
Science of Computer Programming 47 (2003) 91–120
www.elsevier.com/locate/scico

Comprehensive synchronization elimination for
Java

Jonathan Aldricha ;∗ , Emin G*un Sirerb , Craig Chambersa ,
Susan J. Eggersa

aDepartment of Computer Science and Engineering, University of Washington, Box 352350, Seattle,
WA 98195-2350, USA

bDepartment of Computer Science, Cornell University, Ithaca, NY 14853, USA

Abstract

In this paper, we describe three novel analyses for eliminating unnecessary synchronization that
remove over 70% of dynamic synchronization operations on the majority of our 15 benchmarks
and improve the bottom-line performance of three by 37–53%. Our whole-program analyses at-
tack three frequent forms of unnecessary synchronization: thread-local synchronization, reentrant
synchronization, and enclosed lock synchronization. We motivate the design of our analyses with
a study of the kinds of unnecessary synchronization found in a suite of single- and multi-threaded
benchmarks of di6erent sizes and drawn from a variety of domains. We analyze the performance
of our optimizations in terms of dynamic operations removed and run-time speedup. We also
show that our analyses may enable the use of simpler synchronization models than the model
found in Java, at little or no additional cost in execution time. The synchronization optimiza-
tions, we describe enable programmers to design e9cient, reusable and maintainable libraries
and systems in Java without cumbersome manual code restructuring.
c© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Monitors [18] are appealing constructs for synchronization, because they promote
reusable code and present a simple model to the programmer. For these reasons, several
programming languages, such as Java [12] and Modula-3 [14], directly support them.
However, widespread use of monitors can incur signiBcant run-time overhead: reusable

∗ Corresponding author.
E-mail addresses: jonal@cs.washington.edu (J. Aldrich), egs@cs.cornell.edu (E.G. Sirer), chambers@

cs.washington.edu (C. Chambers), eggers@cs.washington.edu (S.J. Eggers).

0167-6423/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
PII: S0167 -6423(02)00129 -6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82445643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jonal@cs.washington.edu
mailto:egs@cs.cornell.edu
mailto:chambers@cs.washington.edu
mailto:cs.washington.edu
mailto:eggers@cs.washington.edu

92 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

code modules such as classes in the Java standard library often contain monitor-based
synchronization for the most general case of concurrent access, even though particular
programs use them in a context that is already protected from concurrency [15]. For
instance, a synchronized data structure may be accessed by only one thread at run time,
or access to a synchronized data structure may be protected by another monitor in the
program. In both cases, unnecessary synchronization increases execution overhead. As
described in Section 2, even single-threaded Java programs typically spend 10–50% of
their execution time on synchronization operations.

Synchronization overhead can be reduced by manually restructuring programs
[28], but any performance improvement gained typically comes at the cost of sim-
plicity, maintainability, reusability, and even program correctness. For example, syn-
chronized methods can be modiBed to provide specialized, fast entry points for
threads that already hold a monitor lock. Such specialized functions make the program
more complex, and using them safely may require careful reasoning to ensure that
the protecting lock is acquired on all paths to the function call. In addition, the as-
sumption that a lock is held at a particular program point may be unintentionally
violated by a change in some other part of the program, making program evolution
and maintenance error-prone. A second restructuring technique removes synchroniza-
tion annotations where they are not needed for correctness in the current version
of the program. Both of these hand optimizations make code less reusable, because
they make assumptions about synchronization that may not be valid when a compo-
nent is reused in another setting. These assumptions create an opportunity for subtle
concurrency bugs to arise over the course of program evolution. Overall, complex
manual optimizations make programs harder to understand, make program evolution
more di9cult, reduce the reusability of components, and can lead to subtle concurrency
bugs.

In this paper, we present and evaluate static whole-program analyses that reduce syn-
chronization overhead by automatically detecting and removing unnecessary synchro-
nization. The analyses eliminate synchronization from code that can only be executed
by a single thread, synchronization on locks already protected by an enclosing lock,
and synchronization on reentrant locks. The analyses provide several advantages over
manual optimization. First, because our analyses are run automatically during compi-
lation, the source code is left in its original form, thus avoiding the code complex-
ity and error-prone program evolution that results from manual restructuring. Second,
automatic analyses avoid the signiBcant e6ort involved in manual restructuring. Third,
our analyses may make other static analyses (e.g., model checking [7]) more tractable
by reducing the number of concurrency constructs in the program.

Finally, our analyses allow programmers to use a more general language model
in which every public method synchronizes on the receiver’s monitor, rather than
ad hoc synchronization on some methods and not others. Present in several con-
current object-oriented languages [22], this model considerably simpliBes programmer
reasoning about race conditions by moving locking granularity to the level of the
class. The programmer can rely on the compiler to remove extra synchronization state-
ments in particular contexts, thus ensuring safe multithreaded interaction, while at the
same time avoiding a large run-time performance penalty. In general, this technique

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 93

could lead to deadlock and reduced concurrency, so it would be desirable to pro-
vide a way to override the default synchronization. However, if a program deadlocks,
the problem is often easily identiBed by looking at which threads hold which locks;
data corruption due to race conditions caused by manual optimization may be much
more di9cult to debug, because it is usually detected long after the race condition
occurs.

To evaluate our analyses, we performed two sets of experiments on a set of single-
and multi-threaded Java applications in which programmers had manually optimized
synchronization. We analyzed the applications to show the extent to which our anal-
yses could further improve upon programmer e6orts to eliminate synchronization op-
erations. The thread-local analysis was particularly important here: it was responsible
for eliminating the majority of synchronization and dramatically outperformed previ-
ously published analyses. Overall, our analyses removed a mean of 88% of dynamic
synchronization operations for single-threaded benchmarks and 35% for multi-threaded
benchmarks, with a high of over 99%. The e6ect on execution times for three of
the benchmarks was an increase in performance of over 37%; other benchmarks we
evaluated also improved, but to a far lesser extent, because the dynamic frequency of
synchronization operations in them was low. Our results demonstrate that automati-
cally detecting and removing synchronization overhead can eliminate the drawbacks of
manual removal, while still improving application performance.

In addition, to demonstrate that our analyses would allow a more programmer-
friendly synchronization model, we simulated the e6ect of this model by adding con-
currency to all public methods of our benchmarks. The results show that our algorithms
are able to remove virtually all of the overhead associated with such a model. In the
past, this model of concurrency had been regarded as too expensive, since it may lead
to much more synchronization than in more conventional models.

This paper makes four contributions. First, we empirically evaluate the types of
unnecessary synchronization in a wide range of single- and multi-threaded bench-
marks, demonstrating the potential beneBt of several types of optimization. Second,
we provide a formal presentation of precise and e9cient algorithms for detecting
three kinds of unnecessary synchronization. Third, we evaluate the performance of
our algorithms on the same set of applications, and analyze dynamic synchroniza-
tion behavior, the contribution of the individual analyses to overall performance, and
the beneBts of our analyses relative to previous studies. Finally, we demonstrate that
our analyses make a simpler model of synchronization feasible, by e6ectively remov-
ing synchronization overhead from a simple motivating example program, as well
as our original multi-threaded benchmarks with synchronization added to all public
methods.

The rest of the paper is structured as follows. The next section brieHy describes
the Java synchronization model, and motivates our research with measurements of
synchronization overhead in both single- and multi-threaded benchmarks. Section 3
compares our analyses to several recently published algorithms that also strive to elim-
inate synchronization in Java. Section 4 describes our thread-local, reentrant lock, and
enclosed lock analyses. Section 5 presents our performance results. Finally, Section 7
concludes.

94 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

2. The synchronization problem

2.1. Cost of synchronization in Java

Synchronization is expensive in Java programs, typically accounting for a signiB-
cant fraction of execution time. Although it is di9cult to measure the cost of syn-
chronization directly, it can be estimated in a number of ways. Microbenchmarks
show that individual synchronization operations take between 0.14 and 0:4 ms even for
e9cient synchronization implementations running on 400 MHz processors [5,17].
Our own whole-program measurements show that a 10–40% overhead is typical for
single-threaded 1 applications in the JDK 1.2.0. Another study found that several pro-
grams spend between 26% and 60% of their time doing synchronization in the Marmot
research compiler [11]. Because synchronization consumes a large fraction of many
Java programs’ execution time, there is a potential for signiBcant performance im-
provements by optimizing it away.

2.2. Types of unnecessary synchronization

A synchronization operation is unnecessary if there can be no contention between
threads for its lock. In order to guide our synchronization optimizations, we have
identiBed three important classes of unnecessary synchronization that can be removed
by automatic compiler analyses. First, if a lock is only accessible by a single-thread
throughout the lifetime of the program, i.e., it is thread-local, there can be no contention
for it, and thus all operations on it can safely be eliminated. Similarly, if threads always
acquire one lock and hold it while acquiring another, i.e., the second lock is enclosed,
there can be no contention for the second lock, and the synchronization operations on
it can safely be removed. Finally, when a lock is acquired by the same thread multiple
times in a nested fashion, i.e., it is a reentrant lock, the Brst lock acquisition protects
the others from contention, and therefore all nested synchronization operations can be
optimized away.

It is possible to imagine other types of unnecessary synchronization, such as locks
that protect immutable data structures, locks that do not experience contention due to
synchronization mechanisms other than enclosing locks, and acquiring and releasing a
lock multiple times in succession [10]. We focus on the three types discussed above,
because they represent a large proportion of all unnecessary synchronization, they can
be e6ectively identiBed and optimized, and their removal does not impact the concur-
rency behavior of the application. We deBne two analyses to optimize these types of
unnecessary synchronization: thread-local analysis to identify thread-local locks, and
lock analysis to Bnd enclosed locks and reentrant locks.

1 Synchronization overhead in single-threaded applications can be measured by taking the di6erence
between the execution times of a program with and without synchronization operations. This experiment
cannot be performed on multi-threaded programs because they do not run correctly without synchronization.

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 95

2.3. Unnecessary synchronization frequency by type

In order to determine the potential beneBts of optimizing each type of unnecessary
synchronization, we studied the synchronization characteristics of a diverse set of Java
programs. Table 1 shows the broad scope of our benchmark suite, which includes
seven single-threaded and eight multi-threaded programs of varying size. Our applica-
tions are real programs composed of 20–510 classes, in domains ranging from compiler
tools to network servers to database engines. We consciously chose multi-threaded pro-
grams, because they cannot be trivially optimized by removing all synchronization. The
programs in our suite include some of the largest Java programs publicly available,
allowing us to demonstrate the scalability of our techniques.

To assess the relative importance of each type of unnecessary synchronization,
we used execution traces to measure the dynamic frequency of each type for each
of our 15 benchmark programs. A synchronization operation is dynamically thread-
local if the corresponding lock is only used by one thread during program execution.
A synchronization operation is dynamically enclosed if all operations on its lock
occur while some other lock is locked. Finally, a synchronization operation is dy-
namically reentrant if its lock is already locked when the operation occurs. A given
synchronization operation can fall into more than one category, so the total per-
centage of unnecessary synchronization is typically less than the sum of the contri-
butions from each category. This also implies that analyses that focus on di6erent
kinds of unnecessary synchronization may optimize some of the same synchronization
operations.

Fig. 1 shows that all three types of unnecessary synchronization occur frequently
in some benchmarks. These Bgures represent an optimistic upper bound on how well
any static analysis could eliminate a particular type of unnecessary synchronization.
The most common type is thread-local synchronization: all synchronization (except for
a Bnalizer thread) is thread-local for the single-threaded benchmarks, and a signiB-
cant fraction of synchronization is thread-local even for the multi-threaded programs.
Enclosed synchronization makes an important contribution for javadoc, proxy, and
a number of the other benchmarks. Finally, reentrant synchronization makes a small
contribution to many di6erent benchmarks.

3. Related work

The rapid deployment and acceptance of Java, with its multi-threaded programming
model and support for lock synchronization, has recently fueled research on eliminating
unnecessary synchronization operations. While the proposed analyses and optimization
techniques have been quite diverse, they have all targeted a single source of unneces-
sary synchronization, that of thread-local objects. Thread-local locks are accessed by at
most one thread and once identiBed can be eliminated via specialization or by explicit
checks.

Blanchet [4] identiBes thread-local objects through escape analysis by encoding refer-
ence and subtyping relationships with integer type heights. A How-insensitive analysis is

96 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

T
ab

le
1

C
ha

ra
ct

er
is

tic
s

of
ou

r
be

nc
hm

ar
k

su
ite

B
en

ch
m

ar
k

D
es

cr
ip

tio
n

B
yt

ec
od

e
si

ze
(0

00
s

by
te

s)
C

la
ss

es
(n

um
be

r)
M

et
ho

ds
(n

um
be

r)

A
pp

lic
at

io
n

L
ib

ra
ry

A
pp

lic
at

io
n

L
ib

ra
ry

A
pp

lic
at

io
n

L
ib

ra
ry

S
in

gl
e-

th
re

ad
ed

pr
og

ra
m

s
ca

ss
ow

ar
y

C
on

st
ra

in
t

so
lv

er
(U

W
)

79
98

9
29

43
0

45
9

67
48

ja
va

c
So

ur
ce

-t
o-

by
te

co
de

co
m

pi
le

r
fo

r
Ja

va
(S

un
)

62
4

10
15

17
3

44
4

22
12

69
14

ja
va

cu
p

Pa
rs

er
-g

en
er

at
or

fo
r

Ja
va

13
0

98
9

34
43

0
50

9
67

48
ja

va
do

c
D

oc
um

en
ta

tio
n

ge
ne

ra
to

r
fo

r
Ja

va
67

5
10

13
17

7
44

5
23

60
69

36
jg

l
Ja

va
G

en
er

ic
L

ib
ra

ry
ar

ra
y

be
nc

hm
ar

ks
87

4
98

9
26

2
43

0
52

16
67

48
jle

x
L

ex
ic

al
an

al
yz

er
fo

r
Ja

va
91

98
9

20
43

0
21

3
67

48
pi

zz
a

So
ur

ce
-t

o-
by

te
co

de
co

m
pi

le
r

fo
r

Ja
va

81
9

10
04

23
9

43
8

32
03

68
51

M
ul

ti
-t

hr
ea

de
d

pr
og

ra
m

s
ar

ra
y

Pa
ra

lle
l

m
at

ri
x

m
ul

tip
lic

at
io

n
46

98
9

29
43

0
17

8
67

48
in

st
an

td
b

D
at

ab
as

e
w

ith
a

T
PC

-A
-l

ik
e

w
or

kl
oa

d
30

7
24

47
67

95
6

12
68

15
89

1
jlo

go
M

ul
ti-

th
re

ad
ed

L
og

o
in

te
rp

re
te

r
20

2
98

9
58

43
0

76
0

67
48

jw
s

W
eb

se
rv

er
(S

un
)

56
4

31
42

51
0

90
3

27
43

19
36

3
pl

as
m

a
Pl

as
m

a
si

m
ul

at
io

n
8

20
16

1
11

61
19

18
19

3
pr

ox
y

N
et

w
or

k
pr

ox
y

fo
r

th
e

H
T

T
P

pr
ot

oc
ol

7
98

9
3

43
0

21
67

48
ra

yt
ra

ce
R

ay
tr

ac
er

w
ith

ge
om

et
ri

c
ob

je
ct

s
29

13
13

18
53

6
19

0
86

88
sl

ic
e

V
is

ua
liz

at
io

n
to

ol
23

20
16

13
11

61
71

18
25

5

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 97

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
ca

ss
ow

ar
y:

ja
va

c:

ja
va

cu
p:

ja
va

do
c: jg
l:

jle
x:

pi
zz

a:

ar
ra

y:

in
st

an
td

b:

jlo
go

:

jw
s:

pl
as

m
a:

pr
ox

y:

ra
yt

ra
ce

:

sl
ic

e:

% thread-local % reentrant % enclosed

Fig. 1. ClassiBcation of unnecessary synchronization operations.

used both to allocate thread-local objects on the stack and to eliminate synchronization
from stack-allocated objects. Stack-allocated objects are marked, and each synchroniza-
tion operation checks whether an object is on the stack before locking it. In addition,
this optimization modiBes method invocations to call an unsynchronized version of a
method when the receiver object does not escape.

Bogda and Holzle [5] have also deBned a How-insensitive escape analysis to elim-
inate synchronization from thread-local objects. The analysis is limited to thread-local
objects that are only reachable by paths of one or two references from the stack. It re-
moves synchronization by specializing classes to create a subclass with unsynchronized
methods, and modifying allocation sites of thread-local objects to use the unsynchro-
nized versions. The analysis may also clone several methods leading to an allocation
site, enabling it to distinguish thread-local and multi-threaded objects created at the
same program point.

Choi et al. [6] performs a variant of interprocedural points-to analysis that is designed
to work well when classifying objects as globally escaping, escaping via an argument,
and not escaping. The analysis groups objects by their allocation site and marks thread-
local objects at allocation time with a bit in the object header. When synchronizing,
the compiler eliminates the atomic compare-and-swap operation for objects with this
bit in the header, preserving Java semantics by Hushing the local processor cache. The
analysis also allocates objects on the stack.

Whaley and Rinard [30] deBne an interprocedural, How-sensitive points-to analy-
sis to eliminate unnecessary synchronization and allocate objects on the stack. The
analysis computes which objects escape from each method, as well as relationships
between objects. It can analyze partial programs conservatively, improving results
as more of the program becomes available. When the analysis Bnds that an ob-
ject is captured by a method, it specializes all methods that synchronize on that

98 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

object in order to remove the synchronization. It also generates specialized versions
of all methods in the call chains that lead to the optimizable synchronized method
invocations.

Other researchers have attacked the cost of synchronization in di6erent ways.
A large body of work [5,17,1,21] has focused on making necessary synchronization
more e9cient, which complements our techniques to remove unnecessary synchro-
nization. It is also possible to optimize unnecessary synchronization that arises from
acquiring and releasing a lock multiple times in succession [10,23]. These optimizations
a6ect the concurrency of the benchmarks: coalescing multiple lock operations into one
may reduce parallelism, and implementations must take care not to introduce deadlock.
Algorithms that detect which statements may execute in parallel [15,20] can also be
used to eliminate various forms of unnecessary synchronization. Finally, some systems
perform analyses to help programmers model concurrent systems [7] or to help Bnd
synchronization errors [9].

Our research di6ers from this previous work in several important respects:

• First, all previous studies of unnecessary synchronization have concentrated solely
on eliminating thread-local locks. As shown in Section 2.3, thread-local locks are
only one of several sources of unneeded synchronization. In this paper, we address
three types, presenting new algorithms for eliminating two of them (thread-local and
enclosed locks) and empirically evaluating all three.

• Second, previous analyses for identifying thread-local objects have relied on escape
analyses that ignore the way programs use concurrency. Our thread-local algorithm
explicitly models the interactions between di6erent threads, and we quantify the
resulting improvement over earlier thread-oblivious algorithms; our algorithms do
better than previous work on all benchmarks we have in common.

• Finally, previous evaluations of optimization schemes have relied predominantly on
single-threaded benchmarks. While improving the performance of single-threaded
programs is important, a trivial optimization to simply disable all synchronization is
most e6ective. Thus, an important beneBt of a synchronization elimination algorithm
comes from distinguishing unnecessary synchronization operations from necessary
ones in multi-threaded programs. In this paper, we evaluate our analyses on both
single-threaded and multi-threaded applications, and quantify the di6erence in our
analyses’ performance on the two application types.

Concurrent work by Eric Ruf [25] combines a thread behavior analysis similar
to ours with a specialized alias analysis based on method summaries. His special-
ized alias analysis is more scalable than the general-purpose analyses in our system,
resulting in much smaller analysis times. His results for thread-local synchroniza-
tion are similar to ours for the small programs we have in common, as well as the
larger benchmarks plasma and javac. Ruf’s alias analysis enabled him to remove
signiBcant amounts of synchronization from slice, while our precise alias analysis
did not scale to this benchmark, resulting in poor performance. Ruf’s work does
not consider the other forms of unnecessary synchronization, enclosed and reentrant
locks.

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 99

4. Analyses

We deBne a simpliBed analysis language and describe three whole-program analyses
necessary to optimize the synchronization opportunities discussed above: thread-local
analysis, reentrant and enclosed lock analysis, and unshared Beld analysis. Thread-local
analysis identiBes which objects are only synchronized by one thread. Lock analysis
computes a description of the monitors held at each synchronization point so that
reentrant locks and enclosed locks can be eliminated. Finally, unshared Beld analysis
identiBes unshared Belds so that lock analysis can safely identify enclosed locks. Our
analyses can rely on Java’s final annotation to detect immutable Belds. Since Java
programs may have Belds that are used in an immutable way but are not explicitly
annotated as final, an important area of future work is automatic analyses to detect
immutable Belds.

4.1. Analysis language

We describe our analyses in terms of a simple statement-based core language, incor-
porating the essential synchronization-related aspects of Java. This allows us to focus
on the details relevant to specifying the analyses while avoiding some of the com-
plexity of a real language. The missing features of Java can be mapped to our core
language. For example, loops can be converted into recursion, method dispatch can be
implemented with if statements, variable assignment can be done with variable renam-
ing, exceptions can be emulated using if statements, etc. These features do not present
any di9cult problems for our analysis, but would make the presentation more complex.

Fig. 2 presents our analysis language. It is a simple, Brst-order language, incorporat-
ing object creation, Beld access and assignment, synchronization expressions, threads,
functions, and simple control How. Each object creation point is labeled with a label
for a class key [13], which identiBes the group of objects created at that point. In
our implementation, there is a unique key for each new statement in the program; in
other implementations a key could represent a class, or could represent another form of
context sensitivity. We assume that all identiBers are given unique names. Static Beld
references are modeled as references to a Beld of the special object global, which is
implicitly passed to every procedure.

Fig. 2. SimpliBed analysis language incorporating the key synchronization features of Java.

100 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

Functions are modeled with a letrec construct that deBnes a function to be a
lambda expression with formal parameters and a body. The body of a function can
include function calls, and return values are implemented by assigning to the special
variable returnval. Threads are modeled with a fork statement that starts the indi-
cated function in a new thread. Function calls and fork statements are given unique
labels that are used to track the call sites (including fork sites) of a given function.
Java’s synchronization construct is modeled by a synchronized statement, which
locks the object referred to by id and then evaluates S before releasing the lock. Each
synchronized statement in the program text is also associated with a unique label.
The thread model of our core language is simpler than that of Java, which separates
thread creation from the start operation; however, the Java semantics can be sim-
ulated in terms of fork. Thread scheduling operations such as wait, notify and
join are infrequently executed in typical programs, and so we have not focused on
these operations in this work. Their e6ects can be simulated using synchronized
statements in our core language.

4.2. Analysis axioms

Our analyses are parameterized by other alias and call-graph construction analyses,
a feature of our approach that allows a trade-o6 between analysis time and the preci-
sion of our analysis results. We assume the following axioms are deBned from earlier
analysis passes:

• aliases(id1; id2)—identiBers id1 and id2 may point to the same object;
• aliases(f1; f2)—Belds f1 and f2 may point to the same object;
• ref(base; f; o)—objects created with the new statement labeled o may be stored in

the Beld f of objects with label base;
• ref(id; o)—identiBer id may refer to objects labeled o;
• immutable(f)—Beld f is immutable (i.e., write-once). This may be deduced from
final annotations and constructor code;

• called(p; labelq)—function p may be called from call site label in function q.
This relation includes forked functions as well as ordinary function calls;

We also assume that the following functions are deBned by earlier analysis passes:

• creator(o)—the procedure that created the objects identiBed by label o;
• synch aliases(label)—the set of labels of synchronization points that may synchro-

nize the same object as the synchronization point identiBed by label;
• synch keys(label)—the set of objects that may be synchronized at synchronization

point label;
• lookup(idF)—the letrec expression that deBnes the function idF.

4.3. Thread-local analysis

Thread-local analysis examines the behavior of threads in a program to identify
objects that are not accessed by more than one thread. In Java, there are just two ways

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 101

Fig. 3. Inference rules describing thread-local analysis.

to share an object between threads. First, an object can be written to a static Beld by
one thread and then read from that Beld by another. Second, a thread can write an
object to a (non-static) Beld of an object that is or will be shared by another thread,
and the second thread can then read the object from that Beld. By looking at how
these two mechanisms are used in a particular program, the analysis discovers the set
of multi-threaded objects, i.e. objects that are shared between threads. Objects not in
this set are thread-local.

We present our analysis in Fig. 3, using inference rules. Our analysis starts with
an axiom representing the execution of the main function in the initial “main”
thread:

• eval(main (); main).

The result of inference will be the least set of judgments closed under application
of these inference rules to the axioms above. Note that a thread is represented by the
forked procedure, and so the set of threads is a subset of the set of procedures. The

102 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

Fig. 4. Example of thread-local analysis.

facts that can be inferred from our inference rules include:

• eval(s; t)—statement s may be executed inside thread t;
• read(f; t)—Beld f may be read by thread t;
• written(f; t)—Beld f may be written by thread t;
• multi(p)—procedure p may be called more than once;
• multi(t)—thread t may be started more than once;
• multi(f)—Beld f may be read by one thread and written by another thread.
• multi(o)—object o may be accessed by more than one thread. This is the main

result of our thread-local analysis.

At a high level, the thread-local algorithm takes advantage of the two simple
sharing mechanisms by analyzing which threads read and write to which Belds. A
multi-threaded :eld is a Beld that is read by one thread and written by another thread.
Our algorithm computes the set of multi-threaded Belds by determining the set of
threads that may execute each Beld read and write in the program. For each static thread
instance (represented by a forked procedure), we also need to determine whether it
is started more than once, because if a thread with multiple dynamic instances both
reads and writes to a Beld, that Beld will be multi-threaded. Thus, we must scan the
program to Bnd out which thread forking statements may execute more than once.

Fig. 4 shows a small program illustrating thread-local analysis, written in our analysis
language. Thread-local analysis Brst determines which statements are executed in which
threads, discovering that procedure main is executed in the main thread, and procedure
run is executed in both the run and main threads. Next, the inference rules for Belds
discover that Beld f1 is written by the main thread and read by both threads, and that
Beld f2 is written by both threads. According to the multi-threaded Belds rule, Beld
f1 (but not f2) is determined to be multi-threaded. An earlier alias analysis will have
established that the Beld f1 may refer to objects created at the new statement with label
label1, so the base case rule for objects determines that objects created with label
label1 are multi-threaded. The synchronization operation at label6 is unnecessary
because it synchronizes on objects created at label2, which are not multi-threaded.
Thus, the synchronization operation at label6 can be safely eliminated, while the
synchronization at label5 cannot be eliminated.

Thread-local analysis runs in worst case O(o2∗f+n2) time and O(n∗t) space, where
o is the number of object sets, f is the number of Belds per object, t is the number

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 103

of forked procedures, and n is the number of statements in the program. This can be
shown using a theorem due to McAllester [18], which states that if the set of inference
rules R is syntactically local, than the set of ground assertions R(D) derivable from a
database D of axioms can be computed in time O(|D|+P), where P is the number of
possible preBx Brings of the inference rules. A preBx Bring is a unique conBguration of
the free variables in the antecedent of the rule. All of our rules have O(n2) preBx Brings
by inspection, except for the multiple procedure calls rule and the recursive case of the
objects rule. The former can be implemented in O(n) time by marking all nodes in the
call graph with multiple callers, and adding the set of procedures called multiple times
to the inference engine as axioms. The latter has O(o2 ∗ f) preBx Brings, accounting
for the other term in the time bound. The space bound is derived from the number of
computed facts that must be stored; the input facts may require more storage in general.

In practice, thread-local analysis scales linearly with the number of application classes
analyzed, probably because the number of static thread instances, the number of Belds
per object, and the virtual method dispatch fan-out tend to be small in typical Java
programs. Our thread-local analysis runs quickly, typically completing in far less time
than the alias analyses we run beforehand.

Our new thread-local analysis di6ers from our previous work [2] in that it consid-
ers thread interactions to intelligently decide which Belds allow objects to be shared
between di6erent threads. Our previous analysis, like other previous work in the Beld,
was overly conservative in that it assumed that all Belds are multi-threaded.

4.4. Lock analysis

An enclosed lock (say, L2) is a lock that is only acquired after another (enclosing)
lock L1 has already been locked. If all threads follow this protocol, synchronization
operations on L2 are redundant and can be eliminated. Enclosed locks occur often in
practice, particularly in layered systems, generic libraries or reusable object components,
where each software module usually performs synchronization independently of other
modules. Established concurrent programming practice requires that programs acquire
locks in the same global order throughout the computation in order to avoid deadlock.
Consequently, most well-behaved programs exhibit a self-imposed lock hierarchy. The
task of this analysis, then, is to discover this hierarchy by simulating all potential
executions of the threads, identify the redundant lock operations and optimize them
out of the program.

We rely on a How-sensitive, interprocedural analysis in order to eliminate locks that
are protected from concurrent access by other locks. Our analysis works by calculating
the set of enclosing locks for each lock in the program; reentrant locks represent a
special case where the enclosing lock is the same as the enclosed lock. This set of
enclosing locks is computed by traversing the call graph, starting from each thread’s
starting point. Whenever a lock acquire or release operation is encountered, the locked
object is added to or deleted from the set of locks currently held at that program point.
In order to permit specialization based on the creation points of program objects, our
algorithm is context sensitive and thus will analyze a method once for every calling
context (i.e., set of possible receiver and argument objects).

104 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

When removing synchronization due to enclosing locks, it is crucial that there be
a unique enclosing lock; otherwise, the enclosing lock does not protect the enclosed
lock from concurrent access by multiple threads. Because one static lock may repre-
sent multiple dynamic locks at runtime, we must ensure that a unique dynamic lock
encloses each lock eliminated by the analysis. We can prove this in multiple ways.
First, in the reentrant case the locks are identical, as when the same variable is locked
in a nested way twice, without an assignment to that variable in between. Second, a
lock may be enclosed by an object whose creation point is only executed once (as
calculated by the thread-local analysis); thus a single static lock represents a single
dynamic lock. Third, the enclosed lock may hold the enclosing lock in one of its
Belds; this Beld must be immutable, to ensure that only one object may be stored in
the Beld, and thus that the enclosing lock is unique. Fourth, the enclosing lock may
hold the enclosed lock in one of its Belds. In this case, immutability is not important,
because a single enclosing lock may protect multiple enclosed locks; however, a corre-
sponding property is required. The enclosing lock’s Beld must be unshared, indicating
that the object held in the Beld is never held by any other object in the same Beld; thus
the enclosing object is unique with respect to the enclosed object. Section 4.5 presents
an analysis that Bnds unshared Belds. Finally, the last two cases can be generalized
to a path along Beld links from one object to another, as long as each Beld in the
path is immutable or unshared, depending on the direction on which the path traverses
that link.

Our lock analysis represents a reentrant lock as the synchronization expression itself
(SYNCH), and enclosing locks are represented as unique objects (denoted by their
creation-point label) or as paths from the synchronization expression SYNCH through
one or more Beld links to the destination object. We use a link graph (LG) to capture
relationships between di6erent identiBers and locks in a program. The LG is a directed
graph with nodes labeled with unique identiBers or placeholders, and edges labeled
with a Beld identiBer. For convenience in presentation, we will sometimes test if a
unique object is a node in the link graph; this test should be interpreted to mean that
some identiBer in the link graph refers only to a unique object. We notate functional
operations on the graph as follows:

• Adding an edge: newgraph = add(graph; id1 →f id2),
• Replacing nodes: newgraph = graph[id1 → id2],
• Treeshake: newgraph = treeshake(graph; rootset),
• Union: newgraph = graph1 ∪ graph2,
• Intersection: newgraph = graph1 ∩ graph2.

The treeshake operation removes all nodes and edges that are not along any directed
path connecting a pair of nodes in the root node set. The union operation merges two
graphs by merging corresponding nodes, and copying non-corresponding edges and
placeholder nodes from both graphs. The intersection operation is the same as union,
except that only edges and placeholder nodes that are common to the two graphs are
maintained. In these operations, two nodes correspond if they have the same label or
are pointed to by identical links from corresponding nodes.

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 105

Intuitively, an edge in the link graph means that at some program point there was
an immutable Beld connecting the edge source to the edge destination, or there was an
unshared Beld connecting the edge destination to the edge source. Note that edges rep-
resenting immutable Belds go in the opposite direction as edges representing unshared
Belds; this captures the notion that the two are really inverses for the purposes of our
enclosing lock analysis. The link graph does not strictly represent an alias graph, as we
do not kill any edges on updates. This is acceptable because the link graph only con-
tains edges where updates do not matter (unshared Belds) or cannot occur (immutable
Belds).

Fig. 5 presents our lock analysis as a semantic analysis over the program text. The
analysis function L accepts as curried parameters a piece of program text, the set of
locks held at the current program point, and a link graph. The analysis function manip-
ulates the inputs according to the form of the program text and returns an updated link
graph. The function also updates a global data structure that tracks the set of enclosing
locks at each synchronization point. Analysis is triggered through the get locks func-
tion, which runs the analysis on main assuming an empty lock set and link graph (as
well as optimistic assumptions about enclosing locks at each synchronization point).
Get locks then looks up the set of locks at the relevant synchronization point in the
data structure produced as an analysis side e6ect. During the analysis, a set of locks is
represented by a LOCKSET structure, which is a set of nodes in a link graph. In the
data structure lockmap, which maps synchronization points to the set of locks held at
each point, locks are represented as a PATH in a link graph, where the source node has
been either replaced with the node SYNCH (representing the current synchronization
expression) or with the label of a unique object.

The rule for new does not a6ect any data structures. Field reads and writes are equiv-
alent for our analysis: if the Beld is unshared or immutable, then a link is established
between the identiBers in the appropriate direction. Analyzing a sequence of statements
simply analyzes the Brst and uses the resulting link graph to analyze the second. After
an if statement, it is only safe to assume relationships established along both paths, so
the resulting link graph is the intersection of the link graphs from the then and else
clauses. A fork statement begins analysis in the new thread with an empty lock set
and link graph.

At synchronization statements, the analysis records all enclosing locks at that state-
ment, and adds the locked object to the set of locks. For an enclosing lock to be
uniquely speciBed with respect to the locked expression, it must begin with a unique
expression, which may be a singleton object (created only once during program exe-
cution) or may be the locked object itself. From this unique object, we can Bnd a path
through the link graph, where each link uniquely speciBes its destination with respect
to the source due to the properties of the graph. If the Bnal object in the path is in
the lock set, the path describes a unique enclosing lock, and therefore it is added to
the lockmap for that synchronization expression. The locks determined by this analysis
are intersected with all other analyses of the same contour, and the result is saved for
this synchronization point and contour. For each object the identiBer may refer to, we
intersect the current enclosing lock set with the previous set of enclosing locks for
that object, and the result is stored in the global enclosingmap data structure. Then the

106 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

Fig. 5. Semantic analysis functions for lock analysis.

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 107

Fig. 6. Example of lock analysis.

identiBer itself is added to the lock set for evaluation of the synchronization block, and
if this identiBer points to a single, unique object, the representation for that object is
added to the lock set as well.

At function calls, the analysis Bnds the formal parameters of the called function and
maps the actual parameters to formals. Only the part of the link graph that links formal
identiBers and locked objects is relevant to the callee, so all other parts of the graph
are removed. Nodes representing identiBers that are no longer in scope in the new
function are replaced with placeholder nodes at the same location in the graph; such
nodes may represent locked objects, or may be along a unique path to locked objects.
The callee is analyzed using one of several possible context strategies, and a reverse
mapping applies the resulting link graph to the caller.

In our implementation, the context strategy analyzes each function multiple times
according to the calling context, which may be represented by the classes of the argu-
ments, the calling function, or other meta-information. We used the sets of argument
classes from the simple class sets (SCS) call-graph construction algorithm as our con-
tours. A contour table caches (input, output) analysis pairs for each contour, to avoid
excessive contour re-analysis and handle recursion appropriately. If the input infor-
mation from the contour table is a conservative approximation of the current input
information, the old output information is returned. For recursive calls to the same
contour, an optimistic initial result is returned, and the framework will automatically
re-analyze the callee when that optimistic result is later modiBed, preserving analysis
soundness. Finally, the text of the new procedure is analyzed, the result is combined
with previous results, cached in the context table, and returned to the analysis of the
callee.

Fig. 6 shows a small program that illustrates lock analysis. The main procedure
creates an object and stores it in the global Beld f1. It then creates two more objects
and stores them in the Belds f2 and f3 of the Brst object. The main thread forks a
thread into run and then calls run itself. The run procedure reads the object in the
global Beld f1, and then synchronizes on the objects stored in Belds f2 and f3 of the
Brst object.

Consider the lock analysis running over this simple program. Assume that earlier
analyses have determined that Beld f2 is immutable and Beld f3 is unshared. Then,

108 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

at the assignment to temp6, lock analysis will discover that f2 is immutable and will
add the edge temp5 →f2 temp6 to the link graph. Next, at the Brst synchronization
statement, the lock analysis will add temp6 to the lockset. Lock analysis will also
observe that temp6 can only refer to objects created at label1, which are unique,
because label1 is in a procedure that only runs once. Therefore, label1 will be
added to the lockset as well. At the assignment to temp7, lock analysis will discover
that f3 is unshared and will add the edge temp7 →f3 temp5 to the link graph. Finally,
at the second synchronization statement, we will discover two ways to specify a unique
enclosing lock. The Brst is the globally unique object label1, which is already locked.
The second is a path temp7 →f3 temp5 →f2 temp6 that leads from the synchronization
expression temp7 to the locked object temp6. Both of these enclosing lock expressions
will be added to the lockmap for this synchronization statement and to the enclosingmap
for objects created at label3. Later, the optimization phase will be able to remove this
synchronization statement, because the statement only synchronizes on objects created
at label3, and all synchronizations on such objects are enclosed by the two enclosing
lock expressions discussed above.

4.5. Unshared :eld analysis

Unshared Beld analysis detects Belds that uniquely enclose the object they point
to. They provide a natural counterpart to immutable Belds (including final Belds)
which uniquely point to a particular object (which can then be used as an enclos-
ing lock). Fig. 7 shows our How- and context-sensitive analysis to detect unshared
Belds. The basic principle of the analysis is to conservatively track the set of Belds
that each identiBer could possibly alias with. Thus, the analysis passes around and
updates a mapping from the identiBers in scope to the set of possibly aliased Belds.
New objects do not alias any Belds, but an assignment of a Beld dereference to an
identiBer means that identiBer may be aliased to the dereferenced Beld, or any Beld the
dereferenced Beld may alias. When a Beld is assigned an identiBer’s value, we check
whether the identiBer could already include that Beld; if so, we have identiBed a case
where an object may be shared between two instances of the same Beld. That Beld
becomes shared and is added to the shared Beld set. Meanwhile, the identiBer (and
any other identiBer that may point to the same object) may be aliased to the assigned
Beld.

Note that if an object is assigned to two di6erent Belds, neither Beld becomes shared;
Belds only become shared when the same object is possibly assigned to two instances
of the same Beld. This does not lead to incorrect results in lock analysis, because Beld
links are annotated with the Beld name, allowing the two di6erent enclosing objects to
be distinguished.

A sequence of statements is evaluated in turn, and control How merges use a union
operation to conservatively combine the identiBer state along each path. Synchroniza-
tion statements do not a6ect identiBer state. A fairly straightforward actual to formal
parameter mapping is applied at function calls. The identiBer state after execution of
the callee must be combined with the caller’s identiBer state taking identiBer aliases

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 109

Fig. 7. Semantic analysis functions for unshared Beld analysis.

into consideration, because the arguments and results may be assigned to Belds within
the callee. Finally, our context strategy for this analysis is similar to that for lock
analysis, except that the calling context is simply the input identiBer state.

110 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

4.6. Optimizations

We apply three optimizations for the three cases of unnecessary synchronization.
We test each synchronization statement for thread-local synchronization. If there is no
conclusion multi(o) from thread-local analysis for any o possibly synchronized by a
synchronization statement s, then s can be removed from the program. Otherwise, if
there is any o synchronized at s for which there is no conclusion multi(o), and the
synchronized object is the receiver of the method (the common case, including all
synchronized methods), then a new version of the method is cloned for instances of
o without synchronization. This specialization technique may require cloning o’s class,
and changing the new statements that create instances of o to refer to the new class.
Our implementation choice of sets of receiver classes as contours allows us to naturally
use our analysis information when specializing methods.

We also test each synchronization statement for reentrant synchronization. For an
synchronization expression s, if the lock set includes SYNCH, then s can be removed
from the program. If SYNCH is in the lock set for some receivers but not for others,
specialization can be applied using the technique above.

Finally, we can remove a synchronization statement s if, for each object o syn-
chronized at s, the set of enclosing locks given by enclosingmap[o] is not empty. If
only some of the objects synchronized at s are enclosed, and synchronization is on the
receiver object, the method can be specialized in a straightforward way to eliminate
synchronization.

4.7. Implementation

Our implementation computes the set of unnecessary synchronization operations us-
ing the Vortex research compiler [8], and then uses that data to optimize Java class
Bles directly using a binary rewriter [20]. This strategy allows the optimized application
classes to be run on any Java virtual machine.

Our analyses assume that a call-graph construction and alias analysis pass has been
run. In our implementation, we use the SCS context-sensitive call graph construction
algorithm [13] for the smaller benchmarks, and the context-insensitive 0-CFA algorithm
[27] for the benchmarks larger than javac. We augmented the algorithms to collect
alias information based on the creation points of objects. While these algorithms build
a precise call graph, they compute very general alias information and as a result the
SCS algorithm did not scale to our largest benchmarks. An alias analysis specialized
for synchronization elimination [23] would allow large improvements in scalability
and analysis performance, at the potential cost of not being reusable for other compiler
analysis tasks. The analyses above are fully implemented in our system, except that we
use an approximation of the link graph and do not consider immutable Belds (which
are unnecessary for optimizing our benchmarks). Vortex also implements a number
of other optimizations, but we applied only the synchronization optimizations to the
optimized class Bles in order to isolate the e6ect of this optimization in our experi-
mental results.

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 111

One drawback of whole-program analyses like ours is that the analyses must be
re-run on the entire program when any part changes, because in general any program
change could make a previously unnecessary sychronization operation necessary. Our
technique is appropriate for application to the Bnal release of a production system,
so that the cost of running whole-program analyses is not incurred during iterative
software development.

A production compiler that targets multi-processors would still have to Hush the
local processor cache at eliminated synchronization points in order to conform to Java’s
memory model [24]. Due to our binary rewriting strategy, we could not implement this
technique in our system. Our rewriter does not eliminate synchronization from methods
that call wait and notify, which expect the receiver to be locked. In our benchmarks
this local check is su9cient to ensure correctness, but in general a dataHow analysis
can be applied to guarantee that these operations are not called on an unsynchronized
object as a result of synchronization optimizations.

5. Results

In this section, we evaluate the performance of our analyses. Section 5.1 shows that
they can improve the performance of a workload in which programmers had elimi-
nated synchronization manually; Section 5.2 demonstrates their potential for enabling
a simpler and more general synchronization model; and Section 5.3 describes their
compile-time cost.

5.1. Dynamic evaluation of the synchronization analyses

In this section, we evaluate the impact of our analyses on the dynamic behavior of
the benchmarks. Table 3 shows the dynamic percentage of synchronization operations
eliminated at runtime by our analyses. The Brst column represents the percentage of
runtime synchronization operations removed by all of our analyses combined. The next
three pairs of columns break this down into thread-local, reentrant, and enclosed locks.
The Brst column in each pair shows the percentage of locks in each category that
is optimized by its appropriate analysis, while the second column in the pair is the
total amount of dynamic synchronization in the category, as measured by the dynamic
traces (it thus serves as an upper bound on the analysis results). (Recall that, since
many synchronization operations fall into several categories, the totals of each pair do
not sum to 100%; in particular, many enclosed and reentrant locks are also thread-
local.) Finally, the last two columns show the total number of lock operations and the
frequency in operations per second.

In general, thread-local analysis did well for most of the benchmarks, eliminating a
majority (64–99%) of synchronization operations in our singlethreaded benchmarks and
a more widely varying percentage (0–89%) of synchronization in our multithreaded
applications. Among the single-threaded programs, it optimized jlex, cassowary, and
jgl particularly well, eliminating over 99.9% of synchronization in these programs. We

112 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

also eliminated most thread-local synchronization in the other single-threaded programs,
but did not realize the full potential of our analyses. In the multi-threaded programs,
where the challenge is greater, the thread-local analysis usually did well, getting most
of its potential for array, proxy, plasma and raytrace. Our dynamic traces show very
little thread-local synchronization in jws, so it is unsurprising that we did not eliminate
any unnecessary synchronization here. Instantdb and slice are large benchmark
programs that used much of the AWT graphics library, and our context-sensitive alias
analysis did not scale to these programs; using a context-insensitive alias analysis failed
to catch thread-local synchronization operations.

Both reentrant lock analysis and enclosed lock analysis had a small impact on most
benchmarks, but made signiBcant contributions to a select few. For example, reen-
trant lock analysis in general tended to eliminate operations that were also removed
by thread-local analysis; however, the proxy benchmark beneBted from optimizing
reentrant locks that were not thread-local, and thus were not optimizable with that
technique. Similarly, enclosed lock analysis made an impact on jlogo by eliminat-
ing 12% of the dynamic synchronization operations through specializing a particular
call site; these synchronization operations were not thread-local and could not have
been optimized by other algorithms. There are two reasons why the enclosed and reen-
trant lock analyses did not make an impact on benchmarks across the board. First,
the benchmarks exhibit by far more thread-local operations than enclosed and reen-
trant locks combined, and most cases of simple reentrant and enclosed locks had been
already optimized out manually by programmers. For example, rather than use the syn-
chronized Vector class to store hash table elements in their buckets, the implementors
of java.util.Hashtable designed a custom, unsynchronized linked list class. While
our analyses would have removed this source of overhead, programmers who did not
have these analyses available to them did the optimizations themselves, at the cost of
more complex code. All of the beneBt of enclosed lock analysis in our benchmarks
came from unique enclosing locks, suggesting that following unshared and immutable
Belds is not a useful technique for optimizing common Java programs. The second
reason why the enclosed and reentrant lock analyses were not e6ective on all bench-
marks involves inaccuracies in alias analysis. For example, all of our programs have
synchronization on OutputStreamWriters that are enclosed by PrintStreams. Al-
though our analyses identiBed these operations as being enclosed, our implementation
was unable to optimize them; we need to optimize some OutputStreamWriters and
not others, but we cannot use dispatch to tell the di6erence, because the synchroniza-
tion statement is in the BufferedWriter class, not the OutputStreamWriter class.
A more precise alias analysis could address this problem at the expense of compilation
time.

The extent to which the reductions in dynamic synchronization operations translated
into execution time speedups depended on the frequency of synchronization operations
in the programs. For example, Table 2 shows that jlex and jgl do far more syn-
chronization operations per second than the other benchmarks, and that translated into
a dramatic speedup for these benchmarks. Fig. 8 shows the execution speed of our
optimized benchmark programs relative to the unoptimized versions. In the graph, the
bars represent the execution speed improvement due to all analyses combined, relative

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 113

T
ab

le
2

D
yn

am
ic

nu
m

be
r

of
sy

nc
hr

on
iz

at
io

n
op

er
at

io
n

el
im

in
at

ed

B
en

ch
m

ar
k

A
ll

T
hr

ea
d-

lo
ca

l
R

ee
nt

ra
nt

E
nc

lo
se

d
T

ot
al

op
s

O
ps

/s

A
ct

ua
l

(%
)

A
ct

ua
l

(%
)

Po
te

nt
ia

l
(%

)
A

ct
ua

l
(%

)
Po

te
nt

ia
l

(%
)

A
ct

ua
l

(%
)

Po
te

nt
ia

l
(%

)

ca
ss

ow
ar

y
99

.9
8

99
.9

8
99

.9
9

0.
00

0.
01

0.
00

0.
06

4
44

0
92

8
25

71
5

ja
va

c
94

.5
5

94
.5

5
99

.7
9

0.
02

8.
14

0.
00

20
.5

4
1

37
8

44
2

49
37

3
ja

va
cu

p
78

.1
2

78
.1

2
99

.0
8

2.
60

17
.5

7
0.

00
9.

02
19

17
4

41
17

ja
va

do
c

82
.7

6
82

.7
6

99
.6

6
0.

05
5.

60
0.

00
52

.4
2

90
9

49
0

22
68

9
jg

l
99

.9
9

99
.9

9
10

0.
00

0.
00

0.
00

0.
00

0.
00

5
52

9
82

0
16

2
76

6
jle

x
99

.9
5

99
.9

5
99

.9
9

4.
37

11
.1

4
0.

00
0.

07
1

83
9

16
6

27
6

44
2

pi
zz

a
64

.2
6

64
.2

6
88

.3
6

0.
61

18
.1

0
0.

00
22

.2
9

20
12

5
64

92

ar
ra

y
44

.4
4

44
.4

4
50

.1
2

0.
02

0.
12

0.
00

0.
13

90
69

3
37

2
in

st
an

td
b

0.
01

0.
00

54
.3

1
0.

01
3.

43
0.

00
16

.7
8

30
2

64
0

27
14

3
jlo

go
12

.0
3

0.
21

14
.8

5
0.

08
0.

37
11

.8
1

25
.2

6
16

4
50

1
18

71
jw

s
0.

01
0.

00
0.

83
0.

01
21

.4
2

0.
00

12
.4

8
1

06
2

76
6

N
/A

pl
as

m
a

89
.3

0
89

.2
5

98
.8

7
0.

05
1.

36
0.

00
15

.9
1

34
72

3
62

pr
ox

y
43

.2
9

39
.4

5
41

.4
3

3.
84

18
.3

4
0.

00
46

.7
7

36
4

62
4

N
/A

ra
yt

ra
ce

72
.7

8
72

.6
9

96
.0

0
0.

19
2.

04
0.

00
1.

22
34

35
1

N
/A

sl
ic

e
0.

08
0.

00
91

.2
2

0.
08

4.
23

0.
00

17
.8

6
39

53
3

25
5

114 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
ca

ss
ow

ar
y

ja
va

c

ja
va

cu
p

ja
va

do
c jg
l

jle
x

pi
zz

a

ar
ra

y

in
st

an
td

b

jlo
go

pl
as

m
a

sl
ic

e

Fig. 8. Speedups due to the elimination of unnecessary synchronization.

to the unoptimized versions. Because our analyses are particularly relevant for multi-
threaded benchmarks running on multi-processors, these numbers were collected on a
Solaris machine with four 90MHz hyperSPARC processors and 250MB of RAM. Since
this machine is a few years old, and multi-processor synchronization costs in cycles
typically increase as clock speed rises, our speedup numbers are probably conserva-
tive. Our runtime platform was the JDK 1.2.103, a high-performance commercial JIT
compiler with an e9cient implementation of synchronization [21,1]. All measurements
represent an average of Bve executions, preceded by three runs to warm up the caches.
We were unable to collect meaningful execution times for the benchmarks jws, proxy,
and raytrace.

The synchronization analyses were very e6ective for cassowary, jgl, and jlex,
speeding up their execution by 37–53%. The speedups are due to the high frequency
of synchronization operations, the high cost of synchronization operations in these
benchmarks (particularly cassowary) relative to other benchmarks, combined with the
e6ectiveness of our analyses on these programs. In other benchmarks in which our
analyses eliminated a substantial proportion of the synchronization operations, such as
javacup and pizza, the impact on total execution time was small, because synchro-
nization accounted for a small portion of running time.

5.2. A simpler synchronization model

In order to determine whether our analyses can support a simpler synchronization
model, where by default all public methods of each class are synchronized, we per-
formed two experiments. In the Brst, we wrote a simple program that illustrates some
characteristics of a web server or database server. Appendix A lists the web server
code, including a simple driver application. The application has several threads that

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 115

Table 3
Synchronization statements optimized in the simple synchronization model

Benchmark Reentrant Non-thread-local Thread-local Total
reentrant reentrant statements

cassowary 178 1 807 827
javac 136 1 1695 1721
javacup 199 1 835 854
javadoc 208 1 1305 1331
jgl 167 1 683 702
pizza 118 1 1154 1174

array 160 51 484 693
jlogo 154 1 660 681
plasma 318 318 0 1842
proxy 161 47 510 736
raytrace 301 165 685 1331
slice 324 324 0 1863

read a table data structure, and one thread that writes to it. The table is implemented
as a closed hash table, where all entries with the same hash code are stored in the
linked list for the corresponding hash bucket. Although most current implementations
of hash tables (e.g., java.util.Hashtable) implement their own linked-list data
structure for e9ciency, we believe it is a better design to reuse an existing list class
if e9ciency considerations permit. As a reusable class, our list implementation in-
cluded synchronization on all public methods. However, our analyses were able to
eliminate all synchronization on the list, because it was enclosed by the (globally
unique) hash table data structure. The resulting application sped up by 35% vs. the
original unoptimized version, matching the performance of a hand-optimized version of
the same benchmark. This example demonstrates that our analyses (and in particular,
enclosed lock analysis) have the potential to make a cleaner programming style more
practical.

In a second experiment, we modiBed the Java class libraries and a subset of our
applications to add synchronization to all public methods. Table 3 shows the static
number of synchronization points optimized by our analyses in this experiment. For
most programs, thread-local analysis (shown in the fourth column) was able to elimi-
nate virtually all of the synchronization in these programs, e6ectively eliminating the
extraneous overhead that would be imposed by the more natural synchronization model.
Because this synchronization model leads to signiBcant reentrant synchronization, our
reentrant lock analysis was able to eliminate 10–30% of the static synchronization
points in these programs (second column). The role of reentrant lock analysis was
particularly important for multi-threaded programs, as shown in the third column of
Table 2, which lists the reentrant synchronization points that are not also thread-local.
In the multi-threaded benchmarks, reentrant lock analysis typically eliminates 10%
of the static synchronization points in the program, in addition to what thread-local

116 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

analysis is able to Bnd. Enclosed lock analysis was unable to optimize these programs.
It is likely that remaining imprecisions in the alias analysis, together with the increased
use of synchronization and the inherent di9culty of identifying and optimizing enclosed
locks were the causes.

Since we have not yet provided a facility to override the default of adding syn-
chronization to every method, and our Java programs were not designed with this
synchronization paradigm in mind, most programs deadlock when run with synchro-
nization added to all public methods. However, we were able to evaluate the e6ect of
our analyses on javadoc. The version of javadoc with all public methods synchro-
nized executes in 52:2 s; in optimizing this version we were able to reduce the runtime
to 37:6 s, which is faster than the original, manually optimized program. These results
imply that our analyses are able to successfully mitigate the performance impact of a
cleaner synchronization model.

5.3. Analysis time

The time to perform our analyses was substantial, given that they are whole-program
analyses and that our implementation is not optimized. Nevertheless, our thread-local
analysis times ranged from 2 min for cassowary to 17 min in the case of plasma,
running on an Sun ULTRASPARC with about 500 MB of RAM. Reentrant and en-
closed lock analysis took between 2 and 27 h, similar to the amount of time taken
by alias analysis. ProBle information suggests that the analysis time for reentrant and
enclosed locks is not due to computation of lock information, but due to the over-
head of the analysis infrastructure and an intraprocedural How-sensitive alias analy-
sis that must be run in conjunction with lock analysis. In a production system, an
SSA representation combined with a specialized interprocedural analysis infrastructure
would likely improve the performance of the lock analyses by an order of magnitude
or more. Furthermore, our reentrant lock analysis can be run without the enclosed
lock analysis portion, leading to signiBcantly increased performance. Ruf’s work has
shown that thread-local analysis can be run with a very e9cient and scalable special-
ized alias analysis [25]. It is likely that reentrant and enclosed lock analyses could be
designed to work with a similar specialized alias analysis; this is an important area
of future work.

6. Future work

Several interesting areas of future work remain. Since long analysis times is a sig-
niBcant drawback of our work, it would be interesting to combine our Beld-traversing
thread-local analysis with Ruf’s alias analysis [25]. Such a combination should be
as e9cient as Ruf’s analysis, while distinguishing between Beld reads and writes in
order to get precision better than either work could alone. Summary and uniBcation-
based alias techniques could also be applied to our unshared Beld analysis and
enclosing lock analysis, potentially allowing better and more e9cient results. Our

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 117

current analyses must be re-run on the whole program whenever any change is made
to the code; in a more modular version of the analyses, only a6ected portions of the
program would have to be re-analyzed. An analysis similar to unshared Beld analy-
sis could be applied to unboxing objects to represent them inline, inside a container
object. There may also be other forms of unnecessary synchronization that could be
optimized.

Perhaps the most important area of future work is designing and evaluating more
e6ective language mechanisms for synchronization. As described earlier, Java’s default
of not synchronizing without an explicit annotation makes easy to omit a single dec-
laration, possibly leading to dangerous data races. While alternative mechanisms, such
as synchronizing at every method call, have been proposed, it is not clear whether
such mechanisms are useful in practice. Our work suggests that compiler technology
can eliminate the runtime costs of such models, but more evaluation of their e6ects on
software engineering is necessary.

7. Conclusion

The synchronization analyses described in this paper, namely thread-local, lock, and
unshared Beld analysis, resulted in a large decrease in dynamic synchronization oper-
ations for most programs, enabling programmers to use clean synchronization models
without incurring signiBcant extra cost. The thread-local algorithm was the most ef-
fective of the three: its dramatically increased performance over previously published
thread-local analyses demonstrates the importance of considering thread interactions
when eliminating unnecessary synchronization from Java programs. Three of our bench-
marks experienced speedups of 37–53%; other benchmarks we evaluated also improved,
but to a far lesser extent, because the frequency of synchronization operations in them
was low. The results show that our analyses for automatically eliminating unneces-
sary synchronization enable programmers to more easily write reusable, maintainable,
and correct multithreaded programs without worrying about excessive synchronization
cost.

Acknowledgements

This work has been supported by a National Defense Science and Engineering
Graduate Fellowship, ONR contract N00014-96-1-0402, NSF grant CCR-9503741, NSF
Young Investigator Award CCR-9457767, and gifts from Sun Microsystems, IBM,
Xerox PARC, and Object Technology International. We appreciate feedback from
Allan Heydon, John Whaley, Martin Rinard, Bruno Blanchet, William Pugh, and the
anonymous reviewers. We also thank the authors of our benchmarks: JavaSoft (javac,
javadoc, jws), Philip Wadler (pizza), Andrew Appel (jlex and javacup), and
Greg Badros (cassowary).

118 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

Appendix A. Webserver code

import java.util.Random; public synchronized void reset() {
class Pair { current = first; }

private Object first;
private Object second; public synchronized boolean hasMore() {

return current != null; }
public Pair(Object f, Object s) {

first = f; second = s; } public synchronized void add(Object o) {
first = new Pair(o, first); }

public synchronized Object getFirst() { }
return first; }

public synchronized Object getSecond() { class WriterThread extends Thread {
return second; } public void run() {

public synchronized void setFirst(Object f) int myMaxNumber = 100;
{ first = f; } while (myMaxNumber < 10000) {

public synchronized void setSecond(for (int i = 0; i < 100; ++i) {
Object s) { second = s; } Webserver.dataTable.put(

} new Integer(myMaxNumber),
String.valueOf(myMaxNumber));

class Table { myMaxNumber++;
private List entries[]; }
private int capacity; synchronized(Webserver.maxNumberLock) {

Webserver.maxNumber = myMaxNumber;
public Table() { }

capacity = 13587; }
entries = new List[capacity]; System.out.println("Writer complete");
for (int i = 0; i < capacity; ++i) }

entries[i] = new List(); }
}

class ReaderThread extends Thread {
public synchronized Object get(Object key) { public void run() {

return getEntry(key).getSecond(); int myMaxNumber;
} Random rand = new Random();

for (int i = 0; i < 1000; ++i) {
public synchronized void put(Object key, synchronized(Webserver.maxNumberLock) {

Object value) myMaxNumber = Webserver.maxNumber;
Pair entry = getEntry(key); }
entry.setSecond(value); for (int j = 0; j < 100; ++j) {

} int index = Math.abs(
rand.nextInt()) % myMaxNumber;

private synchronized Pair getEntry(Object Webserver.dataTable.get(
key) { new Integer(index));

int index = key.hashCode() % capacity; }
List l = entries[index]; }
l.reset(); System.out.println("Reader complete");
while (l.hasMore()) { }

Pair p = (Pair) l.getNext(); }
if (p.getFirst().equals(key))

return p; public class Webserver {
} public static void main(String args[]) {
Pair p = new Pair(key, null); /* set up data table */
l.add(p); maxNumber = 100;
return p; dataTable = new Table();

} maxNumberLock = new Object();
} for (maxNumber = 0; maxNumber < 100;

++maxNumber) {
class List { dataTable.put(new Integer(maxNumber),

private Pair first; String.valueOf(maxNumber));
private Pair current; }

for (int threadNum = 0; threadNum < 8;
public synchronized Object getNext() { ++threadNum) {

if (current != null) { new ReaderThread().start();
Object value = current.getFirst(); }
current = (Pair) current.getSecond(); new WriterThread().start();
return value; }

J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120 119

}
else public static Table dataTable;

return null; public static int maxNumber;
} public static Object maxNumberLock;

}

References

[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y.S. Ramakrishna, D. White, An e9cient meta-lock
for implementing ubiquitous synchronization, in: Proc. 14th Conf. Object-Oriented Programming
Systems, Languages, and Applications, November 1999.

[2] J. Aldrich, C. Chambers, E.G. Sirer, S.J. Eggers, Static analyses for eliminating unnecessary
synchronization from Java programs, in: Proc. 6th Internat. Static Analysis Symposium, September
1999.

[3] D. Bacon, R. Konuru, C. Murthy, M. Serrano, Thin locks: featherweight synchronization for Java, in:
Proc. SIGPLAN 1998 Conf. on Programming Language Design and Implementation, June 1998.

[4] B. Blanchet, Escape analysis for object-oriented languages. Application to Java, in: Proc. 14th Conf. on
Object-Oriented Programming Systems, Languages, and Applications, November 1999.

[5] J. Bogda, U. Holzle, Removing unnecessary synchronization in Java, in: Proc. 14th Conf. on
Object-Oriented Programming Systems, Languages, and Applications, November 1999.

[6] J.D. Choi, M. Gupta, M. Serrano, V.C. Sreedhar, S. Midki6, Escape analysis for Java, in: Proc. 14th
Conf. on Object-Oriented Programming Systems, Languages, and Applications, November 1999.

[7] J. Corbett, Using shape analysis to reduce Bnite-state models of concurrent Java programs, in: Proc.
Internat. Symp. on Software Testing and Analysis, March 1998, A more recent version is University of
Hawaii ICS-TR-98-20, available at http://www.ics.hawaii.edu/∼corbett/pubs.html.

[8] J. Dean, G. DeFouw, D. Grove, V. Litvinov, C. Chambers, Vortex: an optimizing compiler for
object-oriented languages, in: Proc. 11th Conf. on Object-Oriented Programming Systems, Languages,
and Applications, October 1996.

[9] D.L. Detlefs, K. Rustan M. Leino, G. Nelson, J.B. Saxe, Extended static checking, Compaq SRC
Research Report No. 159, 1998.

[10] P. Diniz, M. Rinard, Lock coarsening: eliminating lock overhead in automatically parallelized
object-based programs, J. Parallel Distribut. Comput. 49 (2) (1998) 218–244.

[11] R. Fitzgerald, T.B. Knoblock, E. Ruf, B. Steensgaard, D. Tarditi, Marmot: an optimizing compiler for
Java, Microsoft Technical Report, November 1998.

[12] J. Gosling, B. Joy, G. Steele, The Java Language SpeciBcation, Addison-Wesley, Reading, MA, 1996.
[13] D. Grove, G. DeFouw, J. Dean, C. Chambers, Call graph construction in object-oriented languages, in:

Proc. 12th Conf. on Object-Oriented Programming Systems, Languages, and Applications, 1997.
[14] S.P. Harbison, Modula-3, Prentice-Hall, Englewood Cli6s, NJ, 1992.
[15] A. Heydon, M. Najork, Performance limitations of the Java core libraries, in: Proc. 1999 ACM Java

Grande Conference, June 1999.
[16] T.E. Jeremiassen, S.J. Eggers, Static analysis of barrier synchronization in explicitly parallel programs,

in: Internat. Conf. on Parallel Architecture and Compilation Techniques, August 1994.
[17] A. Krall, M. Probst, Monitors and exceptions: how to implement Java e9ciently, ACM 1998 Workshop

on Java for High-Performance Network Computing, 1998.
[18] B. Lampson, D. Redell, Experience with processes and monitors in Mesa, Commun. ACM 23 (2)

(1980) 105–117.
[19] D. McAllester, On the complexity analysis of static analyses, in: Proc. 6th Internat. Static Analysis

Symposium, September 1999.
[20] G. Naumovich, G.S. Avrunin, L.A. Clark, An e9cient algorithm for computing MHP information for

concurrent Java programs, in: Proc. 7th European Software Engineering Conf. and 7th Internat. Symp.
on Foundations of Software Engineering, September 1999.

[21] T. Onodera, K. Kawachiya, A study of locking objects with bimodal Belds, in: Proc. 14th Conf.
Object-Oriented Programming Systems, Languages, and Applications, November 1999.

http://www.ics.hawaii.edu/~corbett/pubs.html

120 J. Aldrich et al. / Science of Computer Programming 47 (2003) 91–120

[22] J. Plevyak, Optimization of object-oriented and concurrent programs, Ph.D. Thesis, University of Illinois
at Urbana-Champaign, 1996.

[23] J. Plevyak, X. Zhang, A. Chien, Obtaining sequential e9ciency for concurrent object-oriented languages,
in: Proc. 22nd ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, January 1995.

[24] W. Pugh, Fixing the Java memory model, in: Proc. Java Grande Conference, June 1999.
[25] E. Ruf, E6ective synchronization removal for Java, in: Proc. SIGPLAN 2000 Conf. on Programming

Language Design and Implementation, June 2000.
[26] R. Rugina, M. Rinard, Pointer analysis for multithreaded programs, in: Proc. SIGPLAN 1999 Conf. on

Programming Language Design and Implementation, May 1999.
[27] O. Shivers, Control-Flow analysis in Scheme, in: Proc. SIGPLAN 1988 Conf. on Programming Language

Design and Implementation, July 1988.
[28] S. Singhal, B. Nguyen, R. Redpath, M. Fraenkel, J. Nguyen, Building high-performance applications

and services in Java: an experiential study, IBM T.J. Watson Research Center white paper, available at
http://www-106.ibm.com/developerworks/library/javahipr/javahipr.html, July 1997.

[29] E.G. Sirer, R. Grimm, A.J. Gregory, B.N. Bershad, Design and implementation of a distributed virtual
machine for networked computers, in: Proc. 17th ACM Symp. on Operating Systems Principles,
December 1999.

[30] J. Whaley, M. Rinard, Compositional pointer and escape analysis for Java programs, in: Proc. 14th
Conf. Object-Oriented Programming Systems, Languages, and Applications, November 1999.

http://www-106.ibm.com/developerworks/library/javahipr/javahipr.html

	Comprehensive synchronization elimination for Java
	Introduction
	The synchronization problem
	Cost of synchronization in Java
	Types of unnecessary synchronization
	Unnecessary synchronization frequency by type

	Related work
	Analyses
	Analysis language
	Analysis axioms
	Thread-local analysis
	Lock analysis
	Unshared field analysis
	Optimizations
	Implementation

	Results
	Dynamic evaluation of the synchronization analyses
	A simpler synchronization model
	Analysis time

	Future work
	Conclusion
	Acknowledgements
	References

