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Let (sn) be a sequence of real numbers satisfying 0 ~ Bn ~ 1 for every n, 
(n= 1, 2, ... ).We take O~a<b ~ 1 and let lra,b](x) denote the characteristic 
function of the interval [a, b], so that 

~ 1 if X E [a, b] 
Ira,b](x) = 0 th . o erwtse. 

The sequence (sn) is said to be well-distributed 1) if 

(1) 
1 n+P 

lim - 2 Ira,b](Bk) = b- a 
p- >oo P k=n+l 

holds uniformly in n for every interval [a, b]. This may be regarded as 
a more stringent test of the regularity of distribution of a sequence (sn) 
than the classical uniform distribution condition, where 

(2) 
1 p 

lim - 2 Ira, b](Bk) = b - a 
P->oo P k=l 

for every interval [a, b]. By a well known theorem due to H. WEYL [2], 
the condition (2) may be expressed alternatively as 

1 " 
lim - 2 e(hsk) = 0, 

n->00 n k=l 
(k=1, 2, ... ) 

where e(t) denotes the function e2"u. A similar condition for well distributed 
sequences has been given by G. M. PETERSEN, [1]. Thus, (sn) is well 
distributed if, and only if 

(3) (k=1, 2, ... ) 

uniformly inn. Throughout, we shall use {fJ} to denote the fractional part 
of e, i.e. f)- [fJ], where [fJ] is the largest integer less than or equal to e. 

In [3] the following theorem is stated: 

1) See [1], § 2 page 189. 
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Theorem 5. If p, q are positive integers, the sequence 

(k= 1, 2, 3, ... ) 

is not well distributed for any ex, 0 <ex~ 1. 

The proof of this result as given in [3] is incorrect, though, as indicated 
by DowmAR and PETERSEN [4] in Theorem 6' of their paper, the above 
theorem is true if pfq is an integer. We shall now show that the theorem 
is true if "any ex" is replaced by "almost all ex". The proof is a modi­
fication of that given in [3] and is of interest mainly because the non-well 
distribution of a sequence is deduced from the uniform distribution of 
each of a countable set of sequences. 

Theorem A. If p, q are positive integers, the sequence 

(k= 1, 2, 3, ... ) 

ts not well distributed for almost all ex, 0 <ex~ 1. 

Proof. In the first instance, we may suppose that the sequence is 
uniformly distributed; otherwise there is nothing to prove, since a 
sequence which is not uniformly distributed is not well distributed. 

We denote by EN(N=0,1,2, ... ) the set ~f ex for which {qf:Ncx} 
is uniformly distributed. Then, by a result due to H. WEYL [2], 

for all (N=O, 1, 2, ... ).Also, if 

we have 

p(E) = 1. 

Sequences which are uniformly distributed are also everywhere dense in 
[0, 1]. Hence, if ix E E, for every N we can find an m=m(N) such that 

(4) 

Consider, 
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If ex E E and m=m(N) then it follows from .(4) that for all k;;;.N, 

This implies 

{ Pm } 1 qN ~kpk 1 
0::;;: qN-kpk --IX <- --- ::;;:_. 

- qm+N 8 pNqN - 8 

I mfN e(sk)l =I f e(qN-kpk { !:N ex}.) I 
k=m+l k~l q 

~ ~ct e( qN-kpk L!:N IX}) 

= ! ~(e(q_N-kpk { p:N ex}))> ~cos~== N, 
k=l qm k=l 4 V2 

and so, by (3), {(pjq)k ex} is not well distributed if ex E E, which proves the 
theorem since p(E) = l. 

Remark: The technique used in the proof of Theorem A can clearly 
be used to establish the following stronger result: 

Theore~ B. Let Pt .and 'J.t (i= 1, 2, ... , K) be positive integers with 
p,jq, > 1 for all i= 1, 2, ... , K, where K is fixed. Then the sequence {f(n) ex}, 
d~ .. 

f(n) = (;:r\::r2 ... (:;yK, 
K 

with n = I n,, each nt being an integer ~ 0, is not well distributed for 
i=l 

almost all ex, 0 <ex;;;,. l. 
However, the case that arises when K .is not fixed and which is not 

covered by Theorem 4 of [4], remains open. 
We now prove a result on the uniform distribution of subsequences of 

a given sequence. To do so, it is necessary to introduce the idea of "almost 
all subsequences of the given sequence {sk}", or "a set of subsequences of 
measure one". 

Suppose that { sk} is a given sequence of real numbers and t is a real 
number in the interval O;;;.t;;;,. l. Representing t by a non-terminating 
binary decimal expansion we can define a 1-1. mapping of the infinite 
subsequences {ski} of {sk} onto the interval [0, 1]. For, let {sk,} be any 
infinite subsequences of {sk}, we define t=O·{h(32 ... (radix 2) by means 
of the equations 

~ 1ifk=kt f3k = 
0 otherwise. 

The inverse mapping is evident if we agree to use only the infinite decimal 
representation of t. With this mapping it is now possible to speak of 
"almost all subsequences of { sk}" or "a set of subsequences of measure 

32 Series A 
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one" when the corresponding subset of the interval (0, 1] has measure one. 
We now state the following result, which has been proved in substance 

by BucK and PoLLARD (5): 

Lemma 1. A bounded sequence {sk} is (C, 1) summable to s if, and 
only if, almost all subsequences of { sk} are (C, 1) summable to s. 

We use this to prove the following: 

Theorem C. The sequence {sk} is uniformly distributed if, and only 
if, almost all subsequences of { sk} are uniformly distributed. 

Proof. By the lemma, it follows that if e(hsk) is Cesaro summable 
to zero for every (h= 1, 2, ... ),then the set of subsequences, E 11 say, which 
are Cesaro summable to zero is of measure one. Hence, 

00 

and a set of subsequences of measure one is uniformly distributed. 
If almost all subsequences of { sk} are uniformly distributed then, for 

each h, the sequence (e(hsk)) has a set of subsequences of measure one 
which are Cesaro summable to zero. Hence, by the lemma, (e(hsk)) is 
Cesaro summable to zero, (h=1,2,3 ... ), and so {sk} is uniformly 
distributed, which completes the proof of Theorem C. 

At this point we shall give two modifications of a theorem due to 
DowiDAR and PETERSEN (4], which is stated as: 

Theorem 4. Let (n(k)) be a subsequence of the integers, 

n(k) 
ri{k- 1) = r(k), r(k) ;roo, 

then, for almost all ex, O<cx;;;; 1, the sequence {n(k)cx} is not well distributed. 
Firstly, we show that if the condition on r(k) is relaxed so that r(k) ;r oo 

is replaced by lim r(k) = oo, then the theorem is still true in the new 
k->00 

form given by: 

Theorem D. Let (n(k)) be a subsequence of the integers 

n(k) . 
(k 1) = r(k), hm r(k) = oo, 

n - k->oo 

then, for almost all ex, 0 <ex ;;;; 1, the sequence { n( k )ex} is not well distributed. 

Proof. This is simply a modification of the proof of Theorem 4 given 
in (4) which depends upon the fact that if the sequence {n(k)cx} is well 
distributed, then we cannot have, for instance, 

{n(k)cx};;;; t fork= k,+1, k.+2, ... , k.+[log2 v] 

for infinitely many v, as this violated criterion (1). 
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For the most part we shall adhere to the notation of [4], i.e. we denote 
by Ek the set of <X for which {n(k)<X}~t. This set consists of the closed 
intervals: 

( 1 ) ( 1 3 ) (n(k)-1 2n(k)-1) 
O, 2n(k) ' n(k)' 2n(k) ' ... , n(k) ' 2n(k) ' 

which may be written as 
n(k)-1 

Ek = U J'(r, n(k)), 

where J'(r, n(k)) is the closed interval (n~k), ~~~) of length 2n~k)' 
We note that f-t(Ek)=!. In addition, J(r, n(k)) denotes the closed interval 

(n~k), :1kD · 
k+p 

As in [4], lower and upper bounds for f-t( n Ei) are obtained as 

(5) ~ f-l( :0: Ei) ~! (t- r(k: 1)) ... (!- r(k:p)) 

( = (t)P+l-J.(k, p) = L(k, p), 

and 

(6) ~ 1-l<Q Ei) ~! (! + r(k: 1)) ... (! + r(k:p)) 

( = (!)P+l+C(k, p) = U(k, p) 

where 

lim J.(k, p) = lim C(k, p) = 0, (p=1,2, ... ). 
k->OO k->00 

For v= 1, 2, let ~.=Ek., where k2>k1 and r(k)> 16 for k>k1. For v~3 let 

kv+P(V) 

~. = n Ei, 
i=kp 

where p( v) is .given by 

~ [log2 v] when v 7'= 2k 
p(v) = 

log2 v -1 when v = 2k. 

Since lim J.(k,p)=O, we have 
k->ro 

1 
L(k., p(v)) ~-

v 

for k.>K'. Also, we can choose K" so that for k.>K" 

5 
U(k., p(v)) ~ 2v · 
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Consequently, we can choose K =max (K', K") such that for k,>K, 

5 1 
-2 ~p(~.)~-. 

')I ')I 

So far our argument is similar to that used in [ 4] since there, up to this 
point, only the condition lim r(k) = oo is assumed. We now consider 
the set k- > oo 

kv+P(V) 

~. = n Ei, 
i=k, 

where k. must be chosen so that k.>max (K, k._ 1 +p(v-1)). With this 
choice of k. we ensure that the sets ~. and ~.- 1 have no sets of intervals 
in common. The rest of the argument proceeds as in [ 4] provided that 
r(k)> 16 for all the k used in the construction, i.e. for k., ... , k.+p(v), 
(v= 1, 2, ... ). We now give the second modification of Theorem 4, [4), 
namely: 

Theorem E. Let (n(k)) be a subsequence of the integers which possesses 
a rearrangement, (n'(k)) say, such that 

lim n'(k) = oo. 
k->oo n'(k-1) 

Then, for almost all a, O<a~ 1, the sequence {n(k)a} is not well distributed. 

Proof. Again, this depends essentially upon the proof of Theorem 4 
in [4). However, we must introduce the following technique which enables 
us to estimate the measure of the sets ~ •. 

At the outset we choose 

~ [log2 v] when v #- 2k 
p(v) = 

log2v-1 when v = 2k. 

To obtain an estimate for 
k+v(v) 

p( n Ei) 
i~k 

we can regard the finite sequence n(k), n(k+ 1), ... , n(k+p(v)) to be 
arranged as an increasing sequence n"(k), n"(k+ 1), n"(k+p(v)). We note 
that, in almost all cases, the sequence n"(k), n"(k+ 1), ... , n"(k+p(v)) will 
not be identical with n'(k), n'(k+ 1), ... , n'(k+p(v)). However, there 
exists an integer K such that n"(k)=n'(K) and, for sufficiently large k, 
i.e. k>N, we have 

If 

n"(k + 1) "(k) n"(k+p(v)) "(k ( ) ) 
n"(k) = r ' ... , n"(k+p(v) -1) = r +p v - 1 ' 
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then, since lim 'n(k'(k)1) =;= oo, it follows that 
k->oo n -

(7) r"(k+j) > M (j = 0, 1, ... , p(v) -1) 

for k>N and any fixed M. Lower and upper bounds for 

k+P(•) 

ft( n E,), 
i-k 

similar to (5) and (6) can now be obtained, and, for some k., we have 

(8) 
5 1 
-2 ~ #(~.) ~ -, 

'I' 'I' 

where 
kv+P(•) 

~. = n E,. 
i-k. 

We note that as k takes different integer values so the values of the ratios 
r"(k+j), (j=O, 1, ... , p(v)-1) may differ. However, inequality (7) indicates 
that k. may be chosen so that (8) is valid. 

The next stage of the proof is similar to that for Theorem 4 in [4]. 
Although, ~.is not now covered by intervals of the form J'(r, n(k.+p(v)), 
but by intervals of the form J'(r, h), where 

h = max n(k.+j) = n"(k.+p(v)), 
o :S i ;;> p(v) 

whose number does not exceed 

n"(k.) U(k., p(v)). 

In addition, k. may be chosen so that, for k ~ k., 

n(k) > n"(k._ 1 +p(v-1)), 

since in the sequence (n'(k)), which is increasing ink, only finitely many 
terms precede the term which is now n"(k._ 1 +p(v-1)). With this choice 
of k., and with k1 chosen. so that 

n'(K1 +j) 
'(K . 1) > 16, n I+J-

(j= 1, 2, ... ) 

where n'(KI)=n"(ki), the rest of the proof follows as in Theorem 4, [4], 
without difficulty. 

In conclusion, we give two further results. In the first instance, from 
Theorem D we deduce that if 

lim n(k) = oo, 
k->oo n(k-1) 

then, for almost all IX, O<IX~ 1, we have 

{n(k)lX} ~!fork= k.+1, k.+2, ... , k.+[log2 v], 
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and infinitely many v. The number t was chosen in a purely arbitrary 
way, and with minor modifications the proofs of Theorem 4, [4], and 
of Theorems D and E could have been carried out using any rational 
number in (0, 1), e.g. the number 1/R, 0<1/R<l. Hence, if 

lim n(k) = =, 
k->oo n(k-1) 

then, for almost all ex, O<cx;;:;; 1, we have 

for infinitely many v and any fixed positive integer R. Moreover, the 
same arguments will show that if (n(k)) possesses a subsequence, (n(ki)) 

say, such that 

lim n(ki) = = 
i->oo n(ki-1) ' 

then, for almost all ex, O<cx;;:;; 1, 

(9) {n(ki)cx};;:;; ~for i = i.+ 1, i.+2, ... , i.+[logR v] 

for infinitely many v, and any fixed positive integer R. 
For the subsequence (n(kt)) we now define the index sequence (xj) of 

(n(kt)) by the equations 

Xj = ~ 
0
1 when j = k1, k2, ... , ki, ... 

( otherwise. 

Let us suppose that, for some positive integer R, 

1 m+P 2 
- L Xj >- > 0 
P i~m+l R 

for all m and all p>P. If this is so we say that the lower density of (n(kt)) 
exceeds 2/R. From (9) it follows that, for almost all ex, 0<cx;;:;;1, 

1 a 2 
J.(v) k~ 1[0,1/Rl ({n(k)cx}) > R 

for infinitely many v, where 

This violates ( 1) thereby establishing the following: 

Theorem F. If (n(k)) possesses a subsequence (n(kt)) satisfying 

lim n( kt)_ = = 
i->oo n(ki-1) ' 
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and having a lower density that is positive, then { n(k)tX} is not well distributed 
for alrrwst all tX, 0 < tX ~ 1. 

Finally, we prove a stronger result than the above, but first we make 
some preliminary remarks about arithmetic means. If (x1) is a bounded 
sequence it is evident that 

{10) 1
1 m1 +v 1 m2 +v I 

lim - ! Xj - - ! Xj = 0. 
v->oo P i=m1+1 P i=m2+l 

Next we give: 

Lemma 2. If the bounded sequence (xJ) is not alrrwst convergent to 
zero, then there exists a positive real number y, and sequences (Pu), (mv) 
such that 

where 

1
1 m.+v,. I - ! Xj >y, 

Pu i=m.+l 

lim mv = lim Pu = oo. 
'V->oo u->oo 

Proof. If (x1) is not {C, 1) summable to zero, and 

(ll) 1
1 m1+2> I 

lim sup - ! x1 > 2 y, 
v-> 00 P i=m1+1 

for some fixed positive integer m1, then it follows from (10) that the 
conditions of the lemma are satisfied. 

If the inequality (ll) is not satisfied for some integer m1, thereby 
indicating that (x,) is (C, 1) summable to zero, then 

lim - ! x1 = 0 1
1 m+v I 

v->oo P i=m+l 

for all m= 1, 2, ... ,and if the concitions of the lemma are not satisfied, then 

lim - ! x1 = 0 1
1 m+v I 

v->oo Pi=m+l 

uniformly in m, and (x1) is almost convergent to zero. 
In addition, we require: 

Lemma 3. If (xJ) is a sequence of 1's and O's which is not almost 
convergent to zero then, for every p (p= 1, 2, ... ) there exists an infinite 
sequence ( mv) = ( mv(P)) such that: 

1
1 m.+v I - ! Xj > /'· 
P i=m0 +1 

Proof. Firstly, we choose y to be an irrational number so trat the 
conditions of Lemma 2 are satisfied. Then, if Lemma 3 is not valid we 
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have for some p and all m>M, 

1
1 m+v I -. 2 x1 <r<(1-s)y. 
P 1~m+l · 

Consequently, for all m>M 

1
1 m+wv I - L Xj < (1-c:)y, 

wp i~m+l 

w a positive integer; and if (w-1)p<h;;;wp, then 

1
1 m+h I 11 m+wp I I wp 1 m+wv I wp - 2 Xj -;;;, - 2 Xj = -·- 2 Xj <-y(1-s). 
h i~mH h i~m+l h wp i~m+l h 

For w sufficiently large, i.e. w>wo say, 

and so 

1
1 m+h I 
h. 2 Xj < y, 
J~m+l 

for h>wop and m>M, which contradicts the conclusion of Lemma 2. 

Definition: If (x1) is the index sequence of (n(ki)), and (x1) is almost 
convergent to zero, we say that the subsequence (n(ki)) has density zero. 
We are now in a position to prove: 

Theorem G. If the sequence (n(k)cx) is well distributed for almost all 
ex, O<cx-;;;1, then any subsequence (n(ki)) of (n(k)) satisfying 

lim n( k!)_ = oo 
i->co n(ki-1) 

has density zero. 

Proof. If the sequence (n(ki)) has a positive lower densit., then, by 
Theorem F, we have the above result. Arguments similar to those used 
in the proof of Theorem F are applicable in this instance if, for each v, 
( v = 1, 2, ... ) we have as is implied in the theorem 

iv+ [logR v] 

~.= n Ek,, 
i=iv 

where the basic intervals J'(r, n(k)), (r= 0, ... , n(k)-1), are of length 
1/Rn(k) where 1/R<y, y being chosen so that Lemmas 2 and 3 are valid. 
In the induction process for the construction of the sets ~., the only 
restriction imposed on each i. is i.>N for some positive integer N. We 
now choose i. so that i. > N and also 

I 1 m(v)+p(v) I · . -. L Xj >y, 
p(v) i~m(v)+l 
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where 

and 

lim p(v) = lim m(v) = oo. 
v->oo V->00 

With this choice of the i. the usual contradiction of ( 1) follows and the 
theorem is proved. 

NOTE IN PROOF: ' 

We have used the notation of [4] although some of the material on 
pages 483 and 484 there is not strictly correct. We would like to note 
the following changes. 

l. On page 483, p(v) should be defined as p(v) = [log2 v] -1, v #- 2k; 

p(v)=k-2, v=2k. 

2. Last line of page 483 to top line of page 484 should read: "it is clear 
that~. is covered by intervals of the form J'(r, n(k.+p(v))) whose number 
does not exceed 2n(k.+p(v)) U(k., p(v))". 

3. Page 484: "J'(r, n(k.+h)) is intersected by no more than 

2n(k.+h+p(v+h)) U(k ( h)) 
(k ) •+h•P v+ 

n •+h 

intervals of the form J'(r, n(k.+h+p(v+h))) which belong to ~.+h"· 

4. The formula for p..(~., ~.+h) becomes: 

5n(k.+h) 
p..(~., ~•+h) ~ 2n(k.+p(v)) · U(k., p(v)) · 8n(k. + p(v)) 

2n(k.+h + p(v +h)) 
n(k.+h) 

1 125 l 1 
· U(k.+h +p(v+h)) · 2n(k.+h +p(v+h)) ~ 16 ·; · v + h · 

5. In the calculations on the lower half of page 484, 1-l6&. must replace l-it­
throughout and a must be taken close to i-

University College of Swansea 
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