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Periodic and soliton solutions are presented for the (1+1)-dimensional classical Boussinesq equation
which governs the evolution of nonlinear dispersive long gravity wave traveling in two horizontal direc-
tions on shallow water of uniform depth. The equation is handled via the exp(—®(#))-expansion method.
It is worth declaring that the method is more effective and useful for solving the nonlinear evolution
equations. In particular, mathematical analysis and numerical graph are provided for those solitons, peri-
odic, singular kink and bell type solitary wave solutions to visualize the dynamics of the equation.
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Introduction

Recently nonlinear phenomena have become an interesting and
important matter of study to many engineers, researcher and sci-
entists. Nonlinear phenomena consist in plasma physics, fluid
dynamics, mechanics and optical fibers, etc. The traveling wave
solutions of nonlinear partial differential equations (NPDEs) play
an important role in study of nonlinear physical phenomena.

In recent year many effective methods have been achieved such
as the Adomian decomposition method [1], Ansatz method [2-4],
Semi-inverse variation principle [5], the tanh method [6], the aux-
iliary equation method [7], the Darboux transformation method
[8], the Backlund transformation method [9], the homogeneous
balance method [10], the F-expansion method [11], the Jacobi
elliptic function expansion [12], the (G'/G)-expansion method
[13-18]. Many authors have studied the Boussinesq equation
[19-23] and classical Boussinesq equations [18,19,24] in recent
years because of their importance of applications in several areas
of interest. Solitary wave solutions of Boussinesq equation in a
power law media are investigated by Biswas et al. [19]. Ebadi
et al. [20] examined the solitons and other nonlinear waves for
the perturbed Boussinesq equation with power law nonlinearity.
In the last year, Jawad et al. [21] examined the dynamics of shallow
water waves with Boussinesq equation. Solitary wave and shock
wave solutions of the variants Boussinesq equation are investi-
gated by Triki et al.[22]. Very recently, Biswas et al. [23] obtained
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the soliton solutions to the Boussinesq equation with the effect
of surface tension and the power law nonlinearity is considered
for this equations. They also analyzed bifurcation of the Boussinesq
equation with power law nonlinearity and dual-dispersion. Gep-
reel [17] has found some traveling wave solutions by using gener-
alized (G'/G)-expansion method for some nonlinear evolution
equations including the (1+1)-dimensional classical Boussinesq
equations. Zayed and Joudi [ 18] has found traveling wave solutions
more than [17] by using an extended (G'/G)-expansion method for
the (1+1)-dimensional classical Boussinesq equations. The (1+1)-
dimensional classical Boussinesq system has been derived by Wu
and Zhang [24] which modeling nonlinear and dispersive long
gravity wave traveling in two horizontal directions on shallow
water of uniform depth. Recently, using the exp(—®(7))-expansion
method [25] have obtained the exact traveling wave solutions of
some nonlinear evolution equations. This method is very easy to
implement and calculate and also gives new exact travelling
solutions.

In this article, we use the exp(—®(#))-expansion method to find
some exact new traveling wave solutions of the (1+1)-dimensional
classical Boussinesq equations. The outline of this paper is as fol-
lows: Section ‘Description of the exp(—®(#))-expansion method’
contains the brief description of the exp(—®(#x))-expansion
method. In Section ‘Application of the method’, we find the solu-
tions of the (1+1)-dimensional classical Boussinesq equations via
the exp(—®(#n))-expansion method. Section ‘Physical explanation’
contains the results and discussion. In Section ‘Comparison’ we
compare our results with results of other’s existing in the literature.
Finally, Conclusions are given in the end at Section ‘Conclusion’.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Description of the exp(—®(#))-expansion method

Let us consider a general nonlinear PDE in the form

F(v, vy, Ux, Uxx, Utt, Uiy, -..) = 0, (1)

where, v = v(x, t) is an unknown function, F is a polynomial in #(x,t)
and its derivatives in which highest order derivatives and nonlinear
terms are involved and the subscripts stand for the partial deriva-
tives. In the following, we give the main steps of this method:

Step 1: We combine the real variables x and t by a complex var-
iable n,

v(x, t) = v(n),

where V is the speed of the traveling wave. The traveling wave
transformation (2) converts Eq. (1) into an ordinary differential
equation for v=v(n):

R(v, v, V", 0v",--)=0, (3)

n=xztVt, (2)

where, R is a polynomial of » and its derivatives and the super-
scripts indicate the ordinary derivatives with respect to #.

Step 2: Suppose the traveling wave solution of Eq. (3) can be
expressed as follows:

N

() = > _Ai(exp (—®(n)))', (4)

i=0

where, A0 <i<N) are constants to be determined, such that
Ay#0 and @ = d(y) satisfies the following ordinary differential
equation:

@'(17) = exp(—P(n)) + uexp(®(n)) + 4, (5)

Eq. (5) gives the following solutions:
Family 1: When p # 0, 22 — 44 > 0,

—\/(7% — 4p)tanh <—V(”22’4“) n + E)) -
2)1

(1) =In

Family 2: When p# 0, 22 — 44 < 0,

\/(4u — /%) tan <M(n +E)> —
2u

(1) =In

Family 3: When p =0, 10, and 2> — 44 > 0,

A

o) =-In(—0 > 8
0= (G 5=1) ®)

Family 4: When p # 0, 20, and 4> — 4u =0,

20n+E)+2
o) =n [ 2B £2) 9)
i*(m+E)

Family 5: When =0, =0, and /> —4u =0,
(1) = In(n +E) (10)
AN, e , V, 4, i are constants to be determined latter, Ay # 0,

the positive integer N can be determined by considering the homo-
geneous balance between the highest order derivatives and the
nonlinear terms appearing in Eq. (3).

Step 3: We substitute Eq. (4) into Eq. (3) and then we account
the function exp(—®(7)). As a result of this substitution, we get a
polynomial of exp(—®(#x)). We equate all the coefficients of same
power of exp(—®(7)) to zero. This procedure yields a system of
algebraic equations whichever can be solved to find
AN, e , V, 4, u. Substituting the values of Ay,------ ,V, 4, i into

Eq. (4) along with general solutions of Eq. (5) completes the deter-
mination of the solution of Eq. (1).

Application of the method

In this section, we study the (1+1)-dimensional classical Bous-
sinesq equations [17,18,24]:

ut+[(1+v)u}xz—%um (an

U +Uly+ 0y =0

This system has been derived by Wu and Zhang [24] for model-
ing nonlinear and dispersive long gravity wave traveling in two
horizontal directions on shallow water of uniform depth. Gepreel
[17] has found some traveling wave solutions by using generalized
(G'|G)-expansion method of the same equation while Zayed and
Joudi [18] found more traveling wave solutions by using an
extended (G'/G)-expansion method. We will solve (11) by the
exp(—®(#n))-expansion method.

We utilize the traveling wave variables «(#) = ux, t), n =x — V{,
Eq. (11) is carried into following ODEs:

VvV +[(1+ o)) + %u’” =0

(12)
-V +u'+v =0
Integrating (12) with respect to # once yields
1
Ky -Vv+(1+vu +§u”=0 (13)
1 2
K2—Vu+§u +7v=0 (14)

where, K; and K, are constants of integration. Considering the
homogeneous balance between highest order derivatives and non-
linear terms in Eqs. (13) and (14) we deduce that

u(n) = Ao + A (exp(=(1))) (15)

v(n) = By + B1(exp(—®(1))) + B (exp(—D(1)))° (16)

Substituting Eqgs. (15) and (16) into Eq. (13) and then equating
the coefficients of exp(—®(#)) to zero, we get

1
— VBy +BQAO + K4 +§A],u/1+Ao =0

1 2
A; — VBy + BiAg + BoA; +§A1/12 +3Apn=0
B1A; + ByAg +A12—VB, =0

(17)

%A] + BzAl = 0

Substituting Eqs. (15) and (16) into Eq. (14) and then equating
the coefficients of exp(—®(#)) to zero, we get

—VA0+BO+1A§+K2 =0

2

— WA, + By +AA; =0 (18)
1

Bz+§A§ =0

Solving the Eqs. (17) and (18) yields

2 2 2, 2

Ao = Ao, A :iﬁ7 Bo=-1 *§,u7 B, :*gﬂ,Bz =3
2 1, A 2 2
Ki=-Axt—, Kb =2A A —=+1+-puand V=A, +—
BV SR M Ve R 1 RV

where A, u are arbitrary constants.
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Now substituting the values of V, Ao, A; into Eq. (15) yields

2
u(m) = Ao iﬁ(exp(*q)(n))) (19)
Again substituting the values of V, By, By, B, into Eq. (16) yields
2/3
o) = -5 (5 -+ 1+ expl-0m) + Exp-00)?)  @0)

where, 1 =x — (Ao + ﬁ)t

Now substituting Eqgs. (6)-(10) into Egs. (19) and (20) respec-
tively, we get the following ten traveling wave solutions of the
(1+1)-dimensional classical Boussinesq equations.

When u#0, 22 —4u >0,

One pair'
4u

() =Ao+—
’ \/_ (72 — 4y tanh (—W(mf))u

3 244
I+pu+
2
/(Z—4) tanh (7V4“)(11+E)) +
2
vi(n) = -3 2
+ 2
Vi agiann (V5 )
where, n =x — (Ao + ﬁ) t.
Another pair:

U ) = A e
2(1) = Ao — —= >
V3 (2 — 4p) tanh (# (n+ E)) + 4
3 + U + 2
: (72— 4 tanh (—V(’z""‘)(ms)) +
2 2
ni(n) = 3

2
+
v/ (72 —4u) tanh <7M(r]+E)) +4
where, 7 = x — (Ao - 7§) t.

When u#0, 22 —4u <0,
One pair:

4u

us(n) =Ao +—=
’ f (4 ;?)tan(@(mls))

3 2
s+ U+
2
V/ (4u—i?) tan (@(ms)) —
2 2
va(n) = -3
21
+
(4u—7%)tan (“T"”’z)(mf)) )

where, n =x — (Ao + ﬁ) t.
Another pair:

i) = A &2
4(1) = Ao —
f‘/4,u tan( 4”’ 1’[+E))
34+ 2L
) : (4u—7%)tan (“T’Hz)(w#f)) i
v2(n) = E] + 2u )2

(4p—2)tan (7“4“’)(;”5))

73
When u =0, 40, and 4* — 4p > 0,

where, 1 =x — (Ao - L) t.

T
(24 3 2 1 0 -1-2-3-4
X

Fig. 2. Bell Shape Soliton solution of v;(n), for ag=2, u=1, E=0.5, 2=3.

One pair:
2 )

Us() =M+ 75 explitn + B) 1

23 7 4 2
vl = =33t Spum By = 1+(eXp(i(i1+E))*1>

where, 1 =x — (Ao + \4@) t.
Another pair:
u ( )7 +
=T B expiin +B) ~ 1

23 2 - 2
vl = =37t M Spum By = 1+<eX1J(i(n+E))*1)

where, 7 =x — (Ao — ﬁ) t.
When p # 0, /0, and 4> — 4 =0,
One pair:

1 2(m+E)
V3 (A +E)+2)

23 2 +E) 2m+E )
valll) = =3 (i“‘ T20m+B+2) (2(1(;1 ) +2)>

where, n =x — (Ao + ﬁ) t.

u;(n) =Ao+—=
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Fig. 4. Periodic solution of (n), forag=1, u=2,E=1, 2=2.

20— Fig. 7. Soliton solution of w(n), for ap=1.5, u=1,E=2, 2=2.

10
t %33%
10
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X

Fig. 5. Singular kink solution of ug(n), for ap=1.5, u=1,E=2, 1=2.

When =0, 2=0, and 2> — 4u =0,

Another pair:
3 One pair:
us(n) = Ao v _#ntkE 2 1
e() =Ag— —= —— T2
3 (M +E)+2 _ =
V3 (AN +E)+2) Uy (1) A0+\/§n+E
2
2 (3 2 +E) ( 2(n+E) ) 5
va(n) =—3 |5+ U5 + {57 23 2 1
3\2 2m+E)+2) \2(2(n+E)+2) vs(n)—§<§+u+m+(m)>

where, 7 =X — (AU - ﬁ) L. where, 7 = x — Aot.

Fig. 8. Soliton solution of vs(#), for ag=1, u=0,E=1, 2=0.
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Table 1
Comparison between Zayed and Joudi [18] and our solutions.

Zayed and Joudi [18]

Our solution

(i)IfA=0, u<0,0=1and B # 0 then from equation (3.40) we obtain
u(é) = ap + 2/ 4coth(y=p¢) and v(¢) = -1 + Fesch? (V=HE)
(ii))IfA=0, u>0, 0 =1 and B # 0 then from equation (3.44) we obtain

u(é) =ag + 2\/‘32c0t(\/ﬁ5) and (¢) = —1 - % — Zco? (/i)

(i)If 1=0,n=¢ E=0then /4> — 4y > 0 becomes p < 0, and then our solutions ux(y), v1(17)
reduced tous (¢) = Ao + 24/ § coth(y/=fi¢) and v (¢) = -1 +%csch2(1/—u§)

(ii)If 2=0,n =¢& E =0 then V22— 4u < 0 becomes u > 0, and then our solutions us(#), v2(n)
reduced to us(&) = Ag +2\/gcoth(\/;7§) and v(¢) = —1 — % — Zcot? (Vie)

Another pair:

_2 1
V3n+E

v =2 (3hue A (LY
s(ﬂ)——gjﬂmm

where, 1 = x — Aot.

u1o(1) = Ao

Physical explanation

In this section we will put forth the physical significances and
graphical representations of the obtained results of the classical
Boussinesq equations.

Results and discussion

It is nice-looking to point out that the delicate balance between
the nonlinearity effect of and the dissipative effect of and gives rise
to solitons, that after a fully interaction with others, the solitons
come back retaining their identities with the same speed and
shape. The classical Boussinesq equation has solitary wave
solutions with exponentially decaying wings. If two solitons of
the classical Boussinesq equation collide, the solitons just overtake
through each other and come into view unchanged.

Solutions uq(#n) and uy(n) are the kink solution of the classical
Boussinesq equation which rise or descent from one asymptotical
state at § — —oo to another asymptotical state at # — +oo. This sol-
iton referred to as topological solitons. Fig. 1 shows the shape of
the solitary kink-type solution of the classical Boussinesq equation
(only shows the shape of u,(1) withag=1, u=1,E =1, A= 3). Shape
of the solution u4(#) is similar to the Fig. 1 and we omitted its
shape. Solution #;(#) is the bell-shaped soliton solution of classical
Boussinesq equation. It has infinite wings or infinite tails which
referred to as non-topological solitons. This solution does not
depend on the amplitude and high frequency. Fig. 2 shows the
shape of the exact bell-shaped soliton solution i.e., non-topological
soliton solution v;(77) of the classical Boussinesq equation (solution
of v(n), for ap=2, u=1, E=0.5, A=3). Solutions us(#n), us(n) and
v5(n) are the exact periodic traveling wave solutions (only shows
the shape of us(y), for ap=1, u=2, E=1, 7.=2 and w(n), for
ap=1, u=2,E=1, 2=2). Figs. 3 and 4 below shows the periodic
solution of us(n) and w(n). Figure of solution uy(#) is similar to
the figure of u5(77) and for convenience the figure is omitted. Solu-
tions us(n), ue(n), uz(n), us(n), us(n) and u;o(#n) are singular Kink
type soliton solutions of classical Boussinesq equation. Figs. 5
and 6 show the shape of singular Kink type soliton solutions of
ug(n) and u0(n) respectively (we only shows the shape of ug(#),
for ap=1.5, u=1, E=2, 2=2 and uyo(n), for ap=1, u=0, E=1,
J.=0) wave speed within the interval. The figure of the solutions
us (), u7(n) are similar to the figure of ug(#n). The figure of the
solutions uq(7) is similar to the figure of u;o(#) and we omitted
the similar figures for convenience. Solution v5(7), v4(#) and vs(#)
are the multiple soliton solution. Fig. 7 shows the shape of the

soliton solution of u4(n) (only shows the shape of solution of
va(n), for ap=1.5, u=1, E =2, 2=2. We omitted the similar figures
for convenience.

Graphical representation

The graphical representations of the achieved solutions for par-
ticular values of the arbitrary constants are shown in Figs. 1-8 fig-
ures with the aid of commercial software Maple-13.

Comparison

Many author implemented different methods to the classical
Boussinesq equations for obtaining traveling wave solutions, such
as, Gepreel [17] used the generalized (G'/G)-expansion method for
constructing traveling wave solutions. Zayed and Joudi [ 18] imple-
mented the extended (G'/G)-expansion method for getting exact
traveling wave solutions. To the best of our knowledge, the classi-
cal Boussinesq equations [18]| have not been investigated by the
exp(—®(#n)) method to construct exact traveling wave solutions.
Beyond Table 1 Zayed and Joudi [18] obtained other hyperbolic
solutions (3.41), (3.42) and (3.43) and trigonometric solutions
(3.45) and (3.46). It is worth mentioning that (G'/G)-expansion
method is special case of the extended (G'/G)-expansion method.
So, comparison our solution with the extended (G'/G)-expansion
method is sufficient. Beside this, we achieved our solutions though
the exp(—®(#)) method with different auxiliary equation while the
extended (G'/G)-expansion method performed with others. Thus
taking special values of parameters we see that the few solutions
(in Table 1) reduce to our solutions i.e. similar to our obtained solu-
tions. But, in this paper the obtained wave solutions uy, vq; Uy, t,;
Usg, U3; U7, U4 and Ug 10, U5 are completely new and have not been
found in the previous literature.

Conclusion

In this article, we have seen that different types of traveling
wave solutions of the (1+1)-dimensional classical Boussinesq
equations are successfully found by using the exp(—®(#))-expan-
sion method. The performance of this method is trustworthy, use-
ful and giving new solutions of the given equations. We notice that,
our new solution might have significant impact on future research-
ers. The exp(—®(7))-expansion method is also applicable for other
NPDEs.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.rinp.2014.07.006.
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