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Université Pierre et Marie Curie
7 quai St Bernard
75005 Paris
France
3Courant Research Center Geobiology
Georg-August-Universität Göttingen Goldschmidtstr. 3
4Abteilung Bioinformatik
Institut für Mikrobiologie und Genetik
Goldschmidtstr. 1
37077 Göttingen
Germany
5Department of Earth- and Environmental Sciences &

GeoBioCenterLMU

Ludwig-Maximilians-Universität München
Richard-Wagner-Str. 10
80333 München
Germany
6Aix-Marseille Université
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Summary

The origin of many of the defining features of animal body

plans, such as symmetry, nervous system, and the meso-
derm, remains shrouded in mystery because of major uncer-

tainty regarding the emergence order of the early branching
taxa: the sponge groups, ctenophores, placozoans, cnidar-

ians, and bilaterians. The ‘‘phylogenomic’’ approach [1]
has recently provided a robust picture for intrabilaterian

relationships [2, 3] but not yet for more early branching
metazoan clades. We have assembled a comprehensive

128 gene data set including newly generated sequence
data from ctenophores, cnidarians, and all four main sponge

groups. The resulting phylogeny yields two significant
conclusions reviving old views that have been challenged

in the molecular era: (1) that the sponges (Porifera) are
monophyletic and not paraphyletic as repeatedly proposed

[4–9], thus undermining the idea that ancestral metazoans
had a sponge-like body plan; (2) that the most likely position

for the ctenophores is together with the cnidarians in

a ‘‘coelenterate’’ clade. The Porifera and the Placozoa branch
basally with respect to a moderately supported ‘‘eumeta-

zoan’’ clade containing the three taxa with nervous system
and muscle cells (Cnidaria, Ctenophora, and Bilateria).

This new phylogeny provides a stimulating framework for
exploring the important changes that shaped the body plans

of the early diverging phyla.

Results and Discussion

A Comprehensive Phylogenomic Data Set to Address

Basal Metazoan Evolution
Previous studies of basal metazoan relationships by molecular
phylogeny techniques (e.g., [3–8, 10, 11]) have proposed
contradictory and often poorly supported trees, leaving major
issues such as the phylogenetic status (monophyly or para-
phyly) of sponges and the position of ctenophores and placo-
zoans unsettled. These inconsistencies may reflect insufficient
molecular sampling and/or inadequate taxon sampling of the
diversity of extant nonbilaterian metazoan lineages [1, 11–
13]. We have adopted a phylogenomic approach specifically
aimed at clarifying the basal metazoan relationships, involving
more comprehensive sampling of all the major early branching
animal lineages. By using newly generated cDNA sequences in
addition to publicly available sequences, we have assembled
a metazoan data set enriched in species representing the early
diverging phyla (see Experimental Procedures and Supple-
mental Data available online). The data set comprises 128
different protein-coding genes (30,257 unambiguously aligned
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Figure 1. Phylogenetic Analyses of 128 Nuclear-Encoded Proteins

Bayesian tree obtained from the analysis of 30,257 aligned amino acid positions for the 55 terminal taxa with the CAT model. Bootstrap supports (BS) after

100 replicates are indicated for three analyses with different taxon sampling: outgroup 1 (BS values in pink); outgroup 2 (BS values in blue); unrooted analysis

(BS values in black). Nodes with maximal support values in all analyses are indicated by an asterisk. The tree obtained with outgroup 1 is shown here (and

in Figure S1 with branch posterior probabilities, PP), whereas trees obtained with outgroup 2 and without outgroup are shown in Figures S2 and S3, respec-

tively. Scale bar indicates number of changes per site.
positions) for 11 outgroup species and 44 metazoans,
including 9 sponge species, 3 ctenophores, 9 cnidarians, the
placozoan Trichoplax, and a representative sampling of bilat-
erian species. Among the 55 terminal taxa, 24 are complete
or nearly complete (%5% of missing data), and only 27% of
positions in the final alignment are absent (see Table S2).
This is the first phylogenomic data set to include all four
main sponge lineages: Demospongiae, by far the most
species-rich sponge group, is represented by four species,
chosen to maximize morphological and phylogenetic diversity;
Hexactinellida and Calcispongia are each represented by two
species; and Homoscleromorpha is represented by a chime-
rical operational taxonomic unit created from two species of
the genus Oscarella.
The Sponges Restored as a Monophyletic Group
Our data set was analyzed by Bayesian inference analysis, via
the CAT model of sequence evolution [14], conceived to
reduce artifacts resulting from mutational saturation and
unequal rates of substitution, which are major problems
when analyzing ancient events [13, 15]. To explore the effect
of outgroup taxa on the metazoan interrelationships obtained,
we performed three analyses with different taxon samplings
(Figure 1): rooted analysis with a paraphyletic outgroup
comprised of the fungi, ichthyosporeans, Capsaspora, and
choanoflagellates (‘‘outgroup 1;’’ tree shown in Figure 1 and
Figure S1; with bootstrap supports [BS] in pink in Figure 1);
analysis rooted with just choanoflagellates, the metazoan
sister group [16] (‘‘outgroup 2;’’ BS in blue in Figure 1, tree in
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Figure 2. Characters of the Sponge Body Plan and Their Evolution

(A) Schematic section of an adult sponge (bottom) and SEM picture showing a choanocyte, the sponge collar cell (top, choanocyte from Chelonaplysilla

noevus, Demospongiae). The arrows indicate the direction of circulation of water in the aquiferous system of the sponge. Abbreviations: atr, atrial cavity;

cb, cell body; cc, choanocyte chamber; col, collar of microvilli; ex, exhalant canal; fl, flagellum; in, inhalant canal; mes, mesohyl; osc, osculum (or exhalant

orifice); ost, ostium (or inhalant orifice); pin, pinacoderm (thin epithelial layer, limiting the sponge body on its external surface and within the canals);

sp, spicule.

(B) Most parsimonious scenario for the evolution of sponge body plan characters, imposed on a scheme of sponge paraphyly.

(C) Most parsimonious scenario assuming sponge monophyly.

In (B) and (C), the gray branches indicate the presence of sponge body plan characters (aquiferous system, internalized choanocyte chambers, pinacoderm)

and the black branches indicate the absence of these characters. The gray horizontal line indicates character acquisition; the hollow horizontal line indicates

character loss. ‘‘Sponges 1, 2, and 3’’ correspond to the major lineages (silicisponges, homoscleromorphs, and calcisponges), of which exact branching

order varies among published studies recovering sponge paraphyly.
Figure S2); and unrooted analysis (BS in black in Figure 1, tree
in Figure S3). The topology resulting from the rooted analyses
(trees shown in Figure 1 and Figures S1 and S2) was statisti-
cally well supported at most nodes, and its general features
were in line with previous studies [2, 3]: choanoflagellates
positioned as the sister group to the Metazoa, with Bilateria,
Protostomia, Lophotrochozoa, and Ecdysozoa each forming
well-supported monophyletic groups. These rooted trees
provide strong evidence that the sponge species all belong
together in a monophyletic group (Porifera) (bootstrap support
= 90% and 96% with outgroup 1 and outgroup 2, respectively).
The branch leading to the Porifera is short (Figure 1),
accounting for the difficulty in recovering sponge monophyly
in previous molecular analyses. This presumably reflects
closely spaced splitting events during the Proterozoic era
when the sponge lineages emerged.

Extant sponges are a diverse group sharing a number of
common body plan features, notably a system of internal
canals and choanocyte chambers through which water flows,
and a thin epithelial covering called the pinacoderm (Figure 2A).
Although morphological character analyses firmly support the
hypothesis that the sponges form a monophyletic group [5, 17],
rRNA analyses have repeatedly indicated that they are para-
phyletic, with the calcisponges and/or the homoscleromorphs
positioned closer to eumetazoans than to the other sponges
[4–8]. It is worth noting, however, that sponge monophyly could
not be ruled out unequivocally in many of these studies
because of poor statistical support [6, 7, 10]. The previously
proposed hypothesis of sponge paraphyly had significant
implications for understanding the origin of multicellular
animals, because it would imply that characters shared by all
sponge lineages are ancestral for the Metazoa and that eume-
tazoans are derived from animals with a sponge-like body plan
[4, 5, 8, 9] (Figure 2B).

The significant support for sponge monophyly in the present
study allows us to return to the idea that a sponge body plan
(notably featuring an aquiferous system with internalized
choanocyte chambers and the pinacoderm) evolved in the
stem line of the Porifera (Figures 2C and 3). The specialized
collar apparatus of sponge choanocytes has often been
assumed to be an ancient feature shared with choanoflagel-
lates, based on phenotypic similarity [16]. However, many
ultrastructural details of choanoflagellate and choanocyte
cells are different, such as the length and spacing of the micro-
villi and the organization of the microtubule cytoskeleton. Their
functional properties also differ, with the microvilli of choano-
flagellates but not of choanocytes being contractile. Their
similarity might thus represent convergence, with choano-
cytes being a synapomorphy (shared derived character) of
Porifera. It is clear in any case that, rather than reflecting the
ancestral animal form, adult sponges are better considered
as highly specialized organisms, possibly having acquired
a sedentary life style from a hypothetical pelagic ancestor.
Notably, the absence of obvious symmetry in many adult
sponges fuelled the popular idea that the last common
metazoan ancestor lacked defined axial organization [18, 19].
In fact the adult bodies of hexactinellids, calcisponges, homo-
scleromorphs, and nonbilaterian eumetazoans are character-
ized by axial symmetry, as is the larval organization of sponges
[20], ctenophores, and cnidarians. This suggests that the
common ancestor of all animals may have showed symmetry
around a single polarity axis [21], and thus that the asymmetry
of the adult body in most demosponges and in Trichoplax is
likely to be derived rather than ancestral (Figure 3).

Lessons from Relationships within the Porifera

In line with some previously published phylogenies (e.g., [6, 7,
11]), our analysis placed hexactinellids and demosponges
together to form the Silicea Gray, 1867 [22] sensu stricto
(with maximal bootstrap support in all analyses) characterized
by siliceous spicules organized around a well-defined proteic
axial filament [23] and by a particular class of membrane phos-
pholipids known as demospongic acids [24]. Concerning the
enigmatic Homoscleromorpha, our analyses clearly excluded
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Figure 3. Changes Affecting Important Body Plan Characters Traced onto the Topology Obtained from Our Molecular Analyses

Key to character changes: 1, acquisition of multicellularity and of a symmetrical body with a single axis of symmetry and polarity; 2, acquisition of the

poriferan aquiferous system and of the pinacocytes; 3, acquisition of a well-developed basement membrane supporting epithelia (by convergence in the

homoscleromorph sponges and in a cnidarian-ctenophore-bilaterian ancestor); 4, acquisition of siliceous spicules (by convergence in some

homoscleromorph sponges and in a hexactinellid + demosponge ancestor, or independently in the hexactinellids and within the demosponges); 5, loss

of body symmetry (by convergence in the stem-line of demosponges or within them, and in placozoans); 6, acquisition of gland cells in epithelia [17]; 7,

acquisition of the neuro-sensory system, of the muscle cells, and of the digestive system; 8, acquisition of the mesoderm. Homology between the mesoderm

of bilaterians, ctenophores, and some cnidarians is debatable; an alternative possibility being convergence of mesoderm-like germ layers between these

three taxa; 9, acquisition of bilateral symmetry (by convergence in the Bilateria and in the cnidarian stem-line or within them in the Anthozoa). Parsimony

optimization by Mesquite.
them from the demosponges and favored a sister group
relationship to the Calcispongiae (with highest support of
91% [BS] obtained in the analysis with outgroup 2), in line
with results from 18S rRNA analyses [25, 26] but in conflict
with traditional classification schemes (see [27]). The siliceous
spicules without defined axial filament found in some Homo-
scleromorpha [23] thus might have evolved independently
from those of hexactinellids and demosponges (Figure 3). In
addition, homology of siliceous spicules between the latter
two taxa is uncertain because they are absent in the Dictyocer-
atida, represented here by Carteriospongia foliascens, the
earliest-branching Demospongiae taxon in our phylogeny
(Figure 1) (see [25, 28]). Whether the thick basi-epithelial base-
ment membrane of homoscleromorph larvae and adults,
which shares homologous biochemical components with eu-
metazoan basement membranes [29, 30], was inherited from
a common metazoan ancestor and subsequently reduced or
lost in most sponges and in Trichoplax, or acquired indepen-
dently in homoscleromorphs and eumetazoans, cannot be
decided from our analyses (Figure 3).

The Coelenterata Clade Revived
A recent phylogenomic analysis suggested that the cteno-
phores, a phylum of marine, mostly planktonic and gelatinous
animals, diverged earlier than sponges [3]. This highly unor-
thodox hypothesis would see the dismantling of the clade Eu-
metazoa (ctenophores, cnidarians, and bilaterians), despite
their sharing of many key characteristics such as nerve and
muscle cells and a differentiated digestive system (absent in
sponges and in Trichoplax). Polyphyly of eumetazoans would
thus imply several independent acquisitions of these features,
or their secondary loss in sponges and/or placozoans [31].
Our rooted analyses are not consistent with the basal position
of ctenophores, but rather suggest the existence of a Coelen-
terata [32] (Ctenophora + Cnidaria) clade, placed within
a monophyletic Eumetazoa (Figure 1). A recent study [11]
also obtained the coelenterate grouping, but with low boot-
strap support, and within a heterodox scheme of eumetazoan
polyphyly. Historically, the coelenterate grouping [32] was
based on certain anatomical resemblances between cteno-
phores and the cnidarian medusae (e.g., gelatinous body,
tentacles, and ‘‘radial’’ symmetry) that were later considered
convergences [33]. In fact, the complex body plan of cteno-
phores (with eight longitudinal rows of ciliated ‘‘comb rows,’’
a ramified endodermal gastro-vascular system, a complex
sensory apparatus located at the aboral pole, and a prevalence
of biradial symmetry [19]) differs markedly from that of the
cnidarians. Apart from some common embryological features
(central yolk and similar unipolar cleavages; animal pole corre-
sponding to adult mouth), there are no clear-cut morpho-
anatomical synapomorphies supporting the Coelenterata.

The very long branch leading to the ctenophores (see
Figure 1) makes their position prone to perturbation by the
long-branch attraction (LBA) artifact [34]. The basal position
of ctenophores suggested by Dunn et al. [3] might thus have
resulted from attraction of the ctenophores by the distant out-
group taxa used to root the tree. This problem was alleviated in
the present study by more comprehensive species sampling
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and by the use of the CAT model. That ctenophores are indeed
attracted by distant outgroups is empirically demonstrated in
our analyses by the observed increase in branch support for
Coelenterata and Eumetazoa after partial or total removal of
outgroup taxa (Figure 1). Thus, when distant outgroups
(notably fungi) were used (as in [3]) (outgroup 1), the Coelenter-
ata were moderately supported (BS = 78%) and the Eumeta-
zoa were poorly supported (BS = 62%). With choanoflagellates
as the only outgroup (outgroup 2), support for Coelenterata
and Eumetazoa increased remarkably (BS = 93% and BS =
90%, respectively). Even higher support for the coelenterates
was obtained by unrooted analysis (BS = 99%). We further
checked that the position of ctenophores was not due to arti-
factual attraction by the long branch leading to medusozoan
cnidarians (Hydrozoa + Scyphozoa) (see Figure 1), by an
analysis excluding these species (Figure S4): ctenophores still
grouped with anthozoan cnidarians (a short branch), with high
support (BS = 91%).

Our results not only suggest that ctenophores are the sister
group to cnidarians but also that eumetazoans are monophy-
letic, implying single acquisition during animal evolution of
nerve and muscle cells and/or the digestive system, in line
with conventional ideas. These findings are at odds with the
schemes of eumetazoan polyphyly proposed in two other
recent phylogenomic studies [3, 11], both of which used
more limited taxonomic sampling of nonbilaterian metazoans
and more phylogenetically distant outgroups. It is clearly
premature to make a final conclusion on basal metazoan rela-
tionships, because not all our analyses yielded significant
statistical support values, and the influence of outgroup taxon
sampling on tree topology might indicate that there is conflict
in the data. As additional data from more nonbilaterian species
become available, the remaining doubts should finally be
resolved. It should be noted that the position of the placozoan
Trichoplax with respect to sponges and eumetazoans remains
poorly supported in our analyses (Figure 1) and that recent
investigations focused on placozoan relationships [11, 35]
provided contradictory results, leaving this question unre-
solved.

Body Plan Evolution among the Eumetazoans

The proposed restoration of the Coelenterata implies that
cnidarians and ctenophores are phylogenetically equally
related to the bilaterians and has implications with respect to
the origin of mesoderm and of bilateral symmetry. These
body plan features have been classically thought to be evolu-
tionary innovations of the Bilateria, but their origin has been
suggested to date back to the common cnidarian-bilaterian
ancestor from recent developmental gene evidence [36–38].
The mesoderm-like muscle cell lineage of ctenophores [37]
might be homologous with the mesoderm of the Bilateria
and with mesoderm-like derivatives previously identified in
cnidarians [37, 39]. Concerning symmetry, parsimony optimi-
zation favors an independent evolution of anatomical bilateral-
ity in the bilaterians and in anthozoan cnidarians (Figure 3), but
the significance of the biradial anatomy of the ctenophores [21]
remains to be evaluated, for instance through the study of the
developmental regulatory genes unilaterally expressed in
cnidarians and in the bilaterians [38].

Our new proposal of basal metazoan relationships provides
a stimulating framework for furthering our understanding of
early metazoan evolution. It suggests that several key features
of metazoan body plans were affected by events of conver-
gence or reversion (Figure 3), contrasting with the traditional
conception of metazoan evolution dominated by a gradual
increase in morphological complexity. It should motivate
detailed exploration of many aspects of character transforma-
tions during evolution, development, and metamorphosis, as
well as the relationships of larval to adult traits.

Experimental Procedures

EST Sequencing

Fresh samples of Sycon raphanus, Oscarella lobularis, and Oopsacas

minuta were collected in the Mediterranean near Marseille (France). Ephy-

datia muelleri gemmules from Belgium were incubated in the lab until

production of young adult sponges. Samples of Heterochone calyx were

collected in British Columbia (Canada) and re-aggregated tissue was

used as starting material. Carteriospongia foliascens was collected at

Lizard Island (Great Barrier Reef, Australia) and Leucetta chagosensis at

North Stradbroke Island (Australia). Pleurobrachia pileus adults were

collected in Villefranche-sur-Mer (France). For Clytia hemisphaerica, the

starting material was a strain cultured at the Marine Station in Ville-

franche-sur-Mer. Frozen samples, RNA Later (QIAGEN)-preserved, or

extracted total RNA (depending on the species) were sent to Genome

Express (O. minuta), RZPD (S. raphanus, O. lobularis, E. muelleri), Express

Genomics (P. pileus and C. hemisphaerica), and the Max Planck Institute

for Molecular Genetics in Berlin (Germany) (H. calyx, C. foliascens, L. chago-

sensis) for cDNA library construction. ESTs were sequenced at the Max

Planck Institute for Molecular Genetics (Berlin, Germany) (H. calyx, C. folias-

cens, L. chagosensis) or at the Genoscope (Evry, France) (all other species).

Numbers of sequenced ESTs were approximately 2,000 (O. minuta, E. muel-

leri, S. raphanus, O. lobularis), 4,000 (H. calyx, C. foliascens, L. chagosensis),

30,000 (P. pileus), and 90,000 (C. hemisphaerica). All these newly sequenced

EST collections are publicly available in dbEST/GenBank (http://www.ncbi.

nlm.nih.gov/dbEST/). The alignment used for phylogenetic analyses is

provided as Supplemental Data.

Data Assembly

We built upon phylogenomic data sets previously assembled [13, 40]. These

alignments were updated, via the protocol described in [41], with the

addition of newly generated sequences, and of sequences publicly available

from the Trace Archive (http://www.ncbi.nlm.nih.gov/Traces/) and the EST

Database (http://www.ncbi.nlm.nih.gov/dbEST/) of GenBank at the National

Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). In

addition, 23 new genes sampled for at least two main poriferan clades

were added. All these genes are likely to be orthologs because they are in

single-copy in most of the opisthokonts, few recent duplications being

observed mostly in vertebrates and Drosophila. To further evaluate the

possibility of hidden paralogy, we inferred single-gene phylogenies and

looked for any strongly supported conflict with the super-matrix tree

according to protocol described in [42]. At a bootstrap threshold of 70%,

conflicts were observed for only 6.5% of the testable bipartitions, less

than the expected error rate. None of these conflicts could be easily

explained by hidden paralogy (see details on these analyses in the Supple-

mental Experimental Procedures).

As previously demonstrated [13], taxon sampling has a major impact in

phylogenomic studies. In addition to the nine sponges, nine cnidarians,

three ctenophores, and one placozoan available, we therefore selected

22 slowly evolving representative taxa among available Bilateria (based

on previous branch length comparison). To reduce the potential impact of

long-branch attraction (LBA) [34], we also incorporated all available ichthyo-

sporeans and choanoflagellates (taxa hypothesized to be the closest unicel-

lular relatives of Metazoa) to break the long-branch leading to the distantly

related fungal outgroup (for which only the slow-evolving chytridiomycetes

and zygomycetes were used).

Ambiguously aligned regions were removed with Gblocks [43]. Sequence

selection and concatenation were performed with SCaFoS [44]. To reduce

the amount of missing data in the final alignment, we discarded under-

sampled genes. Only genes sampled for at least two-thirds of the species

(36 out of 55) were retained. The resulting gene selection (128 genes) yielded

an alignment of 30,257 unambiguously aligned positions. For all but two

genes, the four major diploblast lineages (Porifera, Cnidaria, Ctenophora,

and Placozoa) were represented by at least one species; at least three of

the main poriferan clades (Demospongiae, Hexactinellida, Homoscleromor-

pha, Calcispongia) were represented for 65% of the genes.

http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/Traces/
http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/
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Phylogenetic Analyses

To analyze our phylogenomic data set, we used the CAT model [14] with

PhyloBayes version 2.3, which has been shown in some contexts to be

less prone to LBA artifacts than other models [13, 15]. We performed statis-

tical comparisons of the CAT model with the GTR model (of which other

matrix-based models—WAG, JTT, or LG—are special cases) by using

cross-validation tests as described in [40]), based on the topology of

Figure 1. Ten replicates were run: 9/10 for the learning set and 1/10 for the

test set. MCMC were run for 3000 (1500) cycles for the CAT (GTR) model,

1500 (100) being discarded as burn-in. The CAT model was found to have

a much better statistical fit than did GTR (a likelihood score of 3033.36 6

123.824 in favor of CAT). For the plain posterior estimation, two independent

chains were run for a total number of 15,000 cycles (corresponding to

w1,200,000 generations) saving every ten cycles and discarding the first

5,000 cycles (burn-in). Each cycle consists in a complicated series of

updates of all components of the parameter vector, including an average

of 20 topological updates. The posterior consensus tree was obtained by

pooling the tree lists of four independent runs. For each node, we compared

the posterior probabilities inferred from two independent chains. The

maximum difference we observed was 0.11 and 0.2 for the trees with 55

and 44 species, respectively; the average difference being 0.0017 and

0.0011. The differences corresponded to nodes poorly supported by boot-

strap values. Posterior probabilities were always identical for nodes having

a bootstrap support >90%. Bootstrap percentages were obtained by

running 100 independent pseudoreplicates, for 10,000 cycles (900,000

generations) each (because of CPU limitations). Bibliographic references

for phylogeny softwares are provided in the Supplemental Experimental

Procedures.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

four figures, three tables, and the alignment and can be found with

this article online at http://www.current-biology.com/supplemental/S0960-

9822(09)00805-7.

Acknowledgments

We thank Muriel Jager for technical help and Ronald Jenner for advice and

discussion. We are grateful to Evelyn Richelle-Maurer for providing the
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