View metadata, citation and similar papers at_core.ac.uk brought to you bnyORE

provided by Elsevier - Publisher Connector

From Rewrite Theories to Temporal Logic
Theories

Grit Denker!

Computer Science Laboratory
SRI International

Menlo Park, CA 94025
denker@csl.sri.com

Abstract

The work presented here aims at bridging the gap between executable specifications
and formal verification. In this paper we combine two levels of description without
changing the framework. The operational level of Maude/rewriting logic and the
property-oriented level of temporal logics are combined. The combination is done by
an embedding. We propose a distributed temporal logic as an extension of rewriting
logic. Rewriting logic is primarily a logic of change in which the deduction directly
corresponds to the computation. In contrast to that, temporal logic is a logic to talk
about change in a global way. Especially, more complex system properties such as
safety and liveness can be regarded in a temporal logic setting. In our approach we
maintain the possibility of executing Maude specifications on the rewrite machine
for validation purposes, and add the possibility of formally reasoning about Maude
specifications in a temporal logic setting. The work presented focuses on object-
oriented Maude specifications.

1 Introduction and Related Work

This paper proposes a distributed temporal logic as an extension of rewriting
logic. Rewriting logic [Mes96b,Mes92] is primarily a logic of change in which
the deduction directly corresponds to the change. In contrast to that, temporal
logic is a logic to talk about change in a global way. Especially, more complex
system properties such as safety and liveness can be regarded in a temporal
logic setting. Both levels of description and analysis are useful in their own
right; in fact, they complement each other. We therefore plan to use both
logics in combination to prove properties about distributed systems. In this

1 Work reported here was supported under HSPIII by German Federal and State Govern-
ment, through DAAD and partly by DARPA through Rome Laboratory Contract F30602-
97-C-0312.

©1998 Published by FElsevier Science B. V. Open access under CC BY-NC-ND license

https://core.ac.uk/display/82445587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

A4S AN IA LV

paper we provide the fundamentals of this goal by embedding rewriting logic
into a temporal logic.

A variety of different modal or temporal logics can be chosen. We con-
sider Distributed Temporal Logic (D11) [ECSD98]|, a logic which is especially
suited for capturing the nature of distributed systems. We intend to use tem-
poral logic to express the dynamics of object-oriented specifications in Maude
[Mes93] which is based on rewriting logic. We generalize DrL to DrL™ since
DTr assumes synchronous communication. In Maude systems, object commu-
nication may be synchronous, asynchronous, or a combination of both.

The main emphasis of DTL is to directly reflect the concurrent nature of
a distributed system. For this purpose, the models of DTL* and DtL are
concurrent labeled event structures which naturally express causality, conflict,
and concurrency. Synchronization is modeled by shared events. The logics
allow to formulate assertions about a system from the local viewpoints of the
objects which belong to the system. We do not assume a global view on the
system, but rather understand a system as a collection of concurrently existing
and communicating objects and messages.

There exist other approaches to integrating a notion of time into rewriting
logic or embedding rewriting logic into a framework capable of expressing tem-
poral properties. Kosiuczenko and Wirsing [KW95] propose Timed Rewriting
Logic to deal with time-sensitive systems. In their approach each rewriting
step is labeled with a time stamp. Olveczky and Meseguer [OM%] propose
a semantic framework for modeling real-time and hybrid systems in rewriting
logic. They do not extend rewriting logic but show how real-time systems can
be formally specified in standard rewriting logic. The work presented here is
not capable of dealing with real-time issues. Bridging the gap toward real time
can be done by adapting ideas from real-time temporal logics such as Duration
Calculus or Metric Temporal Logic (see [AH92] for an overview about logics
of real time).

An approach closer to ours is the work done by Lechner [Lec97,Lec96]. She
uses the p-calculus for property-oriented descriptions of systems. Our work
mainly differs from hers in the underlying model and in the way the use of tem-
poral logics is integrated in the overall design process. First, Lechner defines
Maude’s semantics in the form of a labeled transition system. p-formulas are
interpreted over a (global) transition system. A state of the transition system
represents a global state and, therefore, pu-formulas reflect global assertions.
Second, we use temporal logic in a different way than Lechner does. Lechner
proposes a three-level approach to specification: at the most abstract level, p-
formulas express properties of the intended system; at the intermediate level,
formulas are blended with propositions on object states; and Maude is used
at the concrete level. An appropriate notion of refinement is proposed to
establish relationships between these levels. Our approach follows a different
design process. We translate a given Maude specification into a temporal logic
theory. There is no refinement involved, and specification and verification is

2

A4S AN IA LV

done in the same temporal logic.

The work presented here is part of a more general approach toward bridging
the gap between executable specifications and formal verification. In this
paper we combine both these levels of description, the operational one of
Maude and the property-oriented one of temporal logics, without changing
the framework. We maintain the possibility of executing Maude specifications
on the rewrite machine for validation purposes, and add the possibility of
formally reasoning about Maude specifications in a temporal logic setting.
The result of the mapping, the temporal logic theory, serves as a basis for
further verification. Independent from the Maude specification, further desired
(complex) properties of the system can be formulated. We focus here on the
theory mapping and future work will deal with verification issues.

Section 2 gives an overview of the steps undertaken to transform an object-
oriented Maude specification into a distributed temporal logic theory. Through
out the paper we use a simple example for illustrating the ideas. This example
is introduced in Section 3. The syntax of the distributed temporal logic DTr.™
is presented in Section 4. Moreover, we define some special “logical macros”
to deal with Maude specifications and illustrate the translation into a tempo-
ral theory by example. Section 5 discusses the model construction for a given
rewrite theory. In Section 6 we conclude with some remarks on future work
concerning temporal reasoning about Maude specifications.

2 Overview

The focus of this paper is on object-oriented Maude specifications. Our aim
is to transform a Maude specification into a temporal logic theory. Our plan
in achieving this is as illustrated in Figure 1.

original Maude spec. extended Maude spec. rewrite theory temporal logic theory
M M’ R TLR)
c c
TR - = B(TR)
substructure of initial model system behavior

(coherent, ground configurations) event structure model

Fig. 1. Plan.

The first stage is to enrich a given object-oriented Maude specification with
regard to the following three aspects. (1) Creation and deletion of objects and
messages is reflected via attributes. Thus, we will be able to deal with object
creation and deletion in our model as well as to distinguish between dead-
locked versus deleted objects. (2) Messages are treated as objects with a very
specific, restricted behavior. Thus, an appropriate identification mechanism
for messages is proposed such that they can be uniquely identified over a sys-
tem run, and messages have attributes. Configurations in which identification

3

A4S AN IA LV

of objects and messages is unique are called coherent. (3) A rewrite rule to
deal with initial configurations is established. This will be useful when we
construct models. We want to make sure that only those system runs are
considered which start from one of the specified initial configurations.

Given the extended specification we can transform it into a rewrite theory
R = (3, E, L, R) with a signature X, equations E, labels L, and rewrite rules
R. The rewrite theory is transformed into a temporal logic theory 7L(R)
by keeping the signature and equations and transforming rewrite rules into
temporal formulas. Additional frame rules are defined.

The initial model 7z (X) of R is a category whose objects are equivalence
classes of terms and whose morphisms are equivalence classes of proof terms
representing proofs in rewriting deduction, that is, concurrent R-rewrites.
We consider a substructure of this model. 73 is the substructure of the initial
model in which all proof terms start with a coherent, initial, ground configura-
tion and transform between coherent ground configurations (details are given
in Section 5.2). This substructure serves as a basis to construct an event
structure model. More particularly, we construct a concurrent event structure
model B(75) over the proof terms in 7. We then show that the constructed
model is a model for the temporal logic theory TL(R).

3 A Simple Example: Communicating Variables

The emphasis of this work is on object-oriented specifications. Thus, we as-
sume rewrite rules of an object-oriented specification, that is, labeled rules
with a set of objects and messages on both sides of the rule. The general form
required of rewrite rules in an object-oriented specification of Maude is

roMy...M, O;...0, —O;,...0; Qi...Q, My...M, if C

where k,p,q > 0, the M’s are message expressions, iq,...,1, are different
numbers among the original 1,...,m, and C is the rule’s condition. We leave
out the possibility of class migration. In future work we will investigate how
this can be incorporated into our framework.

We illustrate the object-oriented concepts of Maude and the main ideas
about the transformation steps by means of an example: variables which com-
municate by message passing. A similar example can be found in [ECSD98].

3.1 Original Maude Specification

Let us consider a communication system which consists of two objects, a
sender s and a receiver r. Both objects represent variables which can store
a natural number (val), and have a set of natural numbers they can choose
from to change the value of the attribute val. The sender stores the identity
of its communication partner (rec). The sender object alternately may pick
one number from its set and store it as the current value or forward the
current value to its communication partner while setting the value to zero.

4

A4S AN IA LV

Independently from the receiver object’s value, after receiving a message from
the sender object the receiver value is set to zero.

omod CommunicatingVariables is

sorts Nat NatSet

subsort Nat < NatSet

ops 01 2 3: -> Nat

op _._: NatSet NatSet —> NatSet [comm assocl]

class Variable | val: Nat, set: NatSet
class Sender | rec: 0I4d .

class Receiver .

subclass Sender Receiver < Variable .

msg to : 0Id Nat -> Msg .
var SRV : 0Id . vars N M : Nat . var Set : NatSet

crl [choose_and_change]
<V ; Variable | val: 0, set: N.Set > => < V ; Variable | val: N >
if N =/=0 .

crl [send]
< S ; Sender | val: N, rec: R > => < S ; Sender | val: 0 > to(R,N)
if N =/=0 .

crl [receive]
< R ; Receiver | val: N > to(R,M) => < R ; Receiver | val: 0 >
if N =/=0 .

op Initial : -> Configuration .

ops s r: 0Id .

eq Initial = < s ; Sender | val: O, set: 1.2.3, rec: r >
< r ; Receiver | val: 0, set: 1.2.3 >

endom

The conditions of the rules imply that a sender object can only alternately
execute the rules choose and change and send. Analogously, the receiver ob-
ject may only alternately receive a message or change its value.

3.2 FExtended Maude Specification

Our goal is to extend an object-oriented Maude specification due to several
requirements. The main emphasis is to treat objects and messages in the same
way. Let us first motivate this goal before we go into details concerning the
extension of specifications.

A4S AN IA LV

Unlike in other object-oriented approaches, messages are not associated
with objects in Maude. Messages exist independently from objects, and as
such they may be created and deleted independently from a specific object. As
a consequence, a variety of communication principles is expressible in Maude.
For instance, asynchronous and synchronous communication between two or
more objects can be described by rewrite rules. Since the form of a rewrite rule
does not restrict the way in which objects and messages may appear, messages
cannot be handled as parts of objects. As a solution we have decided to treat
messages and objects in the same way. As will become clear in Section 4, our
logic provides principles to express a system as a set of communicating agents.
In our setting, agents are either objects or messages. Therefore, we decided to
treat messages as objects which behave in a very restricted way. A message
may be created with a specific content and it may be deleted in the next step
or it will remain in the system for the rest of its life. Thus, a message life
cycle essentially consists of one or two states, the state after its creation and
possibly one more state if it is destroyed. To treat messages like objects, we
must be able to uniquely identify messages and to talk about the state of a
message (i.e., existing vs. destroyed, the message’s content).

For our approach we assume that Maude specifications are transformed in
such a way that (1) messages are uniquely identifiable and have attributes, (2)
creation and deletion of objects and messages is reflected in attributes, and
(3) initial configurations are understood as special rewrite rules on a prenatal
configuration. There are different ways to achieve these three issues. We will
propose a specific solution which will be the basis to prove the soundness of
the event structure construction to be presented in Section 5.2.

ad (1): The way in which messages are usually specified in Maude speci-
fications does not guarantee their uniqueness over a possible system run. For
instance, given a configuration of a specification, several messages with iden-
tical names and values may exist. To uniquely identify the occurrence of a
message, that is, a message instance during the computation of the system,
we must introduce further parameters. A solution proposed in [MT98] is to
introduce an extra counter for every object and use this counter together with
the object identifier as an identity for the message. Generally, it is sufficient
to use the identity and counter of one object that is involved in the creation
of a message. Thus, we assume a message identifier sort MId. At the end of
this section we propose a solution for our running example.

ad (2): Dynamic creation and deletion of objects and messages require
special treatment. In our model, objects and messages are modeled by (sets
of) life cycles, that is, sequences of events. An infinite life cycle represents an
object which persistently exists. A finite life cycle may represent either (a) a
deadlocked object or message or (b) an object or message which temporarily
existed in the system and has been destroyed. To distinguish between a dead-
lock state, that is, a state in which an object or a message exists but can no
longer evolve, and a state which is the last one in a life cycle before the object

6

A4S AN IA LV

or message has been destroyed, we introduce a boolean existence attribute
which is abbreviated by . If * = true holds in the last state of a finite life
cycle then the object or message exists and is deadlocked; if x = false holds
in the last state of a finite life cycle then this object or message is deleted.
A rewrite rule of the original specification is modified in the following way.
First, each object and message on the left-hand side of the rule is extended
by enforcing * = true to be valid. Second, each object or message deleted in
a rule is copied to the right-hand side with * = false. In this way, objects
or messages in a configuration are not deleted; rather, they are marked as
destroyed. Third, each new object or message is created with the value * =
true.

Moreover, for each message we assume a content attribute cnt to be de-
fined. The content of a message consists of the message name and its param-
eter values. Thus, we can think of a message in the same way we understand
objects. A message has an identity and it has two attributes, one for its
existence and another to store its content. Therefore, we define a class of mes-
sages: class Message | cnt: Msg, *: Bool. We can represent messages in
the same way we represent objects, that is, a message with identity m is rep-
resented as < m; Message | cnt: v, *: b > A possible transformation for
our running example is given at the end of this section.

ad (3): Our models are sets of possible system runs where each run starts
in one of the defined initial configurations. Each proof term represents a finite
behavior. We introduce a new rule start which is by default contained in
every Maude specification. Applying this rule delivers an initial configura-
tion: rl [start]: PreNatal => C, C: IConf. IConf is a subsort of the sort
Configuration. PreNatal is defined as a special configuration: op PreNatal :
-> Configuration. A declared initial configuration of a Maude specification
can be used to instantiate the start rule. Let op Initial : -> IConf be
an operation definition and let [C <- Initial] be a notation to express vari-
able assignment. Then, we can derive the following instantiated rule start ([C
<- Initiall): PreNatal => Initial. A specification transformation satis-
fying all mentioned requirements may result in the following extended Maude
specification.

omod CommunicatingVariables’ is

sorts Nat NatSet .

subsort Nat < NatSet .

ops 01 2 3: -> Nat .

op _._: NatSet NatSet -> NatSet [comm assoc].

sorts IConf MId .

subsort IConf < Configuration .

class Variable | val: Nat, set: NatSet, *: Bool .
class Sender | rec: 0Id, counter: Nat .

A4S AN IA LV

class Receiver .
subclass Sender Receiver < Variable .

class Message | cnt: Msg, *: Bool .
op (_,_): 0OId Nat -> MId .
msg to: 0Id Nat -> Msg .

var SRV : 0Id . vars NM L : Nat . var Set : NatSet

crl [choose_and_change]
<V ; Variable | val: 0, set: N.Set, *: true >
=> < V ; Variable | val: N > if N =/= 0 .

crl [send]
< S ; Sender | val: N, rec: R, counter: M, *: true >
=> < S ; Sender | val: 0, counter: M+1 >
< (S,M); Message | cnt: to(R,N), *: true > if N =/= 0 .

crl [receive]

< R ; Receiver | val: N, *: true >

< (S,L); Message | cnt: to(R,M), *: true >

=> < R ; Receiver | val: 0 > < (S,L); Message | *: false >
if N =/=0 .

var C: IConf
op PreNatal : —-> Configuration .

rl [start]: PreNatal => C .

ops s r: 0Id .

op Initial : -> IConf

eq Initial =
< s ; Sender | val: 0, set: 1.2.3, rec: r, counter: 1, *: true >
< r ; Receiver | val: 0, set: 1.2.3, *: true >

endom

4 The Logic D"

DtiT is a distributed temporal logic in the spirit of DL and D; [ECSD9S].
DtL and D; assume synchronous communication as the given communication
principle. The main purpose of DrL* is twofold: (1) D™ supports several
types of communication among which one can find synchronous and asyn-
chronous communication; (2) Drr™ is designed in such a way that it can be
used as a semantic basis for Maude specifications, and, in this way, extends
rewriting logic by temporal operators. These goals are achieved by explicitly

8

A4S AN IA LV

incorporating objects as well as messages in the logic and in the interpretation
structures.

4.1 Syntax

Our logic is parameterized over rewrite theories. An extended Maude specifica-
tion can be translated into a rewrite theory R = (3, E, L, R) where ¥ = (S, Q)
is a signature with sorts S and operation symbols 2. The “desugaring” pro-
cess of transforming object-oriented modules to system modules was originally
described in [Mes93]. The currently implemented version of flattening object-
oriented modules to system modules is presented in [CDELM98,DM98]. For
our purposes it is sufficient to point out which sorts and operations we assume
to be at least in . Thus, we will not go into the details of transforming
object-oriented modules to system modules but rather mention those sorts
and operations that we assume to be in X. Later we define DTL™ as a logic
which is parameterized over data terms over a signature which provides at
least the necessary sorts and operations.

A configuration in Maude is a multiset of objects and messages. We assume
a sort Configuration in . To deal with initial configurations we introduce
a sort IConf < Configuration. Each initial configuration is a term of sort
IConf. Moreover, we assume a sort CConf, IConf < CConf < Configuration of
coherent configurations. In a coherent configuration, identifiers for messages
and objects are unique. We come back to this notion in Section 5. Each class
name C defines a data sort CId of identities of objects of that class. CId is a
subsort, of the sort of object identities OId. We assume a sort for attribute-
value pairs Att. Thus, each attribute declaration att:s gives rise to a function
att = _ : s— Att where att = v means that the attribute with identity att
has value v. For each class we have a subsort CAtt < Att of attributes of
that class. att = v is of sort CAtt only if att:s has been defined for class
C and v is a value of corresponding sort. C1Att < C2Att holds if and only
if C1 is a subclass of C2. We assume a specific sort of message identities
MId. Two attributes are defined for messages. The content of the message
is described with the help of the attribute-value pair ent = _: Msg — MA{t.
A second attribute expresses whether a message exists or is deleted, that is ,
x = _: Bool - MAtt. The attribute * is also declared for each object class
and give rise to a function x = _: Bool — CAtt. This framework allows us to
deal with objects and messages in the same way. The main difference between
objects and messages is that messages have a much more restricted behavior
than objects: a message with a specific content is created in the system and
assigned a unique identifier. Either this message remains unchanged in the
system or it is destroyed by another object which consumes the message. The
frame rules describing the restricted behavior of messages are presented below.
To summarize, the extended Maude specification determines a signature > =
(S,€2) with a set of sorts S. Given an S-indexed set X = {X;}ecs of variable
symbols, the Y-terms over X are denoted by T%(X).

9

A4S AN IA LV

For our running example the following is a sketch of part of the signa-
ture which can be derived from the extended Maude specification after the
flattening process:

S D { Variableld, Senderld, Receiverld, MId, VariableAtt,
SenderAtt, ReceiverAtt},

Q> {val=_ : Nat— VariableAtt,
set = _ : NatSet— VariableAtt,
x = _ : Bool— VariableAtt,
rec = _ : Old— SenderAtt,
counter = _ : Nat — SenderAtt,
ent = _ : Msg— MALtt,
x = _ : Bool — MAtt,

(.,-) : Old Nat— MId,
to: Old Nat— Msg,

s : — Senderld,

r: — Receiverld}.

Translating the operation definition in the extended Maude specification
would determine s,r : — OId, but taking the initial configuration into ac-
count, we get the more specialized information as given above.

Definition 4.1 Let ¥ = (S,Q2) be a signature, let t1,ty € Tx(X)s(s € S) be
data terms, let i be an identity term, i.e., an object identity term of some class
C (i € Ts(X)cra) or a message identity term (i € Ts(X)nmr1a), let a; be an
attribute term for i, i.e., if i is a message identity term then a; € Tx(X)nan
and if i is an object identity term of class C then a; € Tx,(X)caw. The syntaz
of DL is defined as follows:

DTL" = {DTL+i}iE(UCTE(X)OIdUTE(X)Mld)’
D1t =i (loeTL;),
locTL; ::= 1ty =519 | a; | false | (3z) locTL; | locTL; = locTL;
| locTL; U locTL; | locTL; S locTL; | > locTL; | comL,
comL ::= DtLY; for some identity term j # i.

U and S are the until and since temporal operators. The > operator is used
to express enabledness of transitions. >¢ means that there exists a successor
state in which ¢ holds. As usual, we introduce derived connectives such as
-, true, V,Y (yesterday/previous) and X (next).

The main difference between D™ and its predecessors DrtL and D; is
that the underlying signature of DTL™ incorporates some specific sorts such as
message identity and object identity. As a consequence, asynchronous message
passing is naturally expressible in DTLt. In contrast to that the underlying
communication principle in these logics is synchronous. Let us illustrate a way
of expressing asynchronous message passing in Drr™. Assume ¢ is a formula
about the state of object o, then o : (¢ = X(¢' Am : (x = true A ent = ¢)))

10

A4S AN IA LV

can be interpreted as if object o is in a state @ then it sends out message m
with content ¢ and changes its state to ¢'. The formula o : (@ Am : (x =
true)) = X(¢' Am : (x = false))) says that a system configuration, with an
object o in state © and a message m, goes over to a configuration where m is
deleted and o changes its state to ¢'. One may read this formula as o consumes
message m since the only prerequisite to delete message m is the existence of
object o.

In our approach we treat objects and messages in the same way. They
both have attributes and behave over time. The main difference between
objects and messages is that messages have a much more restricted behavior.
Messages are usually less persistent than objects. A message is created with a
specific content and it either remains unchanged in the system or it is deleted.
In contrast to objects, a message may not change the value of its content
attribute. Thus, one can understand messages as objects without methods
with the exception of creating and deleting a message. Using DTL™ we can
formalize frame rules for messages and objects.

For objects as well as messages it is true that after deletion there exists no
other state. The temporal operator X’ is defined as X' = —(X(—¢)), that is,
X’ holds if either there is no following state, or there is a successor state in
which ¢ holds. Let 7 be an identity term.

(1) i : (x = false = X"(G(false)))

The following formula expresses that objects and messages can only be
destroyed after they existed.

(2) i1 (x = false =Y (x = true))

In particular, due to the restricted behavior of messages, at most two dif-
ferent states are possible for a message, that is, a message exists and may
possibly be destroyed. Therefore, if a message exists, the only possible follow-

ing state is the one in which it is destroyed. Thus, let m be a message identity
term.

(3) m: (x = true = X' (x = false))

Moreover, attributes of objects and messages are functional. Let ¢ be an
identity term and let a = x,a = y be attribute terms for ¢ where z # y.

(4) i:(m(a=zNa=y)).
For objects and messages the attribute x is always defined.
(5) i: (true= (x = falseV x = true)).

We introduce a special format of DTt formulas, so-called (conditional)
rewrite formulas, which will prove useful for the translation of a rewrite theory
into a temporal logic theory.

Subsequently, we assume Maude specifications that satisfy all conditions
given in Section 3.2. That is, (1) objects and messages are uniquely identified,

11

A4S AN IA LV

(2) creation and deletion of objects and messages is reflected in attributes,
and (3) a start rule for initial configurations is defined. As a consequence of
(2), all objects and messages of the left-hand side of a rewrite rule appear also
in the right-hand side of that rule.

A rewrite rule can be translated into several DTr™ formulas. Each one of
these formulas reflects the view of one specific object. A (conditional) rewrite
formula is a compact representation for a set DT formulas. Before we give
the general definition of a (conditional) rewrite formula, we illustrate the idea
with the help of an example. Let ¢, ¢, ¥, ', and p' be formulas which express
the state of objects, that is, conjunctions of terms of sort attribute-value pair.
The rewrite rule

6) <i; Clp><j;C | o>
=><i; Cl ¢ ><j;C 1Y ><k; C| p>

can be interpreted as a synchronization between the objects i and j. The
result of applying this rule is that i and j change their state and a new object
k is created. The resulting state is understood to be distributed, that is, i,
j, and k are independent. The information inherent in such a rewrite rule
can be formulated from the different viewpoints of the objects i, j, and k.
From the viewpoint of object i it is true that it may transform from a state
© to a state ¢’ provided that it synchronizes with object j in state ¢». From
the viewpoint of object j it is true that it may transform from a state ¢ to
a state ¢’ provided that it synchronizes with object i in state ¢. Note that
the newly created object k is not part of any of the local formulas. This can
be explained as follows. From the local viewpoints of objects i and j there
is no synchronization with object k in the current state since k does not exist
yet, nor in the successor state since the successor states of all objects on the
right-hand side are independent.

In this way, a rewrite rule with several objects on the left-hand side rep-
resents a synchronization between those objects. In particular, applying this
rewrite rule requires the objects of the left-hand side to synchronize to perform
a transition to their new local states. But we do not interpret the right-hand
side of the rewrite rule as a synchronization. Rather, we emphasize the idea
of distributed systems and, therefore, understand the right-hand side of a rule
to describe a possible distributed successor state. That is, per se the objects
on the right-hand side of the rule do not synchronize.

Given this understanding of a rewrite rule, one can derive several formulas
in DT from a rewrite rule which express the local views of the objects in-
volved in the rule. From rewrite rule (6) we can derive the following two local
formulas:

(7) i ((pni: (W) =>(¥)),
(®) J:((Ai:(e))=>())
As an abbreviation for formulas (7) and (8) we introduce the following

12

A4S AN IA LV

so-called rewrite formula
{i:o, j:v}=({i¢, j:9¢'}).

A rewrite formula is a short form for a set of formulas where a fact is
expressed from different viewpoints of communicating objects, exploiting all
possible permutations on the identities. Since rewrite rules in Maude may
be conditional, rewrite formulas may be conditional. A condition in a rewrite
formula may only use variables which are part of the left-hand side of the rule.

Definition 4.2 Let iy,...,i, be pairwise distinct identity terms, i.e., each
term i, is either an object identity term of some class C (i, € Tx(X)cra) or a
message identity term (i, € Ts(X)n1a). Let i, 2 o, € DLt (v =1,...,n) be
well-formed formulas, and let I1 be the set of all permutations on {1,...,n}.
Then, a (conditional) rewrite formula

{iv: o1, da:@o, «ovy i @py et =i @), ot @y vy in @l })
for a condition ¢, where ¢ only uses variables in {iy : Y1, ia: Y2, ..\ In: Pnlt,

is defined to be the set of formulas {irq) : ((Pr() AN ir@) @ (Pr2) N v Nig(n)
(Pr(m)) A €) = >(@rpy)) | 7€ 1T}

4.2 Translating Maude Rules to DTL™: An Example

We illustrate the main ideas by means of the “Communicating Variables”
example- For variables V' € XVariableIda S e XSenderId; R e XRecez"uerIda (ONS
Xora, N, M € Xy the following formulas are given by translating the Maude
rewrite rules into (conditional) rewrite formulas.

(9) {V :(val =0Aset = N.Set A+ =true), N # 0} =
>V : (val = N)}),
(10) {S : (val = N Arec = O A counter = M N = true), N # 0} =
>({S : (val = 0 A counter = M +1)}),
(11) {R: (val = N A = true),
(S, L) : (ent = to(R, M) A\ x = true), N # 0} =
>({R: (val =0), (S, M) : (x = false)}).

As one can see, newly created objects, that is, objects which appear only
on the right-hand side of a rule, have no impact on the rewrite formulas.

More generally, the operator 7L which maps a rewrite theory to a tem-
poral logic theory is given in the following way. Given a rewrite theory
R = (X, E,L,R) we assume a signature ¥ = (5,Q) with sorts as described
in Section 4.1. The temporal logic theory TL(R) = (X, E,®) over a given
rewrite theory R consists of the signature and equations as given in R and
Drit-formulas ® given by translating rewrite rules into rewrite formulas plus
the predefined frame formulas.

13

A4S AN IA LV

5 Models for pr™

We briefly define interpretation structures for Dr™. For this purpose we adapt
interpretation structures for DrL (see [ECSD98,ESSS94]). Then, we provide
a construction of a model of a temporal logic theory which is based on the
proof terms of the underlying rewrite theory. In this way, we give an event
structure semantics to object-oriented Maude modules. The temporal logic
theory is the basis for further verification steps.

5.1 Semantics of DTL"

The reader is referred to [ECSD98,ESSS94| for more detailed information on
event structure models for object-oriented systems. Objects and messages are
sequential processes which are capable of executing transitions in a sequential
manner. An execution of a rewrite rule corresponds to an event. Sequences of
events represent a possible execution order of an object or a message. At each
state an object or a message may proceed in several ways. Thus, the set of
all possible executions has a tree structure. Allowing for several start states,
we arrive at a set of trees: a so-called grove. An event grove G is a model for
one object or one message and can be understood as a sequential prime event
structure E(G) = (Ev,—) (cf. [WNO95]). Ewv is the set of events and — is a
partial order representing causality between events. A sequential life cycle L
is a maximal, totally ordered (conflict-free) trace in G. The maximal event
of a sequential, finite life cycle is the one which causally depends on all other
events, that is, e € L maximal iff V' € L : ' — e.

For our purposes we assume a unique minimal event ¢ € Ev and denote
proper events as Fvt = Ev — {e}. € corresponds to a prenatal state, that is ,
a state where no rewrite rule occurred so far. To provide interpretation struc-
tures, each proper event is labeled with a set of object or message attributes,
that is, attribute-value pairs. Given the quotient term algebra Tx p we are
interested in the subalgebra (I, Att) = (I, {Att;};c;) of congruence classes of
identity and attribute terms. A labeling for an event grove GG and an object
or message i is a total function \; : Evt — 24% Interpretation structures
for systems are distributed labeled event groves (G,\) = (U,c; Gi, {i}ier),
where G; is an event grove. (G, \) is called a system behavior. Intuitively, a
distributed event grove is a family of local event groves that may share events,
that is, the local event sets need not be disjoint. A distributed event grove may
be considered as a presentation of a prime event structure E(G) = (Ev, —, #).
is the symmetric, irreflexive conflict relation representing choice. Events
which are neither in causal relation nor in conflict relation are called concur-
rent events. Thus, a sequential prime event structure is a prime event structure
without concurrency, that is, Ve, f : Ev,~(e— f V f—e¢e) = e#f holds in a
sequential prime event structure. A distributed life cycle L = |J,.; L; in G
is the union of sequential life cycles L; = {e € L | e € Ev;}, i.e., maximal
traces in G;. For a given rewrite theory R = (X, FE, L, R), the logic is in-

14

A4S AN IA LV

terpreted over the corresponding subalgebra (I, Att) of Ty g, a tuple (B, L),
where B = (G, \) is a system behavior, and a distributed life cycle in G:
L € L(G). In particular, formulas are interpreted for a variable assignment 6
in a local event e € Ev'. Data terms are to be interpreted globally in Ty g.
The satisfaction relation is very similar to the one presented in [ECSD98].
Given this semantics one can show that a rewrite formula as introduced in
Section 4.1 is an abbreviation for a set of formulas which are all equivalent.

Proposition 5.1 All formulas in U := {iy : ¢1, @2 : Pa, ..., i : Qp,C} =
>({i1 = @, da:@h, ooy iy L)) are equivalent, i.e., for a given system
behavior B = (G, \) and arbitrary, but fixed formulas 1, " € ¥ it holds that
B satisfies v iff B satisfies '.

5.2 A Model Construction

Given a rewrite theory R = (X, F, L, R), the initial model is a category Tz (X)
whose objects are equivalence classes of terms [t] € Tx g(X) and whose mor-
phisms are equivalence classes of proof terms representing proofs in rewrit-
ing deduction, that is, concurrent R-rewrites (for details see, for instance,
[Mes92,Mes93]). We intend to construct a model from those proof terms
which start with the application of the start rule. We assume that all pos-
sible initial configurations are ground terms and that all rewrite rules do not
introduce new variables on the right-hand side. Therefore, all proof terms
will transform between congruence classes of ground terms in Ty, . Moreover,
we make some assumptions about the nature of configurations. We assume
so-called coherent configurations. In a coherent configuration, identities of
objects and messages are unique. We require that an application of a rewrite
rule to a coherent configuration results in a coherent configuration. Moreover,
we assume that a rewrite step in a proof term is unique (as, for instance, done
by introducing the identifying parameter in our example). We will exploit this
by using the rewrite steps to give unique names to the events of the model.
The ideas for coherent configurations are borrowed from [MT98]. Let 7% be
the substructure of the initial model 7Tz (X) in which proof terms satisfy the
above conditions.

The first partial order semantics for concurrent objects has been presented
in [MT98]. Meseguer and Talcott assume object-oriented specifications which
satisfy the conditions for coherent configurations. The application of a proof
term to a given start configuration involves several rewrites and ultimately
leads to another configuration. In [MT98] a partial order of rewrite events is
constructed over the structure of a proof term. The result is a category whose
objects are coherent configurations and whose morphism are partial orders
of events. Meseguer and Talcott show that two proof terms in 75(X) are
provably equivalent if and only if their associated partial orders are the same.
There are some differences to our work. First, we explicitly introduce messages
as a special kind of objects to treat objects and messages homogeneously in our

15

A4S AN IA LV

framework. Second, we construct sequential models for objects and messages
which reflect the local viewpoints of them, that is, we do not assume a global
configuration as done in [MT98]. In the future we will investigate the exact
relation between the event structure model presented here and the model given
in [MT98|.

Subsequently, we refer to (I, Att) as being the subalgebra of T% g of con-
gruence classes of identity and attribute terms. Because of the restrictions
we make on proof terms, all coherent configurations which appear in proof
terms, will be ground. For such configurations we define two functions: a
function ids which maps a coherent, ground configuration to a set of iden-
tity terms and for each identity term ¢ a function [; which maps to a set of
attribute-value pairs. ids : CConf — 2UcTs.craVTomia) gives identity terms
for a coherent, ground configuration. For a given coherent, ground config-
uration C', we refer to the elementwise interpretation of identity terms as
ids™=2(C) = {[i] | i € ids(C)} € I. ids is extended to a function on rewrites
r(6) by applying ids to the coherent, ground configurations on both sides
of the rule. Moreover, we define a labeling function [; which for a given
coherent, ground configuration C' gives the set of all attribute-value terms
of the object with identity i. Thus, [; : CConf —2"=cau if § € Ty crq or
N : CConf — 2Tsmar if € Ty, 1114, respectively. We also interpret attribute-
value pairs in the quotient term algebra. For a given coherent, ground con-
figuration C' and an identity term 4, liTE’E(C) € Atty is the set of congruence
classes of attribute-value terms.

The idea is to build the system model as a set of distributed life cycles.
Each proof term determines a distributed life cycle. Proof terms are of the
following form:

c.c .o

. C,C",C" . CConf

Ca—ﬁ>0"
@ / B /
¢ CaﬂD D, C,D,CD:CConf
CD—C'D
C
———— C:CConf
c —C

r:C —C"in R
r(@):0(C) — 6(C")

, 0 substitution, C,0(C) : CConf

Before we go into details concerning the model construction we will il-
lustrate the ideas with the help of our example. Given the extended Maude
specification in Section 3.2, one possible proof term is

start ([C <- initiall);
(choose_and_change([v <- s, N <=1, Set <- 2.3])
choose_and _change([V <- r, N <- 1, Set <- 2.3]));

16

A4S AN IA LV

send([S <- s, N <- 1, R<-r, M < 1]));
receive([R <- r, N <- 1, S<- s, L <- 1, R < r, M <= 11)).

| \% _ & s o
° ° ° ° ‘ & = & (s,2)
& & &s, 1) &s, 2)
'' el e2
e s 1) §s.2)
Y S s, s -
: .S/\r ° ° €3= g5, 10 ©4
el e2
,,, eb5 eb
e v
_ £ £ : _ €
€ = € (s,1) (s, 2) : € = € (s,2)
S r ° S r °
el e2 el e2
i 3:8(3,1)
e3 e4 4 6
ed=¢e
e5 \
e7 e8

Fig. 2. Construction of part of a distributed life cycle.

In Figure 2 we illustrate the four steps in building a distributed life cycle
from the above proof term. The first box illustrates the prenatal life cycle.
The distributed life cycle in the second box is the result of applying the rule
start ([C <- initiall). In the third box the distributed life cycle which is
the result of the concurrent application of both choose_and change rules is
depicted.

We have abbreviated the event names in the figure. More precisely, the
names are derived from the rule names, the substitution, and the object, that
is,

el=start ([C <- initiall)g,

e2=start ([C <- initiall)ry,

e3=choose_and_change ([V <- s, N <- 1, Set <- 2.3])g,
e4=choose_and_change ([V <- r, N <- 1, Set <- 2.3]),,

eb=gend([S <- s, N <- 1, R<-r, M <- 1])g,

eb=send([S <- s, N<- 1, R<-r, M <- 1])(3,1),

e7=receive([R <- r, N<- 1, S<- s, L<-1, R<-r, M<- 1])(3’1),
e7=receive([R <- r, N <- 1, S<- s, L<- 1, R<-r, M <- 1])r.

17

In the distributed life cycle in the fifth box the following are examples of pairs
of concurrent events: (el, e2), (e3, e2), (e4, e5), (e5, e7), (e7, e8).
Moreover, the following holds

el, e3, e5 € FEug,
e2, ed, e7 € FEuy,
eb, e7EE’U(S’1).

The general algorithm for constructing a distributed life cycle from a proof
term is as follows.

Definition 5.2 Let R = (X, E, L, R) be a rewrite theory and let Tx, g be the
quotient term algebra. Let (I, Att) be the subalgebra of Ts g of congruence
classes of identity and attribute terms. Let TS be the substructure of the
initial model Tr(X) in which all proof terms start with the application of the
start rule and transform between ground, coherent configurations. Let ids™>F
and lZ-TE’E be functions as defined above. Let Lyrenata = ({€; | i € I},0,0) be
the prenatal life cycle. From a proof term « we construct a distributed (finite)
labeled life cycle L, = (Lv, —, \) as the result of BuildDLC(Lyenatar,). For
a labeled life cycle L = (Lv,—, \), BuildDLC(L,«) is inductively defined
over the structure of the proof term «:

e aa=C _C. C': return L.

e a=r1():0(C)—0(C"): Let ids(r(0))™= = {[ir],...,[in]} be the set
of congruence classes of identity terms of objects which are involved in the
rule. With 7%, v =1,...,n we denote the maximal events in the current
life cycle of those objects which are involved in the rule. We identify all
these maximal events to express the need for synchronization, i.e., €™ =
egﬁw = eg?u“]w, v,ip = 1,...,n. Names for the new events are constructed by

using the identity, the rule, and the substitution, i.e., 17;,1(6).

Return (Lv U, r,1(0), = U, (€™ =n,116,0(0)), X'), where X' extends A

Ty g]
by A,y (ri,1(0)) = 1,77 (0(C)) (v=1,...,n).
* a= [3;7: return BuildDLC(BuildDLC(L, 3),7).
» a= (v: return Build DLC(L, 3) U Build DLC(L,).

Let L, = BuildDLC(Lyenatar; @) be the distributed labeled life cycle
constructed from a proof term a. Then, the finite system behavior B/ =
(G Ain) s the disjoint union of all distributed life cycles constructed from
proof terms in 7%. The system behavior B(7%) is given by an infinite ex-
tension of finite behaviors, such that each finite sub-behaviors of an infinite
behavior is constructed from a proof term in 7.

Definition 5.3 Let R = (X, E, L, R) be a rewrite theory and let TS be the
substructure of the initial model Tr(X) in which all proof terms start with the
application of the start rule and transform between ground, coherent configura-
tions. For each proof term o € T5 we construct a distributed labeled life cycle
Lo = (Lvg, —a, Aa) as given in Def. 5.2. Then, the union of all distributed life

18

A4S AN IA LV

cycles BI™(TS) = U, La is a finite system behavior, BI™(T5) = (GIm, M),
GIin = (BEv,—), Bv =, Lva, NN = |J, Aa. For events e,e' € Ev; for some
i € I it holds that e#e’ if and only if they are not causally ordered.

The system behavior B(T5) = (G, \) is the infinite extension of finite behav-
iors, where for each finite part of a distributed life cycle L € L(G) it must be
true that L can be constructed from a proof term a € Tf.

This construction is sound.

Theorem 5.4 Given a temporal logic theory TL(R) = (3, E, ®) which is the
result of transforming an extended Maude specification, and given a subalgebra
(I, Att) of Ts, g, B(Tg) is a system behavior over (I, Att) which satisfies ®.

6 Concluding Remarks

A temporal logic framework can be applied to give semantics to Maude object-
oriented specifications. This framework constitutes the basis for formal rea-
soning about Maude, exploiting the expressiveness and techniques of temporal
logic. In the future, we will investigate case studies and work on an axiomati-
zation of DTL'. Because of the reflective properties of rewriting logic, one can
easily specify different formalisms in rewriting logic. Different formal method
tools have already been designed and implemented. We intend to exploit this
fact for the temporal logic framework. Moreover, we will investigate whether
the mapping from rewrite theories to temporal logic theories is a map of en-
tailment systems or even a map of logics in the sense of [MOM94].

Acknowledgments. I am especially indebted to José Meseguer who dis-
cussed with me the ideas presented in this paper. [have benefited very
much from conversations with him, Narciso Marti-Oliet, Carolyn Talcott,
Tom Maibaum, Jose Fiadeiro, and Peter Olveczky. The efforts of Hans-Dieter
Ehrich to develop a distributed temporal logic for synchronous systems were a
starting point for this work. Many thanks to Francisco Durdn who remained
unflustered by my frequent questions about Maude and rewriting logic. 1
am grateful to Francisco Duran and Narciso Marti-Oliet who gave valuable
comments on an earlier draft of this paper.

References

[AH92] R. Alur and T. Henzinger. Logics and Models of Real Time: A Survey.
In Real Time: Theory in Practice, Mook, The Netherlands, June 1991,
pages 74-106. Springer, 1992. LNCS 600.

[CDELM98] M. Clavel, F. Durdn, S. Eker, P. Lincoln, and J. Meseguer An
Introduction to Maude (Beta Version). Manuscript, SRI International,
Computer Science Laboratory, Menlo Park, CA, 1998.

19

A4S AN IA LV

[DM98] F. Durdn and J. Meseguer. An Extensible Module Algebra For Maude.
This volume.

[ECSD98] H.-D. Ehrich, C. Caleiro, A. Sernadas, and G. Denker. Logics for
Specifying Concurrent Information Systems. In J. Chomicki and
G. Saake, editors, Logics for Databases and Information Systems, pages
167-198. Kluwer Academic Publishers, 1998.

[ESSS94] H.-D. Ehrich, A. Sernadas, G. Saake, and C. Sernadas. Distributed
Temporal Logic for Concurrent Object Families. In R. Wieringa and
R. Feenstra, editors, Working papers of the International Workshop on
Information Systems - Correctness and Reusability, pages 22-30. Vrije
Universiteit Amsterdam, Rapport Nr. IR-357, 1994.

[KW95] P. Kosiuczenko and M. Wirsing. Timed Rewriting Logic for the
Specification of Time-Sensitive Systems. In H. Schwichtenberg, editor,

Proc. of the Intern. Summer School on Proof and Computation. Springer,
1995. NATO-ASI Series.

[Lec96] U. Lechner. Object-oriented specifications of distributed systems in the
p-calculus and maude. In Meseguer [Mes96a], pages 384-403.

[Lec97] U. Lechner. Object-Oriented Specification of Distributed Systems. PhD
thesis, University of Passau, 1997. Appeared as Technical Report,
Fakultat fiir Mathematik und Informatik, Universitat Passau, MIP-9717.
Available at: www.mcm.unisg.ch/"ulechner.

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Unified Model of
Concurrency. Theoretical Computer Science, 96(1):73-155, 1992.

[Mes93] J. Meseguer. A Logical Theory of Concurrent Objects and Its
Realization in the Maude Language. In G. Agha, P. Wegner, and
A. Yonezawa, editors, Research Directions in Concurrent Object-Oriented
Programming, pages 314-390. The MIT Press, 1993.

[Mes96a] J. Meseguer, editor. Rewriting Logic and Its Applications, First
International Workshop, Asilomar Conference Center, Pacific Grove,
CA, September 3-6, 1996. Elsevier Science B.V., Electronic Notes in
Theoretical Computer Science, Volume 4, http://www.elsevier.nl/
locate/entcs/volume4.html, 1996.

[Mes96b] J. Meseguer. Rewriting Logic as a Semantic Framework for Concurrency:
A Progress Report. In U. Montanari and V. Sassone, editors, Proc. 7th
Intern. Conf. on Concurrency Theory: CONCUR’96, Pisa, August 1996,
pages 331-372, 1996. LNCS 1119.

[MOM94] N. Marti-Oliet and J. Meseguer. General Logics and Logical Frameworks.
In D. Gabbay, editor, What is a Logical System?, pages 355-392. Oxford
University Press, 1994.

[MT98] J. Meseguer and C. Talcott. Partial Order Semantics for Concurrent
Objects. Manuscript, SRI International and Stanford University
Computer Science Department, April 1998.

20

A4S AN IA LV

[OMY6] P. Olveczky and J. Meseguer. Specifying Real-Time Systems in Rewriting
Logic. In Meseguer [Mes96a], pages 283-308.

[WN95] G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky,
D.M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in
Computer Science, Vol. 4, Semantic Modelling, pages 1-148. Oxford
Science Publications, 1995.

21

A4S AN IA LV

22

