus

(A) HR formation in TCV-inoculated Di-17,HRT drb4, andHRT crt1 plants at 3, 6, and 10 dpi. The HR phenotypewas evaluated in�40 plants that were analyzed in

three separate experiments.

(B) Trypan-blue-stained leaves showingmicroscopic cell death phenotype at 10 dpi with TCV. Scale bars, 270 mm. At least five independent leaveswere analyzed

with similar results.

(C) RNA gel blot analysis showing expression of PR-1 and CP transcripts in indicated genotypes at 3 dpi after TCV inoculation. This experiment was repeated

three times with similar results. Ethidium bromide staining of rRNA was used as the loading control.

(legend continued on next page)
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To determine if DRB4 was required for resistance to TCV

(preventing spread of the virus to uninoculated tissues), we eval-

uated F2 progeny derived from Di-17 3 drb4 cross. All HRT/-

drb4 plants showed typical disease symptoms, suggesting that

DRB4 was required for HRT-mediated resistance (Table S1; Fig-

ure S2H). We next estimated SA/SAG levels in TCV-inoculated

HRT drb4 plants to determine if the loss of resistance in these

mutant backgrounds was due to a defect in SA accumulation.

No significant differences in levels of SA or SAG accumulation

were evident (Figure S2I), which correlatedwell with the observa-

tion thatHRT drb4 plants developedHR and hadWT-like expres-

sion of PR-1 (Figures 3C and S2A).

DRB4 Associates with HRT and Regulates Its Stability
Analysis of HRT levels in HRT-FLAG drb4 compared to Di-17

HRT-FLAG revealed significantly reduced HRT protein (Fig-

ure 4A), but not transcript levels (Figure S3A). This result provides

a possible explanation for the spreading HR phenotype seen in

HRT drb4 plants and suggested that a certain threshold level

of HRT might be required to contain the spread of the necrotic

lesions. To test this possibility, we evaluated HRT levels in HRT

crt1 plants, because these also showed spreading lesions in

response to TCV. As expected, HRT crt1 plants also showed

reduced levels of HRT-FLAG (Figure 4B). As an additional test,

we evaluated HR and viral levels in HRT cry2 plants, which, like

HRT drb4 and HRT crt1 plants, accumulated reduced levels of

HRT (Jeong et al., 2010). Similar to HRT drb4 and HRT crt1

plants, the HRT cry2 plants showed spreading lesions (Figures

S3B and S3C) and also elevated levels of CP in the inoculated

leaf (Figure S3D). Together, these results suggested that, like

CRY2, CRT1 and DRB4 are also required for the stability of

HRT and that reduction in HRT levels results in inability of the

plant to fully suppress viral replication and spread, ultimately

leading to a spreading HR.

Previous work has shown that the T-DNA insertion mutant in

drb4-1 is also defective in the expression of the DRB4-neigh-

boring gene, At3g62810 (Nakazawa et al., 2007). To confirm

that degradation of HRT in drb4 background was specific to

the mutation in DRB4, we generated transgenic drb4 plants

expressing the DRB4-MYC transgene under its own promoter

and crossed these to HRT-FLAG drb4 plants. The F2 plants

were scored for HRT-FLAG and DRB4-MYC transgenes and

evaluated for their HRT and DRB4 levels. The drb4::DRB4-

MYC plants contained normal levels of HRT-FLAG (Figure 4C),

suggesting that reduced stability of HRT in drb4 plants was spe-
(D) Western blot showing relative CP levels in TCV-inoculated genotypes shown

This experiment was repeated three times with similar results.

(E) Western blot showing relative CP levels in Di-17 andHRT drb4 plants inoculate

staining of the western blot was used as the loading control. This experiment wa

(F) TCV-stop-inoculated Col-0, Di-17, HRT drb4, and HRT crt1 leaves with abs

repeated three times with similar results.

(G) RNA (upper three panels; PR-1, CP, and rRNA) and protein (lower two panels

transcripts and CP protein levels in TCV-stop-inoculated plants. TCV-inoculated C

protein were extracted from inoculated leaves at 3 dpi. This experiment was rep

Ponceau-S staining of protein were used as the loading controls.

(H) Levels of TCV-CP-specific small RNA in Col-0, Di-17, HRT drb4, and HRT crt1

This experiment was repeated four times with similar results.

See also Figures S2 and S3.
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cifically due to the drb4 mutation. Notably, immunoblot analysis

with a-MYC at times showed a doublet of DRB4, suggesting that

this protein might undergo posttranslational modifications

(Figure 4C).

To determine if DRB4 stabilizes the HRT R-protein through

physical interaction, we assessed interaction between HRT

and DRB4 using bimolecular fluorescence complementation

(BiFC) assays. As shown previously (Jeong et al., 2010), HRT in-

teracted with CRT1, and this interaction was detected in the

endosomes as well as the cell periphery (Figures 4D and S3E).

Also, DRB4 was found to be associated with DCL4 in the

nucleus (Figures 4D and S3E), as previously reported (Hiraguri

et al., 2005). In contrast, no interaction was detected between

HRT and DCL4 using BiFC (Figure 4D). However, HRT interacted

with DRB4, and this interaction was primarily seen in the cell

periphery (Figures 4D and S3E). The interaction between HRT

and DRB4 was verified by coimmunoprecipitation (IP) assays

when these proteins were coexpressed under their native

promoters in Arabidopsis (Figure 4E) or in Nicotiana benthami-

ana (Figure 4F). Coimmunoprecipitation (coIP) assays in

N. benthamiana also confirmed the lack of interactions between

HRT and DCL4 (Figure 4F) and between DRB4 and GST (Fig-

ure S3F) when these proteins were expressed using the 35S

promoters.

Notably, only a small fraction of the total DRB4 protein was

coimmunoprecipitated with HRT (Figures 4E and 4F), which

was consistent with the fact that most of the cellular pool of

DRB4 is present in the nucleus and might not be available to

complex with HRT (Figure 4G; Hiraguri et al., 2005). To test

this, we fused DRB4 with nuclear export signal (NES) or

nuclear localization signal (NLS) and assayed localization of

these proteins in N. benthamiana. As expected, DRB4-NLS

was exclusively detected in nucleus, whereas DRB4-NES

remained in the extranuclear compartment. In comparison,

DRB4 fused to the mutant NES/NLS sequences (DRB4-nes/

nls-GFP) behaved like WT protein, localizing to both nuclear

and extranuclear compartments (Figure 4G). BiFC and coIP

interaction assays carried out between HRT and DRB4-NES/

NLS proteins showed that HRT interacted only with the

DRB4-NES protein, but not with DRB4-NLS (Figures 4H, S3G,

and S3H).

We next tested interaction between the CC, NBS, and LRR

domains of HRT with DRB4 in N. benthamiana. Interestingly,

DRB4 bound to all three HRT domains (CC, NBS, and LRR) of

HRT (Figures S4A and S4B). This raised the possibility that the
in (C). Ponceau-S staining of the western blot was used as the loading control.

d with CPB, CPC, R8A, andWT TCV. Leaves were sampled at 3 dpi. Ponceau-S

s repeated three times with similar results.

ence of visual HR. Plants were photographed at 4 dpi. This experiment was

; a-CP and Ponceau-S) gel blot analyses showing expression of PR-1 and CP

ol-0 plants were included as a positive control in protein gel blot. Total RNA and

eated two times with similar results. Ethidium bromide staining of rRNA and

plants inoculated with TCV, TCV-stop, or R8A. Leaves were sampled at 3 dpi.

thors



Figure 4. DRB4 Interacts with and Is Required for the Stability of HRT

(A and B)Western blots showing relative levels of HRT-FLAG inDi-17 (designatedHRT) andHRT drb4 (A) orHRT crt1 (B) plants. Ponceau-S staining of thewestern

blots was used as the loading control. This experiment was repeated four times with similar results.

(C) Western blot showing WT-like levels of HRT-FLAG in drb4 plants expressing HRT-FLAG and DRB4-MYC. The F2 plants were derived from a cross between

drb4::HRT-FLAG and drb4::DRB4-MYC transgenic plants. Ponceau-S staining of thewestern blot was used as the loading control. This experiment was repeated

twice with similar results.

(legend continued on next page)
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N-terminal CC and C-terminal LRR domains of HRT protein

might fold over the NBS domain, such that DRB4 was able to

interact with all three domains of HRT (Figure S4C). Furthermore,

both CC and NBS domains self-interacted (Figure S4A), sug-

gesting intramolecular interactions within HRT. To assess this

further, we studied the self-interaction of the full-length HRT pro-

tein. Using both Arabidopsis and N. benthamiana, HRT was

found to interact with itself (Figure S4D). These results suggested

that HRT exist as a dimer or multimer. Interestingly, DRB4 also

self-interacted, as shown using the yeast two-hybrid assays as

well as by coIP in N. benthamiana (Figures S4E–S4G). Together,

these results suggest that the HRT complex likely contains mul-

tiple units of DRB4 proteins (Figure S4B).

TCV Inoculation Increases the Cytosolic Pool of DRB4
We next considered the possibility that TCV inoculation might

modulate HRT-DRB4 complex formation. To test this, we gener-

ated transgenic Di-17 plants expressing DRB4-GFP under its

own promoter and assayed levels and localization of DRB4-

GFP in mock- and TCV-inoculated plants. Approximately 65%

of leaves inoculated with WT-TCV or R8A mutant showed an

increase in DRB4-GFP levels (Figure 5A), which correlated

with an �2.8-fold increase in DRB4 transcript levels in TCV-

inoculated Di-17 plants (Figures S5A and S5B). Exogenous

application of SA did not increase DRB4-GFP levels (Figure 5A),

suggesting that a factor other than SA was responsible for the

WT-TCV- and R8A-triggered increase in DRB4-GFP (Figure 5A;

Table S2).

In the absence of virus inoculations, themajority of DRB4-GFP

was present in the nucleus with only a small fraction in the extra-

nuclear compartment, just as seen in N. benthamiana (Figures

4G and 5B). Interestingly, TCV, CPB, or CPC inoculations signif-

icantly increased cytosolic levels of DRB4-GFP at 3 dpi; all TCV-

inoculated leaves showed increased DRB4-GFP fluorescence

outside the nucleus, and a majority of these showed fluores-

cence only in the extranuclear compartment (Figures 5B and

S5C). A time-course analysis of TCV-inoculated DRB4-GFP

leaves showed that cytosolic levels of DRB4-GFP increased

within 24 hr of infection (Figure 5C) and prior to visible (Fig-

ure S5D) or microscopic HR formation (Figure 5C, bottom panel).

Like WT-TCV, the virulent R8A mutant also increased cytosolic

levels of DRB4-GFP, but a majority of these plants retained

some DRB4-GFP in the nucleus (indicated by an arrow, Fig-

ure 5B). Moreover, DRB4-GFP also formed punctate structures
(D) Confocal micrographs showing BiFC for indicated proteins. Agroinfiltration

expressing the nuclear marker CFP-H2B (scale bar, 10 mM). The micrographs sho

shown in Figure S3E. Arrow and arrowhead indicates nucleus and endosomes, r

(E) Coimmunoprecipitation (IP) of DRB4-MYC with HRT-FLAG. Total protein extra

MYC or both was immunoprecipitated using anti-FLAG affinity beads, and the

experiment was repeated three times with similar results.

(F) CoIP of DRB4-MYC with HRT-FLAG. N. benthamiana plants were agroinfiltrat

Right panel shows IP assay of DCL4-MYC with HRT-FLAG. HRT and DRB4 were

under 35S promoter. This experiment was repeated twice with similar results.

(G) Confocal micrographs showing localization of DRB4-GFP, DRB4-NLS-GFP,

NES) in N. benthamiana (scale bar, 10 mM). The experiment was repeated four ti

(H) CoIP of HRT-FLAG with DRB4-NLS or DRB4-NES/nes proteins. N. benthamia

with a-MYC and a-FLAG. HRT and DRB4 were expressed under the 35S promo

See also Figures S3 and S4.

1176 Cell Reports 4, 1168–1184, September 26, 2013 ª2013 The Au
in the R8A-inoculated leaves, not seen with WT-TCV (indicated

by arrowheads, Figure 5B).

The partial or complete exclusion (monitored as visual

absence of fluorescence) of DRB4 from the nucleus of Di-17

plants inoculated with avirulent (WT-TCV, CPB, CPC) or virulent

(R8A) TCV, respectively, correlated with increased extranuclear

levels of DRB4 in virus-infected plants. This, together with the

fact that TCV-dependent nuclear exclusion of DRB4 occurred

in response to both virulent and avirulent pathogens, raised

two possibilities: (1) the R8A CP derivative is able to induce

some HRT-mediated responses; (2) virulent and avirulent TCV

derivatives possibly induce differential subcellular compartmen-

talization of cytosolic DRB4 that correlates with susceptible and

resistance phenotypes, respectively. To evaluate the first possi-

bility, we assayed HRT-triggered HR and PR-1 expression in

R8A-inoculated Di-17 plants. Although R8A-inoculated Di-17

plants did not show any visible HR (Figure S6A), they did show

microscopic cell death (Figure S6B). However, the lesion size

in R8A-inoculated plants was significantly smaller than that

seen in WT-TCV-inoculated Di-17 plants. Consistent with micro-

scopic HR formation, the R8A and WT-TCV-inoculated Di-17

plants accumulated similar levels ofPR-1 transcript (Figure S6C).

In comparison, WT-TCV or R8A-inoculated Col-0 plants showed

basal expression of PR-1 (Figure S6C). Together, these results

suggested that R8A was capable of eliciting at least a subset

of HRT-mediated defense responses (also see below).

Next, we tested the subcellular compartmentalization by

assaying colocalization of DRB4-GFP and CP-RFP or R8A-

RFP in N. benthamiana. When expressed alone DRB4 localized

primarily to the nucleus, and CP or its mutant derivative R8A

were seen in inclusion-like structures (Figure 5D). Interestingly,

coexpression of CP-RFP with DRB4-GFP not only increased

the peripheral localization of DRB4, but also directed DRB4

and CP to punctate foci along the periphery (shown by arrow-

heads, Figure 5E, left upper panel). Notably, although R8A-

RFP also colocalized with DRB4-GFP, a majority of R8A

remained in the inclusion bodies (shown by arrowheads, Fig-

ure 5E, left middle panel). Colocalization of DRB4 and CP-/

R8A-RFP was also tested in leaves coexpressing DRB4-NES/

NLS-GFP proteins with CP-RFP or R8A-RFP. Leaves coex-

pressing DRB4-NES-GFP and CP-RFP showed more prominent

punctate GFP fluorescence along the periphery (shown by ar-

rowheads, Figure 5E, left bottom panel). In contrast, when coex-

pressed with R8A-RFP, the majority of the DRB4-NES-GFP
was used to express protein in transgenic Nicotiana benthamiana plants

wn are YFP and CFP overlay images. Individual YFP and CFP micrographs are

espectively. All interactions were confirmed in three separate experiments.

cted from the transgenic Arabidopsis plants expressing HRT-FLAG or DRB4-

immunoprecipitated proteins were analyzed with a-MYC and a-FLAG. The

ed, and immunoprecipitated proteins were analyzed with a-MYC and a-FLAG.

expressed using their respective native promoters, and DCL4 was expressed

DRB4-nls-GFP (mutant NLS), DRB4-NES-GFP, and DRB4-nes-GFP (mutant

mes with similar results.

na plants were agroinfiltrated and immunoprecipitated proteins were analyzed

ter. This experiment was repeated twice with similar results.
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Figure 5. TCV Inoculation Increases the Cytosolic Pool of DRB4

(A) Western blot showing DRB4-GFP levels inmock- andWT-TCV-/R8A-inoculated andwater- or SA- (500 mM) treated transgenic Di-17 plants expressingDRB4-

GFP under its native promoter. Pathogen- and SA-treated leaves were sampled at 3 dpi and 2 days posttreatment, respectively. This experiment was repeated

three times with similar results.

(B) Confocal micrographs showing localization of DRB4-GFP in untreated,mock-, or TCV-/CPB-/R8A-inoculatedArabidopsis plants. The leaveswere analyzed at

3 dpi. The experiment was repeated three times with similar results. Scale bars, 10 mM. Bottom-right panel is an enlarged view of micrograph (shown by circle,

R8A panel).
(legend continued on next page)
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colocalized to the inclusion bodies (shown by arrowheads, Fig-

ure 5E, right upper panel). Furthermore, coexpression of

DRB4-NLS-GFP with CP-RFP or R8A-RFP directed all visually

detectable CP-RFP to the nucleus, whereas a majority of R8A-

RFP remained in the inclusion bodies (Figure 5E, right middle

and bottom panels). Complete and partial nuclear localization

of CP and R8A in the presence of DRB4-NLS-GFP, respectively,

was consistent with the presence of both mono- and bipartite-

NLS at the N terminus of CP (Figure S6D) and the fact that the

R8A mutation mapped within the mono/bipartite NLS. The local-

ization pattern of DRB4 and CP/R8A in leaves coexpressing

DRB4-nes/nls-GFP and CP-/R8A-RFP was similar to that seen

in control leaves (Figures 5E and S6E). These results, together

with the fact that only DRB4-NES interacts with HRT (Figures

4H and S3G), suggest that CP-mediated increase in cytosolic

levels of DRB4 and colocalization of CP and DRB4 may be

important for the induced resistance response against TCV.

TCV CP Prevents HRT-DRB4 Complex Formation
Colocalization of DRB4 and CP prompted us to assay the inter-

action between CP and DRB4. The transgenic ArabidopsisCol-0

plants expressing DRB4-MYC under the native promoter were

inoculated with buffer or TCV, and at 3 dpi the inoculated leaves

were processed for IP using MYC antibodies. The TCV-inocu-

lated WT Col-0 plants were used as an additional control in

this experiment. Immunoblot analysis showed that CP coimmu-

noprecipitated with DRB4 only in TCV-inoculated DRB4-MYC

transgenic plants (Figure 6A). This result, together with the ob-

servations that HRT interacts with DRB4 and DRB4 colocalizes

with CP, suggested that DRB4 might act as a link between R

protein and their corresponding avr protein, reminiscent of

‘‘guardee’’ proteins. However, unlike the R protein RPS2, which

is activated by the absence of its guardee RIN4 (Axtell and Stas-

kawicz, 2003; Mackey et al., 2003), the absence of functional

DRB4 protein did not autoactivate HRT; no significant difference

in PR-1 transcript was noticed in mock- and TCV-inoculated Di-

17 and HRT drb4 plants (Figure S2A).

A larger cytosolic pool of DRB4 in TCV-infected plants and the

fact that HRT interacted only with the DRB4-NES protein (Fig-

ures 4H, S3G, 5B, and 5C) suggested that activation of HRT

might be associated with increased association between HRT

and DRB4. To test this, we assayed HRT-DRB4 complex forma-

tion in TCV-inoculated Arabidopsis plants. The Arabidopsis

plants expressing HRT-FLAG and DRB4-MYC under their

respective native promoters were mock- or TCV-inoculated,

and at 3 dpi the infected leaves were processed for IP using

FLAG antibodies. Interestingly, in three independent experi-

ments we noticed that the TCV-inoculated plants showed a sig-

nificant reduction in the levels of HRT-DRB4 complex, which we
(C) Confocal micrographs showing localization of DRB4-GFP in TCV-inoculated

sponding trypan-blue-stained leaves. The experiment was repeated two times wi

dead cells (bottom panel).

(D) Confocal micrographs showing localization of DRB4-GFP, DRB4-NLS-GFP, D

Arrows and arrowheads indicate nucleus and inclusion structures, respectively.

(E) Confocal micrographs showing localization of the indicated proteins when coe

(E) were carried out together. Arrows and arrowheads indicate nucleus and inclu

similar results.

See also Figure S5.
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were only able to detect using a large amount of protein extract

for coIP (Figure 6B). To determine if the reduced interaction was

specifically the effect of the avr factor CP (as against other viral-

encoded proteins), we carried out coIP assays in

N. benthamiana, where HRT and DRB4 were coexpressed with

and without CP. Consistent with results obtained with Arabidop-

sis, HRT did not interact with DRB4 in the presence of CP

(Figure 6C). In contrast, the presence of CP did not alter the inter-

action between DRB4 and DCL4 or between HRT and CRT1

(Figures 6D and 6E), suggesting that CP specifically inhibited

HRT-DRB4 interaction. An alternate possibility is that HRT-CP-

mediated HR, rather than the presence of CP itself, abolished

HRT-DRB4 interaction. To test this, we first monitored the HR

phenotype of N. benthamiana plants expressing HRT, DRB4,

and CP. As shown earlier, coexpression of HRT and CP did

not trigger HR, it but did so in the presence of EDS1 (Zhu

et al., 2011). Interestingly, coexpression of DRB4 with HRT and

CP also potentiated HR, albeit less effectively than EDS1;

HRT-CP-DRB4-expressing plants showed significantly less ion

leakage than plants expressing HRT-CP-EDS1 (Figures S7A

and S7B). Coexpression of CP did not alter interaction between

HRT and EDS1 (Figure 6F), indicating that neither HR nor the

presence of CP affects the association between HRT and

EDS1. To assess further the possible effect of HR induction on

HRT-DRB4 interaction, HRT and DRB4 were coexpressed in

N. benthamiana in the presence or absence of AvrB, which in-

duces cell death in N. benthamiana (Figure 6G, Selote et al.,

2013). The presence of AvrB-induced cell death did not alter

interaction between HRT and DRB4 (Figure 6H). Together these

results suggested that cell death is not responsible for abolishing

interaction between HRT and DRB4. To determine if the CP-

mediated dissociation and/or obstruction of the HRT-DRB4

complex formation was required for HRT-mediated resistance,

we evaluated HRT-DRB4 interaction in the presence of the

coat protein from virulent strain R8A. Notably, R8A also resulted

in the dissociation of the HRT-DRB4 complex (Figure 6I), which

correlated with the fact that R8A partially activated HRT-medi-

ated HR (Figures S6A–S6C) and triggered partial increase in

the cytosolic pool of DRB4-GFP. Thus, dissociation of the

HRT-DRB4 complex alone is not sufficient for complete activa-

tion of HRT and thereby full induction of resistance against TCV.

DRB4 Contributes to Bacterial Resistance
To determine if DRB4 serves as a general regulatory component

in basal and/or R protein-mediated signaling, we evaluated the

requirement for DRB4 in bacterial resistance. The drb4 plants

accumulated �7- to 10-fold higher levels of virulent Pseudo-

monas syringae pv tomato (Pst), suggesting compromised basal

resistance to Pst (Figure S8A). Interestingly, a mutation in DRB4
Arabidopsis plants at 1–3 dpi (upper panel). The bottom panel shows corre-

th similar results. Scale bars, 10 mM. Arrows indicate nucleus (upper panel) and

RB4-NES-GFP, CP-RFP, and R8A-RFP in N. benthamiana (Scale bar, 10 mM).

xpressed in N. benthamiana (scale bars, 10 mM). Experiments shown in (D) and

sion structures, respectively. This experiment was repeated three times with
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Figure 6. TCV Coat Protein Prevents HRT-DRB4 Complex Formation
(A) CoIP of TCV-CP with DRB4-MYC. The transgenic Arabidopsis plants expressing DRB4-MYC were inoculated with buffer (indicate by �) or TCV (indicated

by +), and the total protein extracted at 3 dpi was immunoprecipitated using anti-MYC affinity beads and analyzed with a-MYC and a-CP. TCV-inoculated Col-0

plants were used as an additional control. This experiment was repeated three times with similar results.

(B) IP of DRB4-MYCwith HRT-FLAG in mock- and TCV-inoculated plants. Total protein extracted from the transgenic Arabidopsis plants expressing DRB4-MYC

and HRT-FLAG was immunoprecipitated using anti-FLAG affinity beads and analyzed with a-MYC and a-FLAG. Double the amount of total protein (2 mg/ml)

extracted from TCV-inoculated plants was used for IP. The experiment was repeated three times with similar results.

(legend continued on next page)
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had a more severe effect on RPS2- and RPM1-mediated resis-

tance to Pst expressing avrRpt2 or avrRpm1, respectively; the

drb4 plants supported �10- to 20-fold higher growth of these

bacteria (Figures 7A and 7B). We next compared response of

drb4, sid2, and rps2 plants to avrRpt2. Consistent with an earlier

report (Tsuda et al., 2009), rps2 plants supported maximum bac-

terial growth followed by the sid2 mutant (Figure 7A). Notably,

drb4 plants were as susceptible as sid2 plants (Figure 7A). As

observed in Arabidopsis-TCV interactions, inoculation of Pst

avrRpt2 or Pst avrRpm1 resulted in increased cell death on

drb4 plants, which correlated with increased ion leakage (Fig-

ures 7C, 7D, S8B, and S8C). A time-course analysis of PR-1

expression in avrRpt2-inoculated plants showed that drb4 plants

were compromised in pathogen induced PR-1 levels (Figure 7E).

Likewise, the avrRpm1-inoculated drb4 plants also showed

reduced PR-1 expression (Figure S8D).

To determine if the compromised R-mediated resistance to

bacterial pathogens in drb4 plants was due to the instability

of RPS2 and/or RPM1 proteins, we first evaluated interaction

between DRB4 and RPS2/RPM1 proteins. DRB4 interacted

with both RPS2 and RPM1 proteins in the coIP and BiFC as-

says (Figures 7F and 7G). Consistent with the plasma-mem-

brane-specific localization of RPS2 and RPM1, the interaction

between DRB4 and RPS2 or RPM1 was detected in the periph-

ery of the cell. We next evaluated levels of RPM1-MYC and

RPS2-HA in the drb4 background. These plants were gener-

ated by crossing drb4 with transgenic plants expressing

RPM1-MYC and RPS2-HA under their respective native pro-

moters. At least five independent F2 plants were tested, and

all showed dramatic reduction in RPM1-MYC and RPS2-HA

levels (Figures 7H and 7I). Normal RPS2 and RPM1 transcript

levels in drb4 plants (Figure S8E) suggested that degradation

of RPS2/RPM1 proteins in drb4 plants is a posttranscriptional

response. The fact that drb4 plants showed better resistance

compared to rps2 plants suggested that these plants were

markedly reduced but not depleted in their RPS2 levels (Fig-

ure 7A). Because RPM1/RPS2 stability is dependent on RAR1

(Tornero et al., 2002), it was possible that a mutation in drb4

affected stability of these R proteins by destablizing RAR1.

However, normal levels of RAR1 in drb4 plants suggested

that DRB4 dependent RPM1/RPS2 stability was likely RAR1 in-

dependent (Figure 7J).

Because avr protein-induced systemic acquired resistance

(SAR) is dependent on the presence of cognate R protein, we

predicted that SAR would be compromised in drb4 plants. To

test this, we inoculated the WT (Col-0) and drb4 plants with

MgCl2 or avrRpt2/avrRpm1-expressing Pst, and 48 hr later the
(C–F) CoIP of DRB4-MYC with HRT-FLAG (C), DRB4-MYC with DCL4-FLAG (D

presence or absence of CP.N. benthamiana plants were agroinfiltrated, and total e

and a-CP. The experiments shown in (C)–(F) were repeated three times with sim

(G) Visual phenotype of N. benthamiana leaves expressing HRT+DRB4 or HRT+

express HRT and DRB4. For avrB, the N. benthamiana plants were inoculated w

3 days posttreatment.

(H) CoIP of DRB4-MYC with HRT-FLAG in the presence or absence of CP or avrB

a-CP, and a-avrB. Arrow indicates band corresponding to avrB. The experiment

(I) CoIP of DRB4-MYC with HRT-FLAG in the presence or absence of CP or R8A

were analyzed with a-MYC and a-FLAG. This experiment was repeated two time

See also Figures S6 and S7.
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distal leaves of all plants were challenged with a virulent strain

of Pst. The WT plants previously inoculated with an avirulent

Pst strain, showed an �10-fold reduced growth of virulent bac-

teria compared to plants previously infiltrated with MgCl2 (Fig-

ures S8F and S8G). In contrast, the drb4 plants showed no

reduction in the growth of virulent bacteria at 3 dpi, when pre-

exposed to avirulent bacteria. Thus, drb4 mutant plants were

defective in their ability to induce SAR. Together, these results

suggest that DRB4 is required for the stability of RPS2 and

RPM1 proteins and thereby resistance mediated by these

R proteins.

DISCUSSION

RNA silencing is a conserved pathway in both plants and ani-

mals. However, its role in defense has primarily been studied

with relation to basal resistance against viral pathogens. In

plants, the RNA silencing pathway targets viral RNA for degrada-

tion. Viruses, in turn, encode suppressors that target one ormore

components of the host RNA silencing machinery. Compro-

mised RNA silencing in the host leads to increased accumulation

of viral RNA, thereby enhancing susceptibility to the viral patho-

gens (Carr et al., 2010; Ding, 2010). However, in several cases

the requirements for host RNA silencing components in basal

resistance are not evident when the viral pathogen encodes an

RNA silencing suppressor. In such cases, basal resistance has

been evaluated using viral mutants that lack silencing suppres-

sor activity and/or hosts that lack multiple components of the

RNA silencing pathway (Deleris et al., 2006; Qu et al., 2008;

Cao et al., 2010). Such analyses have shown that DCL2 and

DCL4 are redundant, such that mutations in both DCL2 and

DCL4 are required to compromise basal resistance against

TCV (Deleris et al., 2006; Qu et al., 2008). In contrast, we demon-

strated that this is not the case for R protein-mediated resistance

because the dcl4 mutation alone is sufficient to compromise

HRT-mediated resistance, whereas a mutation in DCL2 has no

effect on HRT-mediated signaling. Moreover, mutations in

RDR6 and DCL4 compromise HRT-mediated resistance but

not basal resistance to WT-TCV (Qu et al., 2008). A role for

RDRs in resistance signaling is further highlighted by the recent

discovery thatR genes against Tomato yellow leaf curl virus code

for DFDGD-class RDRP (Verlaan et al., 2013).

Our results show that the RNA silencing suppressor function

of CP is not essential for HRT-mediated resistance because

themutant CPs (CPB and CPC) lacking this function can activate

HRT-mediated signaling. Conversely, mutant R8A virus, which

retains suppressor activity, is virulent on resistant Di-17 plants.
), CRT1-MYC with HRT-FLAG (E), and EDS1-MYC with HRT-FLAG (F), in the

xtracts and immunoprecipitated proteins were analyzed with a-MYC, a-FLAG,

ilar results.

DRB4+avrB. Arrows indicate cell death lesions. Agroinfiltration was used to

ith Pseudomonas syringae expressing avrB. The leaves were photographed at

. Total and immunoprecipitated proteins were analyzed with a-MYC, a-FLAG,

was repeated two times with similar results.

. N. benthamiana plants were agroinfiltrated and immunoprecipitated proteins

s with similar results.
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Figure 7. DRB4 Is Required for RPS2- and RPM1-Mediated Resistance to Bacterial Pathogens

(A and B) Growth of avirulent (avrRpt2, A; avrRpm1, B) P. syringae (Pst) strains on indicated genotypes. Error bars indicate SD. Asterisks indicate data statistically

significant from that of control (Col-0) (p < 0.05, n = 4).

(C) Morphological phenotype of Col-0 and drb4 plants inoculated with 105 or 106 CFU/ml avrRpt2 Pst. The leaves were photographed at 3 dpi.

(legend continued on next page)
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These results are also consistent with our observation that

CP-mediated activation of HRT inversely correlates with accu-

mulation of viral sRNA. This, in turn, suggests that processes

leading to the synthesis of viral sRNA either are not active or

are negatively regulated during a resistance response. Increased

viral sRNA accumulation and high expression of the prototypic

SA-responsive gene PR-1 in R8A-inoculated plants suggest

that increased levels of SA may not be associated with inhibition

of viral sRNA synthesis.

We further show that DRB4 interacts with HRT and is required

for its stability; a mutation in DRB4 leads to spreading HR

necrotic lesion, which correlates with degradation of HRT and

increased replication of TCV. Similarly, the cry2 and crt1 mu-

tants have reduced levels of HRT, which allows more replication

and spread of the virus, leading to spreading HR lesions. These

results are consistent with the observations that transgenic

plants overexpressing HRT or plants with elevated HRT (induced

by SA treatment) exhibit more resistance to TCV, with no visible

HR development (Cooley et al., 2000; Chandra-Shekara et al.,

2004; Jeong et al., 2010). The fact that overexpression of HRT

or exogenous SA can overcome negative effects of RRT sug-

gests that perhaps RRT might perform ADR1-like helper func-

tion (Bonardi et al., 2011). A requirement for RRT for resistance

was reestablished by performing backcrosses between F1s

(HRT/hrt RRT/rrt) derived from a Di-17 (HRT/HRT rrt/rrt) 3

Col-0 (hrt/hrt RRT/RRT) cross with resistant (Di-17) and sus-

ceptible (Col-0) parent, respectively. As expected, resistant

plants were only observed in a test cross with Di-17 parent

and segregated in a Mendelian fashion (50% resistant:50% sus-

ceptible). Whether rrt participates in the RNA silencing pathway

awaits its cloning.

Interestingly, DRB4 was exclusively present in the extranu-

clear compartment when the resistant Di-17 plants were inoc-

ulated with avirulent (WT-TCV, CPB, and CPC) TCV but not

virulent R8A virus. The fact that DRB4 and WT-CP colocalize

to different subcompartments from DRB4 and R8A suggests

that the relative localization of these and/or their interacting

partners might play an important role in resistance signaling.

A recent report showing relocalization of DRB4 from the nu-

cleus to the cytoplasm in response to Turnip yellow mosaic

virus suggests that the subcellular redistribution of DRB4 also

occurs in other pathosystems (Jakubiec et al., 2012). This

and the observations that DRB4 interacts with CP and P6 pro-

teins of TCV and Cauliflower mosaic virus (Haas et al., 2008),

respectively, suggest that DRB4 might be a common target

of many viral pathogens. Increased extranuclear levels of
(D) Electrolyte leakage in Col-0, drb4, and rps2 plants infiltrated with MgCl2 or av

(E) RNA gel blot analysis showing expression of PR-1 in Col-0 and drb4 plants a

indicated hours postinoculation. Ethidium bromide staining of rRNA was used as

(F) CoIP of DRB4-MYC with RPS2-FLAG (left panel) or RPM1-FLAG (right panel)

were analyzed with a-MYC and a-FLAG. This experiment was repeated twice wi

(G) Confocal micrographs showing BiFC for DRB4-RPM1 and DRB4-RPS2. Agr

plants expressing the nuclear marker CFP-H2B (scale bar, 10 mM). The micrograp

in three separate experiments.

(H–J) Western blots showing relative levels of RPM1-MYC (H), RPS2-HA (I), or R

control for Figure 7J. Ponceau-S staining of the western blot was used as the loa

similar results. The arrow in Figure 7J indicates band corresponding to RAR1.

See also Figure S8.
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DRB4 in TCV-inoculated plants, and the fact that only extra-

nuclear DRB4 interacts with HRT, correlate with plasma-mem-

brane-specific localization of HRT (Jeong et al., 2010). Our

attempts to confirm HRT-DRB4-NES interaction using the

native system were unsuccessful because DRB4-NES

transgenic lines did not show any detectable expression of

DRB4-NES. A possible explanation could be that constitutive

extranuclear localization of DRB4 can potentially alter localiza-

tion of other cellular protein that complex with DRB4, thereby

affecting plant growth and/or viability. Our result that EDS1

localization can influence the subcellular localization of its inter-

acting partners, SAG101 and PAD4, supports this possibility

(Zhu et al., 2011).

In addition to DRB4, HRT also interacts with EDS1 (Zhu et al.,

2011), but amutation in EDS1 does not result in reduced levels of

HRT and the resulting spreading HR (Chandra-Shekara et al.,

2004). Notably, both HRT and DRB4 are degraded in a 26S-pro-

teasome-dependent manner (Jeong et al., 2010), likely via their

interaction with the E3 ubiquitin ligases, COP1 (Jeong et al.,

2010) and APC/C (Marrocco et al., 2012), respectively. Whether

APC/C participates in HRT degradation and if DRB4 regulates

HRT stability by affecting COP1 or APC/C E3 ligase activities re-

mains to be determined.

The fact that HRT interacts with EDS1, CRT1, andDRB4 raises

the possibility that these proteins exist as multiprotein com-

plex(s), as shown for other R proteins (Qi and Katagiri, 2009;

Rivas et al., 2002). Interestingly, the pathogen-encoded avr

effector, CP, specifically prevents the HRT-DRB4 interaction,

but not the DRB4-DCL4, HRT-EDS1, or HRT-CRT1 interactions.

The dissociation of HRT-DRB4 complex alone might not be suf-

ficient for resistance signaling because CP from either avirulent

(WT-TCV) or virulent (R8A) strains were able to disrupt the

HRT-DRB4 interaction. However, both WT-TCV and R8A viruses

were able to induce HRT-mediated SA pathway, which corre-

lates with the dissociation of HRT-DRB4 complex in the

presence of WT or R8A CPs. Thus, it is possible that HRT-

DRB4 interaction and dissociation governs a subset of HRT-

induced responses, which eventually culminate into a resistance

response. Perhaps additional proteins in the HRT complex also

regulate its activation. Consistent with this notion EDS1 is

required for HRT-CP-mediated induction of HR. Furthermore,

HR induced by coexpression of HRT, CP, and EDS1 in

N. benthamiana is much stronger than when HRT and CP are

coexpressed together with DRB4 (Zhu et al., 2011 and this

study). Whether DRB4 and EDS1 regulate HR to TCV in a coop-

erative manner requires further investigation.
rRpt2 Pst. Error bars represent SD (n = 6).

fter inoculation with MgCl2 (mock) or avrRpt2 Pst. Total RNA was extracted at

the loading control. The experiment was repeated twice with similar results.

. N. benthamiana plants were agroinfiltrated and immunoprecipitated proteins

th similar results.

oinfiltration was used to express protein in transgenic Nicotiana benthamiana

hs shown are YFP and CFP overlay images. These interactions were confirmed

AR1 (J) in Col-0 and drb4 plants. The rar1-21 mutant was used as a negative

ding control. This experiment was repeated four (H and I) or two (J) times with

thors



EXPERIMENTAL PROCEDURES

Plant Growth Conditions, Genetic Analysis, and Generation of

Transgenic Plants

Plants were grown in MTPS 144 Conviron walk-in chambers at 22�C, 65%
relative humidity, and 14 hr photoperiod. TheWT andmutant alleles were iden-

tified by PCR, CAPS, or dCAPS analysis (Table S3).

RNA Extraction, Conductivity Assays, Pathogen Infections, and

Protein Work

RNA extraction, conductivity assays, and pathogens infections were carried

out as described earlier (Kachroo et al., 2000; Yu et al., 2013). Protein analysis

and coimmunoprecipitations were carried out as described earlier (Jeong

et al., 2010; Zhu et al., 2011).

Detailed experimental procedures are included in Extended Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, eight

figures, and three tables and can be found with this article online at http://dx.

doi.org/10.1016/j.celrep.2013.08.018.
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