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Abstract 

There are three equivalent definitions of dimension for partially ordered sets. When generat- 
ing these three definitions to ~'-dimension over an arbitrary class of orders ~, the three 
definitions diverge. We compare these three definitions and determine certain requirements 
under which they are equivalent. 

1. Introduction 

The dimension of a partially ordered set, introduced by Dushnik and Miller [1], is 
the minimum number of linear extensions of a given partial order required to realize 
that order. An ordered set is a pair consisting of a ground set X and a transitive, 
antisymmetric, reflexive relation ~< {a reflexive order). An extension of a given order 
< is an order < '  on the same ground set so that x < y => x < ' y .  A collection of 

ordered sets {(X, < i)} realize a given ordered set P = (X, < ) if the intersection of 
their order relations (as sets of ordered pairs) equals < .  The dimension of a partially 
ordered set P = (X, < ) is the minimum • such that e is realized by {Li}, where {Li} 
is an arbitrary collection of linear extensions of P and the cardinality of {Li } is ~. This 
concept of dimension was generalized to interval orders [8] and then generalized 
further to an arbitrary class of orders ~ [4]. 

Let ~ be a collection of ordered sets that is hereditary and contains all linear orders. 
We require ~ to be hereditary so that suborders do not have greater dimension, and 
isomorphic ordered sets have the same dimension. If ~f contains all linear orders then 
~-dimension is well defined and bounded by linear dimension. (Linear dimension is 
well defined for all orders [1].) 
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The U-dimension of an ordered set P = (X, ~< ) is the minimum t¢ such that 

(x,~<)= 0 (x,~<,)=tx, N ~<,), 
iel. l l i f tc  O~<i<K 

where ~< i e ~. This is abbreviated U-Dim(P). 
A second definition of dimension is also commonly used: the dimension of a par- 

tially ordered set is the minimum number of linear orders so that the given partially 
ordered set can be imbedded in the direct product of these linear orders. This 
definition gives some justification to the choice of the word dimension. It is a classical 
result that the two definitions are equivalent [7]. The intersection dimension of 
a partial order is always equal to the direct product dimension of a partial order. In 
addition there is a third definition of dimension obtained by considering the product 
ofirreflexiv¢ linear orders. Milner and Pouzet [5] prove that these three definitions of 
dimension are equivalent. In lhe same manner as intersection dimension, we can 
generalize these two definitions of product dimension to arbitrary classes of ordered 
sets :  

The U-direct prod~tct dimension of an ordered set (abbreviated ~-DPD(P))  is the 
minimum tc such that 

(X, ~< ) is a restriction of ~)t~t.ltl=~(Xt, ~< t), 

where ~< t~ ~ and ( ~  is the usual product of ordered sets. 
The ~-strict  product dimension of an ordered set (abbreviated ~'-SPD(P)) is the 

minimum u such that 

(X, ~< ) is a restriction of C)i~i.ltl=~(Xi, ~< t), 

where ( ~ t ~ t . l t l ~ ( X ' ,  <<, t) is given by (ao,al . . . . .  at . . . .  ) ~< (bo, bl . . . . .  bt . . . .  ) if and 
only if Vi E l, Ill - to, a~ = bt or at < b~. C)  is called the irrefle.,~h'e product. 

It is not true, however, that these three definitions of dimension arc equivalent for 
all possible classes of orders. For example, the interval direct product dimension of 
a partial order is in general less than the intersection dimension of the order (Fig. I), 
but the interval strict product dimension is equivalent to the interval intersection 
dimension. An elegant method of understanding this equivalence and a geometric 
representation of the product can be seen in the box orders introduced by Feisner ct 
al. [2]. This equivalence has been attributed to Cogis as well. 

Idim 1 Idim l 

Fig. I. 

ldim 3 
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In fact the gap between product and intersection dimension can become arbitrarily 
large. The partial order consisting of subsets of a 2n-element set ordered by set 
inclusion is the product ofn interval orders on four elements of the type given in Fig. I. 
It contains the order on single-element and ( 2 n -  lFelement subsets which have 
interval dimension 2n [g]. 

We would like to find the relationships among the three definitions ofdimension for 
general classes ¢.  We will show that both definitions of product dimension are 
dominated by intersection dimension, however neither product dimension dominates 
the other. 

2. Conditions for equality 

To begin with. it is easy to show that the product dimensions can be no greater than 
the intersection dimension [5, 6:]. 

Lemma !, For any ~ and any ordered set P, 
(1} ~6-DPD(P) ~< '6-Dim(P), 
(2) ~6-SPD(P) ~< e-Dim(P}. 

Proof. Suppose P = (X, ~< ) is isomorphic to the intersection of the ordered sets 
P~ = (X, ~< ~), i ~ !, ill < t," where P~ ~ ~. Assign to each vertex .x of X the vertex 
{x,x . . . .  ) of the appropriate product of the ,°is. (x ,x  . . . .  ) < (y,y . . . .  ) if and only if 
x < y. {x,x . . . .  ) = (y , y  . . . .  ) if and only if x = 3'. Therefore P is a restriction of the 
product of the P~'s and hence the g-product dimension of P, direct or strict, is no 
greater than the ~-dimension of P. [] 

~/e will find cases ofequality by constructing the required intersection ofextensions 
of the product. To "substitute" one ordered set into another is to replace each vertex 
of the first ordered set by the second ordered set. More precisely we order the 
collection of pairs (xi, 3~} lexicographically so that (xl, Yt) < (x2, y,} if .~i < x2 or if 
x~ = x., and Yz < Y2. 

One condition of equivalence is known. 

Theorem ! (Mitas [6]). l f  ~ is closed under "substitution by chains" then ~-dim(P) = 
~-DPD(P).  

Proof. See E6]. [] 

Theorem 2. lf~6 ' is closed under "substitution by chains" then g~-Dim(P) = ~f-SPD (P). 

Proof. Suppose P = ( X ,  < )  is contained in C)i~l.ltlf~Pi. Define P;= 
( Xi,l.lil=~X/, < [) by taking the dual of a linear extension of (~s~t.ltl=~.s~iP s 
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and substituting this linearly ordered set for each vertex of Pi. Claim: 
C)i~I.!iI=~Pi = N i ~ l . l l l = ~ .  Suppose (al,a2 . . . .  ) <o(bl ,b2 .. . .  ) then a~<bt  so 
(a l ,az , . . .  ) < ~(bt,b,  . . . .  ). On the other hand, suppose (at,a2 . . . .  ) .¢®(bl,b: . . . .  ). 
There must be some i so that ai .¢b~. If a ~ b i  then (a~,a, . . . .  ) -¢ ~(b~,b2 .... ). If 
a~ = bi for all i, (al ,a2 . . . .  ) = (bl,bz .. . .  ) and hence (al ,az  . . . .  ) "¢ ~(bl,b2 . . . .  ) for 
any i. If neither of the former cases hold there must be some a~ = b~ and some a; < b i. 
So, in (~i~l . lx l~, .~ , iP i, (a l ,a ,  . . . .  ) ,¢ '(b~b2 .... ), and hence (a~,a2 . . . .  ) .¢  
(b~ b, . . . .  ), in the dual of any linear extension of (~t . l t l=,~.~,~P~ and therefore 
(ax,a2, ... ) < ~(bt b2 .. . .  ). So this gives us C)i~.ttlffi~ Pi = ~ ~.~t~=~ P~. To find the 
representation for the original order P take each ~ and restrict to the vertices of 
×~.l t l=~X~ which form an order isomorphic to P under < o- This proves that 

g-Dim(P) ~< ~-SPD(P) and together with !.emma 1 the theorem is complete. [] 

Theorem 3. I f  ~ is closed under "substitution by antichains" then qf-Dim(P)= c6'- 
SPD(P). 

Proof. The proof follows as above; however, instead of substituting a linear extension 
of (~i~l.lsl=~.~,~Pj, wc take an antichain on the vertices of ~)~et.l~l=~.~,~Pj and 
substitute into P~. [] 

Many classes of orders are defined by restricted suborders, for example an order is 
an interval order if and only if it contains no suborder isomorphic to a 2 + 2 ( a pair of 
two-element chains). An autonomous suborder is a collection of vertices V .~ X so 
that Wx ¢ X - V, either Vv e V, x < v, ~ ,  ~ V, x > v or, Vv ¢ V, x is not related to v. 
That is, for each x that is not in V, x is above, below or not related to every element of 
V. 

Mitas [63. noted that any class of orders that is defined by a collection of restricted 
suborders, such that no suborder contains an autonomous 2-chain (a chain of two 
elements), is closed under substitution by chains and hence satisfies the conditions of 
the above theorems. Similarly, if the restricted orders contain no autonomous an- 
tichain of two elements the class is closed under substitution by antichains and ~-SPD 
equals intersection dimension. From this and from the example in Fig. ! we obtain 
Table 1. 

For example, semi-orders are defined as having no restriction isomorphic to either 
a 2 + 2 or a 1 + 3 ( a single element together with a three-element chain). Neither 
restriction contains an autonomous two-element antichain, so semi-orders are closed 
under substitution by antichains. Hence semi-order strict product dimension equals 
semi-order intersection dimension. 

The last example in the list is a collection of orders that are closed under neither 
substitution by chains nor antichains. This class has the property that there is an order 
in g' that has direct product dimension three and strict product dimension two, and 
a different order in ~6 that has strict product dimension three but direct product 
dimension two. Any order in this class consists of a chain, together with a possible 
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Table 1 

Restricted suborders Dim == DPDira? Dim = SPDim? 

Linear orders o o yes yes 

Weak orders o 
o o No Yes 

Interval orders o o 
No Yes 

o o 
o 

Semi-orders o c o 
o o,  o o No Yes 

Series-parallel orders o o 
Yes Yes 

o o  

Forests o 
o o Yes Yes 

o o 
ISee Fig. 2D o o o o 

o 
o o , o  o , O O O , o  No No 

t 
°t 

Fig. 2. 

H 

ext ra  vertex which is g rea te r  t han  some subset  (perhaps  empty)  of  the  chain.  W e  will 

call this  e lement  a protrusion. T h e  six-element o rde r  H given in Fig. 2 has  l inear  

d imens ion  three., However ,  it does  have  ~g-intersection d imens ion  two, with the  on ly  

requ i rement  t ha t  a t  least one  of  the  two orders  has  a p ro t rus ion  (cor responding  to  the  

e lement  labeled x). An o rde r  t ha t  includes three  separa te  copies of  H c a n n o t  have  

~ ' - i n t e ~ c t i o n  d imens ion  two, since if H is the  intersect ion of  two orders  f rom ~ there  

mus t  be a dis t inct  p ro t rus ion  for each  H a n d  in two orders  we can  h~ve a t  mos t  two 
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protrusions. The products given in Figs. 3 and 4 demonstrate that it is possible to give 
three copies of H in an order and retain either strict or direct product dimension two. 
On the other hand the strict product dimension two order cannot have direct product 
dimension two because it is impossible to have an isolated six-element order if the 
three vertices labeled x are mutually incomparable. The direct product dimension two 
order cannot have strict product dimension two because the elements labeled x can- 
not be related in any suborder of a ~:-strict product dimension two order. 

Although the theorems presented give sufficient conditions for equality between 
intersection dimension and one or both product dimensions, the question of which 
conditions are necessary for equality to hold remains open. Also, there is the question 
of how closely tied together are the different definitions. The example of interval direct 
product dimension given in the introduction has half the interval strict product 
dimension. Are there examples with different orders of magnitude'? 

C.SPDim I 

C-$PDim I 

2 

® 

C-DPD~ I C.DPD~ 1 

CoSF D~  3 

Fig. 3. 

C-DPD~3 

Fig. 4. 
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