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On the applicability of the Adomian method to initial value
problems with discontinuities
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Abstract

In this paper we extend our results of L. Casasús, W. Al-Hayani [The decomposition method for ordinary
differential equations with discontinuities, Appl. Math. Comput. 131(2002) 245–251] to initial value problems
with several types of discontinuities, givingrelevant examples of linear and nonlinear cases.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Adomian decomposition method [2–5] is an approximate analytical procedure to determine
the solution series to many functional equations. Although many different kinds of equations have
been studied [1,6–8] there isleft a great deal of work to do regarding problems of convergence and
applicability of the method. We have already explored in [1] the possibilities of this method in the field
of ordinary differential equations with Heaviside functions as driving terms.
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The main objective of this paper is to analyse first order initial value problems (IVP) with Heaviside
functions and other cases of discontinuities. We also make use of the so called Modified Technique [9]
to improve the accuracy of the method.

Let us consider the general functional equation

y − N (y) = f, (1.1)

whereN is a nonlinear operator,f is a known function, and we are seeking the solutiony satisfying
(1.1). We assume that for everyf , Eq. (1.1) hasone and only one solution.

The Adomian technique consists of approximating the solution of (1.1) as an infinite series

y =
∞∑

n=0

yn, (1.2)

and decomposing the nonlinear operatorN as

N (y) =
∞∑

n=0

An, (1.3)

whereAn are polynomials (called Adomian polynomials) ofy0, . . . , yn [2–5] given by

An = 1

n!
dn

dλn

[
N

( ∞∑
i=0

λi yi

)]
λ=0

, n = 0, 1, 2, . . . .

The proofs of the convergence of the series
∑∞

n=0 yn and
∑∞

n=0 An are given in [4,10–14]. Substituting
(1.2) and (1.3) into (1.1) yields

∞∑
n=0

yn −
∞∑

n=0

An = f.

Thus, we can identify

y0 = f,

yn+1 = An(y0, . . . , yn), n = 0, 1, 2, . . . .

Thus all components ofy can be calculated once theAn are given. We then define then-term approximant
to the solutiony by φn[y] = ∑n−1

i=0 yi with limn→∞ φn[y] = y.

2. Decomposition method applied to an IVP

Consider the general IVP:

y′ + k2y − g (y) = λ f (t, y) , y(0) = α, 0 ≤ t ≤ T, (2.1)

wherek, λ andα are real constants,g is a (possibly) nonlinear function ofy and f is a function with
some discontinuity.

Applying the decomposition method as in [2–5], Eq. (2.1) can be written as

Ly = λ f (t, y) − k2y + N (y), (2.2)
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whereL = d
dt is the linearoperator andN (y) = g(y) is the nonlinear operator. Operating on both sides

of Eq. (2.2) with the inverse operator ofL (namely L−1[·] = ∫ t
0[·]dt) yields

y(t) = y(0) + λL−1 f (t, y) − k2L−1y + L−1N (y).

Upon using (1.2) and (1.3) it follows that

∞∑
n=0

yn = y(0) + λL−1 f (t, y) − k2L−1
∞∑

n=0

yn + L−1
∞∑

n=0

An. (2.3)

From Eq. (2.3), the iterates defined using the Standard Adomian method are determined in the following
recursive way:

y0 = y(0) + λL−1 f (t, y) = α + λL−1 f (t, y),

yn+1 = −k2L−1yn + L−1An, n = 0, 1, 2, . . . .

Using the Modified Technique, according to (2.3), the iterates are determined in the following recursive
way:

y0 = y(0) = α,

y1 = λL−1 f (t, y) − k2L−1y0 + L−1A0,

yn+2 = −k2L−1yn+1 + L−1An+1, n = 0, 1, 2, . . . .

2.1. Linear case

Let g(y) = 0 andα = 1.

1. If we takeλ = 10 and the functionf (t, y) is continuous, but not differentiable, for example

f (t, y) =




−t + 1

2
if t <

1

2
,

t − 1

2
if t ≥ 1

2
,

the maximum errors for 0≤ t ≤ 1 of the Standard and Modified Adomian methods are given in
Table 1, wheren represents the number of iterations.

The estimated orders of convergence (EOC) of the Standard and Modified Adomian methods for
different values of the constantk are given inTable 2.

Fig. 1 represents both the exact solutionyE(t) and our approximationφ13(t) within the interval
0 ≤ t ≤ 1.

In this case, the most appropriate method is the Modified one. Fork ≥ 3, the application of the method
requires approximants of ordern ≥ 15 if we want to arrive beyond the discontinuity (att = 1

2).

2. Takingk = 1, λ = 1 and

f (t, y) =
{

0 if t < 1
1 if t ≥ 1

(Heaviside function) then the following maximum errors are obtained for 0≤ t ≤ 2 (Table 3).
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Table 1

k = 2 Standard Modified
n ‖yE (t) − φn(t)‖∞ ‖yE (t) − φn(t)‖∞
8 1.62× 100 0.40× 10−1

9 0.73× 100 0.41× 10−2

10 0.29× 100 0.38× 10−2

11 0.11× 100 0.29× 10−2

12 0.36× 10−1 0.14× 10−2

13 0.11× 10−1 0.57× 10−3

14 0.31× 10−2 0.20× 10−3

15 0.84× 10−3 0.60× 10−4

Table 2

k Standard Modified
t = 0.4 t = 0.6 t = 0.4 t = 0.6

1 1.0574 1.0769 1.0695 1.1016
2 1.0729 1.1008 1.0806 1.0589
3 1.1463 1.2232 1.1482 1.2249

Fig. 1. Continuous line:yE (t), +: φ13(t), λ = 100,k = 2.

For both methods (Standard and Modified), the EOC are 1.0827 att = 0.9 and 1.0933 att = 1.1. So,
they have essentially the same value on both sides of the discontinuity. InFig. 2 we represent both the
exact solutionyE(t) and our approximationφ8(t) within the interval 0≤ t ≤ 2.

In this case, the method is applicable until the valuek � 2.
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Table 3

n Standard Modified
‖yE (t) − φn(t)‖∞ ‖yE (t) − φn(t)‖∞

5 0.20× 100 0.19× 100

6 0.69× 10−1 0.67× 10−1

7 0.20× 10−1 0.20× 10−1

8 0.52× 10−2 0.52× 10−2

9 0.12× 10−2 0.12× 10−2

10 0.24× 10−3 0.24× 10−3

Fig. 2. Continuous line:yE (t), +: φ8(t), λ = 10,k = 1.

Table 4

Standard Modified
t = 0.9 t = 1.1 t = 0.9 t = 1.1

1.0929 1.1044 1.0929 1.1161

3. Letting k = 1, λ = 1 and f (t, y) = δ(t − 1), the Dirac delta function att = 1. The EOC are given in
Table 4.
So, they have essentially the same value on both sides of the discontinuity.Fig. 3gives both the exact

solution yE(t) and our approximationφ9(t) for the interval 0≤ t ≤ 2.
Again, in this case, the method is applicable for the valuesk � 2.2.

4. Now we takek = 1, λ = 1 and f (t, y) = δ
(

t − 1
2

)
+ δ (t − 1) + δ

(
t − 3

2

)
, Dirac delta function at

t = 1
2, 1, 3

2. The EOC of the Standard method are given inTable 5.
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Fig. 3. Continuous line:yE (t), +: φ9(t).

Table 5

t = 0.4 t = 0.6 t = 0.9 t = 1.1 t = 1.4 t = 1.6

1.0227 1.0715 1.0847 1.0936 1.1062 1.1157

Fig. 4. λ = 1, k = 1, 0≤ t ≤ 4.

For the Modified method, the EOC reduces by 10%. InFigs. 4and5, we depict theexact solution
yE(t) by a continuous line and our approximationφ15(t) by +.

The validity of the approximationφ15(t) only till the second discontinuity can be easily noticed in
Fig. 5.
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Fig. 5. λ = 1, k = 2, 0≤ t ≤ 1.7.

2.2. Nonlinear case

Let g(y) = y2 andα = 1. In this case thenonlinearterm is

N y = g(y) = y2 =
∞∑

n=0

An,

and the Adomian polynomials can be derived as follows [15]:

y2 = (y0 + y1 + y2 + y3 + · · ·)2

= y2
0︸︷︷︸

A0

+ 2y0y1︸ ︷︷ ︸
A1

+ 2y0y2 + y2
1︸ ︷︷ ︸

A2

+ 2y0y3 + 2y1y2︸ ︷︷ ︸
A3

+ 2y0y4 + 2y1y3 + y2
2︸ ︷︷ ︸

A4

+ 2y0y5 + 2y1y4 + 2y2y3︸ ︷︷ ︸
A5

+ · · · . (2.4)

After collecting and rearranging terms in Eq. (2.4) we get the following Adomian polynomials:

An =
n∑

i=0

yi yn−i , n ≥ i, n = 0, 1, . . . .

1. If we takek = 1, λ = 1 and

f (t, y) =
{

0 if t < 1
1 if t ≥ 1

the EOC for both Standard and Modified methods is 1.0098 att = 1.1. Fig. 6 represents both the
numeric solutionyN (t) with a very small error and our approximationsφ15(t) for 0 ≤ t ≤ 2.
For all values ofλ the method is applicable in this case, whenk � 1.5.
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Fig. 6. Continuous line:yN (t), +: φ15(t).

Fig. 7. Continuous line:φ15(t), +: φ14(t).

2. Takingk = 1, λ = 1 and f (t, y) = δ
(

t − 1
2

)
, Dirac delta function att = 1

2. For both methods,

Standard and Modified, the EOC is 1.0000 att = 0.6. In Fig. 7we show our approximationsφ15(t)
andφ14(t) for 0 ≤ t ≤ 1.

For any value ofλ the method is applicable in this case, whenk � 2.3.

3. Finally, we takek = 1, λ = 1 and f (t, y) = δ
(

t − 1
4

)
+ δ

(
t − 1

2

)
, the Dirac delta function at

t = 1
4, 1

2. Fig. 8represents our approximationsφ15(t), φ14(t) for 0 ≤ t ≤ 0.6.



30 W. Al-Hayani, L. Casasús / Applied Mathematics Letters 19 (2006) 22–31

Fig. 8. Continuous line:φ15(t), +: φ14(t).

3. Conclusions and future work

1. As in [1], the size of the jump (given byλ) does not affect the convergence of the method, which
behaves equally well on both sides of the discontinuity. In the nonlinear problems with large values
of λ, sometimes a computation with more digits is required in order to avoid unstable oscillations.

2. The error in the Modified Technique is always smaller than the error of the Standard Adomian method
for all the values ofk.

3. We are already improving the method for the most difficult cases, as the nonlinear problem with
g(y) = y2. In this IVP, adirect application of the decomposition method withk = 3, does not
converge even for small values of the parameter likeλ = 1

1000.
4. In the nonlinear cases, it may be of interest to consider the approximation of multiple solutions.
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