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An evaluation was made of the mathematical and economic basis for 

conversion processes in the LEAP energy-economy model. Conversion 
processes are the main modelling subunit in LEAP used to represent 
energy conversion industries and are supposedly based on the classical 
economic theory of the firm. The study arose out of questions about the 
uniqueness and existence of LEAP solutions and their relation to classical 
equilibrium economic theory. An analysis of classical theory and LEAP 
model equations was made to determine their exact relationship. The 
conclusions drawn from this analysis were that LEAP theory is not 
consistent with the classical theory of the firm. Specifically, the capacity 
for factor formalism used by LEAP does not support a classical interpreta- 
tion in terms of a technological production function for energy conversion 
processes. The economic implications of this inconsistency are suboptimal 
process operation and short term negative profits in years where plant 
operation should be terminated. A new capacity factor formalism, which 
retains the behavioural features of the original model, is proposed to 
resolve these discrepancies. 
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Introduction 

The present study grew out of an investigation of the 
uniqueness and existence of solutions to the underlying 
equations of the LEAP energy modelling system.‘-3 In the 
previous work, the investigation of uniqueness was based 
on the behaviour of the supply curves arising in the generic 
LEAP processes for conversion and allocation of energy 
products. The particular proof of uniqueness for solutions 
to the conversion process equations required certain con- 
ditions to be met related to profitability in process plant 
operation. Although these conditions are usually met in the 
classical economic theory of the firm, the behaviour of 
certain solutions to large LEAP modelling problems4!’ 
sheds some doubt on the mathematical and economic basis 
of the LEAP conversion process equations. This study was 
therefore undertaken to improved understanding of the 
connection between LEAP conversion process modelling 
assumptions and the classical economic theory of the firm. 
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Although other theoretical discussions of the economic 
basis for the equations in LEAP have already been pub- 
lished6>’ it is not at all clear that the actual modelling 
assumptions implemented in the GEMS’ or LEAP-EMS’ 
codes are consistent with this theory. This confusion makes 
it difficult to understand the results of some major LEAP 
results4’5 and affects the proofs of existence and unique- 
ness of LEAP model solutions.3 Since the conversion 
process is central to all large scale models, this problem 
clearly needs resolution. 

To illustrate the theoretical problems encountered in the 
LEAP conversion process, the basis for this process module 
will first be developed along classical lines. This entails 
reviewing the classical economic theory of the firm in the 
context of generalized equilibrium modelling. The central 
conclusions concerning plant profitability and operation 
under classical assumptions will be analysed in some detail. 
This theoretical foundation will be developed. The particu- 
lar manner in which this theory is applied in the LEAP code 
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will then be discussed. The possible weaknesses of this 
latter approach, compared with classical theory, will then 
be examined and the economic consequences of these 
deficiencies in solving the LEAP model equations will be 
explored. A modified theory retaining both the essence of 
the practical LEAP approach and the conditions needed to 
meet classical constraints is offered. Conclusions will be 
drawn about the usefulness of the current version of LEAP 
and the potential for its improvement with implementation 
of the proposed changes. 

Economic basis of conversion process equations 

Classical theory of the firm 

The basis for the LEAP conversion process equations has 
been discussed at great length.1~2~6-s The model used is 
intended to represent an optimized aggregate production 
unit consistent with the classical theory of the firm.g Since 
details of this theory can be found elsewhere,6* 7Yg it is only 
appropriate here to review this theory briefly to establish 
notation and understand the optimal conditions which 
must exist in the equilibrium market. 

The LEAP code system consists of a series of generic 
processes linked together to form a network of inter- 
acting economic activities. The LEAP conversion process, 
as it might be imbedded in such a network, appears in 
Figure 1. This module takes a vector of input quantities 
QI, at prices w, per unit of input and builds plant capacity 
NW, sufficient to convert the inputs into a vector quantity 
of final products Q, at prices p, per unit of output in order 
to meet a specified demand. 

In the LEAP model the problem solved by the basic 
conversion process can be stated in terms of the following 
optimization problem for the behaviour of the process firm. 
Given the unit input prices of the factors of production w, 
the final product prices p, and the unit cost of capital N,, 
the conversion process in LEAP attempts to model an 
optimally operated firm which seeks to find the quantities 
of input factors Q1, and the plant capacity per unit final 
product N,,,, which maximizes long-term profit 71, over the 
life of the plant. 

For the sake of notational simplicity, the discussion will 
deal with the specific case of an energy conversion process 
plant with a two-year lifetime. The plant will be con- 
sidered to have been built in year 1 and operated in years 1 
and 2. The profitability of the plant can be written for this 
case as follows: 

*=PlQl-wlQ~,l-Cwl,jQ~,l,j-N,N~ 
i 

(1) 
+ PZQZ-W~QI,Z- CWZJQI,~,~ 

i 

Figure 7 LEAP conversion process module 
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In this notation the subscripts 1 and 2 refer to the year of 
plant operation and j denotes factors of production other 
than the primary energy source. The first four terms on the 
right-hand side of equation (1) represent the plant profit 
in the first year of operation and the next three terms 
represent the profit for the second year. The form of the 
equation is such that all capital investments are made in the 
initial year of operation and only the prices and quantities 
of energy input and output linked to other LEAP process 
modules are considred in the optimization process. Thus, 
the two summation terms over j represent the costs of 
factors of production other than energy and are specified 
exogeneously to the process module. Also, 71 is considered 
to be the net present value of profit in LEAP with a 
discount factor for capital being specified exogeneously. 
For simplicity in this case, the discount factor was assumed 
to be unity (i.e. a zero discount rate) and therefore does 
not appear explicitly in the equation. 

In order to formulate a classical profit optimization 
problem from the profit definition given in equation (1) 
the conversion process must obey a technology or produc- 
tion constraint. This constraint determines the maximum 
output which the conversion technology can produce from 
a given quantity of the factors of production fed into the 
process. It therefore represents a relationship between 
input and output for the particular technology of pro- 
duction. For all LEAP conversion processes, this tech- 
nology production constraint is assumed to be one with 
constant returns-to-scale.6 The definition of a constant 
returns-to-scale production function in the ith year is, for 
this case, is given by the following: 

(2) 

This is, the relationship between input and output in any 
given year is independent of plant size NW; it depends solely 
on the technological constraints relating unit input to unit 
output. 

Now define the following parameters and variables: 

Xi = QiINw Pa) 

Yi = QI, i/NW E gi (Xi> WI 

where xi is the output per unit plant size,yi is the input 
per unit plant size, gi(x) is the functional form relating 
input to maximum output (i.e. in this form it is the inverse 
production function) and $i is the constant operating cost 
per unit output for the input factors of production other 
than energy, all in the ith year. In terms of these new 
variables, the classical profit maximization problem for a 
firm with a constant returns-to-scale production function 
can be written as follows: 

Maximize a =A%[@,-@,)x1-w,Y,--N, 

Q, QI, Nw + (Pz-$2) x2-w2.Y*l 
(4) 

subject to the constraints: 

fi(Xl>Vi) = 0 =Yl-gl(xl) (54 

fiiXZ> v2) = 0 = Y2-g2(x2) WI 

Eliminating QI from consideration by using the con- 
straint relationships (5a) and (5b) directly, equation (4) 
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form of the inverse production functions gr(x) and g*(x) 
are given, 

A closer look at equations (1 l)-( 13) reveals that these 
are very general conditions for an extremum in the profit 
function. In order for a profit maximum (as opposed to a 
minimum) to exist and be unique and for profits to be 
positive to offset the plant capitalization NC, certain 
additional constraints must be placed on the behaviour 
of the inverse production function g(x). It is clear from 
equation (13) that the profits in each individual year are 
governed by the terms g’(x*) x* -g(x*) and for yearly 
positive profits to exist under all circumstances it is clear 
that: 

g’(x*) x* > g(x*) for all x* > 0 (14) 

In addition, equations (11) and (12) require g’(x*) > 0 for 
yearly positive profits to exist. For a profit maximum to 
occur the second derivatives of the production function 
must be such that: 

&s(XT) > 0 and g;(xt) > 0 for all x* > 0 (15) 

The inverse production function must therefore be a 
monotically increasing function of x and g’(x) must take on 
all values from 0 to 00 in the region of optimum output x* 
in order for a positive profit maximum to occur. If these 
conditions are not satisfied, the possibilities exist for 
multiple extrema, negative profits, and profit minimiza- 
tion. 

When all three extremal conditions are satisfied (i.e. 
equations (1 l)-(13)), together with the yearly positive 
profit maximization conditions given by equations (14) 
and (15) the resulting maximization problem can be 
displayed graphically as shown in Figure 2. The solution 
to this set of equations is unique and requires only that the 
input prices wr and w2 together with one additional variable 
(either pi or pz or pl/pZ) be specified to solve for the 
remaining price and XT, xz, yf and yz. The case displayed 
also exhibits the desirable property of decreasing returns- 
to-scale for output as a function of input. That is, it takes 
increasingly more units of input to produce a unit of out- 
put as the quantity of output increases. 

can be written in terms of x and N,,, in its simplest form as: 

Maximize ~ =N,[(pr-41) xr-w*g*(x*)-NC 

x>N, + (P2C42) x2-wdx2)l 
(6) 

The conditions under which a local extrenum exists for 
equation (6) are the following: 

an -_=() -gzo g=o 
axi 

(7) 
w 

The equations for extremum solutions can therefore be 
derived by differentiating equation (6) with respect to the 
independent variables x1, xZ and N,,,. This results in the 
following equations for the extremum solutions XT, xz 
and N,*: 

- = 0 = h-h) xf --w,g,txT) -N, 
a& 

(8) 

(9) 

+ (P,-@*I xz* -%gz(xz*) 

where g:(Xi) = dgi/dXi. 

(10) 

Rewriting these equations substituting the relationships 
given in equations (8) and (9) in (lo), the final conditions 
for optimal production can be written as follows: 

g;(XT) J!c_t! 
Wl 

(11) 

g’(x*) _ p2 -@2 (12) 
w2 

&fl(xT> XT -81(XT>l fw2 tgxx:> xz* -_gz(x31 

= NC (13) 

The three equations here are similar to the classic 
Kuhn-Tucker conditions” for operation of the firm at 
maximal profit. The first two conditions (i.e. equations 
(11) and (12)) are the short run optimal profit conditions 
of the prices being equal to the marginal cost of production. 
The third condition (i.e. equation (13)) represents the long- 
range profit optimum of zero profit in firms with pro- 
duction functions displaying constant returns-to-scale. 

It is important to note here that the present value of 
profit (i.e. 71 in equation (6)) is a linear function of plant 
size N,,, as a result of the production function having 
constant returns-to-scale. In this case, therefore, no real 
extremum condition represented by the partial derivative 
&r/aN, exists. Equation (13) simply represents a relation- 
ship which must exist between the prices p and w, so that 
any plant size yields an optimum. Prices are therefore 
constant with respect to plant size and N, can be elimi- 
nated when considering optimal plant operation. 

If all the prices are given (i.e. p and w are known), then 
equations (1 1 )-( 13) represent three equations in the two 
unknowns XT and xz. All the prices p and w cannot there- 
fore be independent. The optimality conditions allow only 
three of the four prices pr, pZ, wr or w2 to be specified 
independently in order to solve for the fourth price and 
XT and x;. Note also that the unknowns yr and y; can 
be obtained directly from XT and xi once the functional 

LEAP form of classical theory of firm 

To put the optimality conditions of the classical theory 
of the firm into the framework of the LEAP code, equations 

Proflt constmlnt 

X1” x2* 
output, x 

Figure 2 Generic behaviour of equilibrium solutions to conversion 
process equations for classical inverse production g(x) 
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(1 l)-(15) must first be expressed as a single first year taken in the case of LEAP. Instead a functional form for 
equation for plant operation. Since all future years are the capacity factor itself was defined, thereby implying 
assumed to satisfy a positive profit constraint and a short an underlying functional form for the basic production 
run optimization condition of price equals marginal cost, function. This choice has profound affects on the results 
the first year equations equivalent to equations (1 I)-(1 3) produced by this model. The rationale for this choice 
are the following (dropping first year subscripts), together with its economic and mathematical implications 

(P - $1 x* - w(x*) = k 

g’(x*) = !r! 
W 

(16) 
for LEAP are discussed more fully in the next section. 

(17) Implementation of classical theory of the firm in 
LEAP 

where: 

k -N, - [(pz-42) xz*-w,g,(x;)l (13 
In LEAP the above equations are simplified even further 

by defining the following variables: 

p$ I wdx*> 
X* 

average operating cost (19) 

c+ n:, =x* average capacity factor (20) 

* 
where @ is the average constant operating cost for non- 
energy factors of production (i.e. labour, materials, etc.) 
and C, is the plant capacity factor. The final form of the 
LEAP equations for the first year of operation are, 
therefore: 

The major divergence of LEAP modelling from other 
classical approaches is the choice of a functional form for 
the capacity factor Cf. In LEAP, the authors attempted to 
build a model which had a certain behavioural relationship 
not present in other models. In particular, a capacity 
factor was sought which was bounded by some maximum 
operation level and one which varied as a function of prices 
and operating costs so as to increase capacity when profit- 
ability was high and decrease capacity when profitability 
was low. To this end a behavioural relationship for the 
capacity factor of the following form was chosen: l1 

<P-&Cf=k (21) 

(22) 

where: 

x* = Cf y* =gtx*> (23) 

These equations are now in the form in which the authors 
of LEAP interpreted the classical theory of the firm for use 
in conversion process modelling.‘* I1 

For the sake of further discussions, it should be noted 
that equations (21) and (22) constitute two equations in 
two unknowns (i.e. X* and p) which can be solved once 
w, k and $J are known. Given such a solution, equation 
(23) can then be used to calculate y*, while N,,, can be 
obtained from the condition of constant price with respect 
to plant size in meeting the final demand Q. The procedure 
for determining k given w2 is the only complication in this 
approach. This, however, is handled by a separate model 
for future year prices beyond the range of years with 
which the LEAP model deals directly, called the terminal 
value model.‘~” 

Although considerable documentation on the relation- 
ship between the classical theory of the firm and LEAP 
conversion process equations existed before the current 
study began, the theoretical foundation of the actual code 
equations was never made explicit. The major reason for 
the difficulty in making this connection lies in the manner 
in which LEAP defines and uses the capacity factor Cf. In 
most classical theory applications, the basis for any particu- 
lar model has traditionally been the choice of the functional 
form for the conversion process production function. 
Several familiar classical forms used in modelling pro- 
duction are, for instance, the Cobb-Douglas, CES, or 
Leontief models.’ Given such functional forms, the defining 
equations for either marginal or average capacity factors 
can easily be derived. This approach, however, was not 

where 0 is the maximum fraction of plant capacity which 
can be used under optimum conditions (usually 0</3< l), 
p and $J are the price of final product and average constant 
operating cost for the plant, and (Y and 6 are behavioural 
parameters which determine how sensitive the capacity 
factor is to the ratio G/p_ 

As can be seen from equation (24), the capacity factor 
is a fractional quantity (a fraction of the plant total 
capacity) which is strictly positive and has an upper bound 
of /3 (i.e. 0 <C’</3). When prices are much higher than 
average operating costs and plant profitability is high 
(i.e. p %$), then Cf-+fl and the plant operates at maximum 
capacity. Likewise when p <$, the plant shuts down as 
Cf+0. This model also has the flexibility, through the 6 
parameter, to approach a pure Leontief input-output 
model9 in the limit as 6 + 00. This feature is an important 
one for comparing LEAP results to those derived from the 
more traditional approach of choosing a production func- 
tion to model the conversion process. 

Looking more closely at the form of Cf given in 
equation (24), it becomes clear that a conventional analysis 
of the LEAP conversion process is possible if the capacity 
factor form chosen implies a conventional underlying 
production function (i.e. if the inverse production function 
g(X) can be derived from equation (24)). The procedure 
for uncovering the inverse production function is to couple 
equation (24) to the short run optimality condition for 
g’(X*) (i.e. equation (22j) to form a differential equation 
for g(X). It should be noted, however, that in order for 
g(X) to be a classical inverse production function it. should 
only involve a relationship between output, input and any 
parameters which describe the technology of the conversion 
process itself (i.e. no costs or prices should be involved). 

In order to uncover the inverse production function 
implied by equation (24), this equation must first be 
rewritten in terms of X* and g(X*) for use in setting up a 
differential equation for g(X). Noting the definitions of 
4 from equation (19) and C, from equation (20), the 
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relationships more clearly (3 l), (29) and (32) are re- 
written in terms of Y and s as follows: 

capacity factor equation can be rewritten as follows: 

x*= 

1+ 

This equation is trancendental in x* but can easily be 
solved for g(x*) to give: 

If several new variables are now defined as follows: 

Equations (26) and (22) can be finally written as: 

g(x*) = x*[;(f$)” ?] 

(25) 

(26) 

(27) 

(28) 

g’(x*) = r - s (29) 

From these two equations it is clear that the single 
equation defining the capacity factor (i.e. equation (20)) 
is not sufficient to uniquely define a classical production 
function which is not a function of prices or operating 
costs. If g(x*) were a function of r -s (i.e. g(x*) = 
g(r -s, x*, parameters)), then equations (28) and (29) 
would be sufficient, since g’(x*) in equation (29) could be 
substituted into (28) generating a differential equation in 
g(x*), x*, and the parameters 1y and 77 which could be 
solved for g(x). The functional form of equation (28j, 
however, is not sufficient for this procedure and another 
independent equation in r and s is needed to uniquely 
define a production function. This additional equation 
together with equation (29) could then be used to solve 
for r and s in terms of g’(x*), g(x*) and x*, which could 
then be substituted into equation (28) to obtain the 
necessary differential equation to solve for g(x). 

The LEAP conversion process does have a third equation 
associated with it to complete the set of equations needed 
to solve for the three unknowns p, x* and y* given w. The 
complete set of equations are as follows: 

(P - 6) C’= k (30) 

(31) 

Y” =&7(x*) = ti* (32) 

where equation (32) is the new defining equation for out- 
put y* in terms of a fixed input-output coefficient C. 
Thus, LEAP uses a long term zero profit condition, 
equation (30) a capacity factor definition, equation (3 l), 
and a fixed input-output relationship, (32) to form a 
complete set of equations to solve for prices and quantities 
in conversion processes. 

The two key questions which immediately arise are: 
what is the relationship between the fixed input/output 
equation and the equation defining the capacity factor, 
and are both of these consistent with the short run 
optimality condition given in equation (29)? To see these 

g(X*) = x*[;(yr -s] 
g’&*)=r-s 

g(x*) = cx* 

(34) 

(35) 

It should be obvious that equation (35) is not a function of 
r and s and therefore does not satisfy the criteria needed 
for a third independent equation in r and s to complete 
the set of equations defining a differential equation for the 
production function g(x). Since the parameter C is an 
exogeneous constant, g(x) can be inferred directly from 
equation (35) to be a linear inverse production function 
without the need for any differential equation. This, 
however, is totally inconsistent with any short run opti- 
mality condition given by equation (34). 

The inescapable conclusion to be drawn from this 
analysis is that since LEAP uses equations (30)-(32), no 
short run optimization condition is in use in the LEAP 
conversion process. Furthermore, since short run optimi- 
zation is unavailable, no production function within the 
framework of classic economic theory is consistent with the 
defining equation for the capacity factor. Neither observa- 
tion has ever been clearly explained in the documentation 
of the LEAP code. On the contrary, all material published 
to date strongly implies that the equations in the con- 
version process are consistent with classical economical 
theory. The implications of these inconsistencies are of great 
practical importance and are explained more fully in the 
next section. 

Economic implications of use of LEAP equations 

The most immediate consequence of the choice of equations 
(30)-(32) for use in LEAP is the fact that the short run 
optimality condition (i.e. equation (34)) is not consistent 
with the three conversion process equations. This clearly 
implies that LEAP can operate plants at sub-optimal 
production levels in the short run. Also, strict positive 
profit constraints no longer apply to the short run be- 
haviour of LEAP solutions. Since short run optimality 
conditions lie at the heart of many theoretical proofs of 
existence and uniqueness in equilibrium economics, the 
failure of LEAP to meet these conditions can give rise to 
economic behaviour which is not usually found in 
solutions to equilibrium modelling problems. 

The implications of the use of the LEAP conversion 
process equations (31) and (32) are best explored 
graphically. Figure 3 shows the generic behaviour of these 
two relationships for an arbitrary set of exogeneous para- 
meters. Note that while the gZ(x*) curve (representing the 
capacity factor equation) changes in magnitude as a function 
of prices p and w (i.e. r and s), the general shape of the 
curve remains the same. Since gZ(x*) represents the locus 
of all solutions to the conversion process equations as 
gl(x*) traces out all values of the input-output coefficients 
C, its shape gives it the property of increasing returns-to- 
scale up to the peak of the curve and the somewhat un- 
satisfactory behaviour of decreasing to negative returns-to- 
scale past the peak. Note also the range of profits on the 
gZ(x*) curve vary from maximum losses at x* = 0 to 
maximum profits at x* = fl with zero profit somewhere 
in between near the peak of the curve. 
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I 
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equations. Looking at equations (30)-(32), however, it is 
clear that under certain circumstances the LEAP model can 
be made consistent with classical theory. In particular, the 
limit as the parameter 6 +Q= (or 17 -+O) is one in which the 
capacity factor approaches the discontinuous behaviour 
characteristic of a Leontief or input-output production 
function of classical economics9 In this limiting case, 
when p < 4 the capacity factor is zero, and when p >$ 
it is equal to its maximum, /3. If, in addition, the parameter 
(Y = 1, then both equations (33) and (34) become con- 
sistent since g(x*) can be made a function of Y - s. This 
fact allows the short run optimality condition (i.e. equation 
(34)) to again become an operative constraint in the LEAP 
formalism (i.e. equations (30)-(32)) restoring classical 
optimal behaviour to LEAP solutions. This latter fact 
prevents short term losses from occurring and maintains 
both short and long run optimality and short term positive 
profits. In many important economic sectors of large scale 

I 

Figure 3 Generic behaviour of equilibrium solution of conversion 
process equations for LEAP production function gz(x) and input- 
output function g,(x) 

- _ 
modelling problems like Model 22C4 these conditions are 
closely approximated and the solutions behave much like 
those arising from a classical Leontief model of the firm. 

From this figure it is clear that for some values of the 
parameter C, LEAP admits losses in the operation of a 
plant in its startup year. This in general will be the case 
when the parameter C is large and the slope of gr(x*) is 
steep. Since equation (30) is also used by LEAP, long run 
profit will still be zero because short run losses will be 
made up by profits in future years. This behaviour is not 
typically that predicted by simple classical theories, although 
it is more realistic in some instances. In the case of LEAP, 
however, this situation arises from poorly conceived 
economics rather than more realistic marketplace be- 
haviour. Plants are operated at a short term loss in LEAP 
because of sub-optimal behaviour rather than the optimal 
balancing of future profits and short term losses. 

While the modelling of sub-optimal short run losses 
early in plant life is in some sense a tolerable practical 
feature of the LEAP equations, the reverse situation is 
equally possible and this latter situation is most unsatis- 
factory as far as the economic theory of the firm is con- 
cerned. In the most widely used models constructed by the 
LEAP system,4 this latter effect is clearly seen. High positive 
profits early in plant life are generated, eventually to be 
offset by losses in all future years of plant operation.49s 
Such behaviour is clearly economically unsound, since the 
plant should be shut down immediately upon incurring the 
first future year loss so as to avoid further losses. It is 
difficult to imagine an economic theory which would 
justify running plants at losses for the remainder of their 
useful lifetime without the possibility of further profit- 
ability. The distortion caused in equilibrium price solutions 
as a result of such plant operation clearly needs further 
investigation if LEAP results are to be useful in energy- 
economy modelling. 

Economic consistency within LEAP framework 

Behaviour of exogenous parameters 

The major conclusions of the last section are that, (l), 
the LEAP conversion process equations yield sub-optimal 
solutions in which short term losses are possible, and 
(2) no classical production function defining the technology 
of plant operation is implied by the form of the LEAP 

Alternative formulation of capacity factor 

To avoid the difficulties present in the current formula- 
tion of the LEAP conversion process equations, an alternate 
approach can be taken, This alternative preserves the 
positive behavioural features of the original LEAP capacity 
factor formulation while at the same time unifying the 
model with classical economic theory. In this light, an 
appropriate behavioural relationship defining the capacity 
factor will be chosen which is consistent with the short run 
optimality condition of classical equilibrium economics. 
Once this is accomplished a classical production function 
can be derived for this particular form of the capacity 
factor and a completely consistent classical set of equations 
for optimal short run production can be obtained. 

The following functional form, closely akin to the 
original LEAP formalism, is suggested for the behaviour 
of the capacity factor: 

where fl,6 and o have the same definitions as parameters 
that they had in the original capacity factor equation, 
except that (Y is assumed to be a very small positive number 
(i.e. CY g 0) for reasons explained later. It should be noted 
that this capacity factor definition has the same be- 
havioural characteristics as the original one. Namely, for 
p S 4 the capacity factor approaches its maximum (i.e. 
C’+ 0) and when p -+ 6 (with (Y ? 0) the plant shuts 
down (i.e. C’+ 0). Also, when 6 + 00 the capacity factor 
approximates a Leontief model as was observed earlier. 

Rewriting equation (36) in terms of the variables Y and 
s the differences between the new capacity factor and the 
old one became more obvious: 

Cf’ 
P 

1 
(37) 

1-C 
I 

6 x*(r--s) 1 g(x*) - 0 + a)] 
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From equation (37) it is clear that the major difference 
between the new and old form is the functional dependence 
on r and s. Equations (37) is a simple function of r -s. 
This simple behaviour makes it possible to couple equation 
(37) with the short run optimality condition given in 
equation (34) to derive a unique production function for 
LEAP which is consistent with classical economic theory. 

The two equations of interest here are: 

g’(X*) = r - s (38) 

q=x*E 
P 

1 
(39) 

I 1 

6 
[ 

x*e -s) 
g(x*) 

- (1 + a) 1 
which when coupled together yield the following differential 
equation for the underlying inverse production function 

g(x): 

g(x) x 
g’(x) =- 

[ 
17 -++1 +a) 

X B-X 1 
Note here that, as before v = l/6. 

Solving this equation for g(x) with the initial condition 
g(0) = 0 gives the following inverse production function: 

1+(Y 

g(x) =X 
(P-XY 

(41) 

The behaviour of this function is such that it takes on all 
values from 0 <g(X) < 00 when X varies between 0 and 0. 
It is also easily shown that the slope of this function varies 
between 0 <g’&) < m when X varies between 0 and fl 
for LY > 0. The production function, defining output X* 
as a function of input, y* therefore has decreasing returns- 
to-scale over the whole range of equilibrium output values 
0 < X* < /3. This latter property allows both short- and 
long-term profit optimization conditions to be satisfied at 
all operating price levels, thereby assuring the consistency 
of the new model with positive optimal profit conditions 
and classical economic theory. 

Using the results given in equation (41), the final 
alternative LEAP conversion process equations are the 
following: 

(P - d> C’ = k long-run zero (42) 
profit 

Cf = 
P 

1 
capacity factor (43) 

1+ 
6 x*(r--) 

[ 
~ 

g*(x) 
- (1 + a) 1 

g(x*) = 
(x*1’ +a 

(P - x*Y 
inverse production function (44) 
at optimum 

g’(x*) = r - s short run profit optimum (45) 

The major differences between the equations here and those 
currently used in LEAP are not behavioural in nature but 
the fact that equations (44) and (45) are consistent with 
classical economic theory. 

LEAP energy-economy model: E. M. Oblow 

Conclusions 

The major finding of this study is that the particular 
functional form chosen for the capacity factor in LEAP 
is not consistent with classical economic theory. This fact 
leads to sub-optimal production levels and the possibility 
of plant operation at negstive profits. The key element 
missing in the LEAP conversion process is an underlying 
classical production function for the conversion technology. 
A valid production function would allow the LEAP 
equations to satisfy both short and long run optimal 
profit conditions which would preclude negative profits. 

Under certain conditions related to the limiting values of 
several parameters, however, the LEAP conversion process 
can be made to approximate a Leontief model of the firm. 
In this limit all optimality conditions are restored and 
losses do not occur. Unfortunately the Leontief model is 
restrictive and reduces the capabilities of LEAP to model 
more complex behavioural processes. 

The easiest way to remedy the problems in the code is 
to slightly modify the behavioural relationship for the 
capacity factor. An alternative was presented in this paper 
by choosing a similar but functionally different form for 
the capacity factor and then deriving the underlying pro- 
duction function consistent with classical economic theory. 
The form suggested is close in behavioural characteristics 
to the original LEAP capacity factor definition, but satis- 
fies all the optimality conditions in both the short and long 
run. Its implementation in LEAP, although time consuming, 
should not be a major chore. 
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