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Abstract Real-time and accurate fault detection is essential to enhance the aircraft navigation sys-

tem’s reliability and safety. The existent detection methods based on analytical model draws back at

simultaneously detecting gradual and sudden faults. On account of this reason, we propose an

online detection solution based on non-analytical model. In this article, the navigation system fault

detection model is established based on belief rule base (BRB), where the system measuring residual

and its changing rate are used as the inputs of BRB model and the fault detection function as the

output. To overcome the drawbacks of current parameter optimization algorithms for BRB and

achieve online update, a parameter recursive estimation algorithm is presented for online BRB

detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed

method is verified by navigation experiment. Experimental results show that the proposed method

is able to effectively realize online parameter evaluation in navigation system fault detection model.

The output of the detection model can track the fault state very well, and the faults can be diag-

nosed in real time and accurately. In addition, the detection ability, especially in the probability

of false detection, is superior to offline optimization method, and thus the system reliability has

great improvement.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Near space aircraft plays a profound strategic role in controlling
the space resource by virtue of its potentials at early warning,

electronic suppression, long-distance quick attack and informa-
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tion collection etc. To fulfill the long range combat task, a reli-

able navigation technology with high precision is of vital
importance. However, in actual navigation system, faults are
very commonplace in any subsystem. If these faults are not

timely diagnosed, the whole system will be polluted by the out-
put data of the fault subsystem and further drastically declining
or even invalidating system precision.1 Therefore, it is a manda-

tory and pressing task to study the real-time detectionmethod of
navigation system to ensure its reliability and precision.

Until now, many mature fault detection methods have been

proposed, which can be classified into three categories, i.e.,
redundant structure-based methods, analytical model-based
methods and non-analytical model-based methods.2 Here,
the analytical model-based methods refer to the methods that
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exploit relationships between system input variables and out-
put variables in conditions where the mathematic model of a
system is known. Simply, the analytical model-based methods

depend on the physical model of the system, while the non-
analytical model-based methods are dependent largely on the
observed data without resort to the physical model. However,

only a few of them are suitable to solve the online fault detec-
tion problems of the navigation systems due to its characteris-
tics, such as its complex operating environment, the limited

flight carrying source and the substantial consequences raised
by fault. For example, the redundant structure-based methods
are not suitable for sensors’ fault detection since it brings over-
whelming weight to system.3 Among the analytical model-

based methods, ordinary fault detection methods cannot be
used directly for navigation system either. Presently, the chi-
square test is the most popular method.4 Chi-square test con-

tains state test and residual test, judging fault through con-
structing statistical information of state and residual
respectively and comparing them with relevant probability sta-

tistical distributions.5 However, both tests have inherent short-
comings in the engineering practice. Without measuring
update in the state propagator, state test method has a drastic

declining of fault detection sensitivity. Furthermore, it requires
learning about system’s prior information accurately, other-
wise a false diagnosis might occur owing to the improper initial
setting. Compared with state test method, residual test method

is more popular for its light computation burden, nice real-
time performance as well as the flexible design compatibility.
However, it is not so effective for soft fault (or gradually

changing fault).6 Actually, as a method based on analytical
model, chi-square test relies heavily on system model. How-
ever, the analytical model of navigation system is very complex

and often difficult to obtain precisely in engineering practice.
In contrast, non-analytical model-based methods have been
equally popular in such fault detection problem.

The non-analytical model-based methods are in essence
data-driven methods that depend on the input/output data
rather than the system model. These methods study and train
system model using the history data, and then estimate the sys-

tem output. The fault detection problem of navigation system
is related to not only the quantitative measuring data but also
subjective knowledge with fuzziness and imperfection of vari-

ous models. These factors increase the difficulty and complex-
ity to solve such problem with current detection and estimation
methods. In addition, we expect to obtain particular fault state

from the output results of detection on navigation system,
which is to learn the concrete fault conditions. The detection
problem is related to the case that the form of output estima-
tion is distributed. But the problem cannot be solved properly

by current methods.7,8 To overcome the afore-mentioned
shortcomings, it is needed to apply a flexible and reasonable
approach that is able to handle the subjective information

and uncertain information. The newly-developed BRB infer-
ence methodology using the evidential reasoning approach
(RIMER)9 provides a new solution to process uncertain and

mixed information in decision-making concerned with human.
Rather than depending on the system’s precise model, RIMER
can describe the fuzzy, uncertain and non-linear relations, and

interpret the output very well. Recently, this method has been
used to detect the leakage of oil conveying pipelines,10,11 secu-
rity analysis12 and other fields. One of the keys of this method
is to specify belief rule base (BRB) parameter effectively.
Therefore, the optimization training methods of BRB param-
eter are studied and proposed by Yang et al.13 But those meth-
ods are essentially offline ways, and the computation can

become expensive when a very large set of data is involved. Be-
cause the off-line method in Refs. 12,13 implements parameter
estimation by the traditional nonlinear programming based

on the least mean squared error measure. In addition, the
BRB parameter updating theory studied by Zhou et al.10 can-
not be applied directly to navigation system fault diagnosis.

Therefore, it is desirable to develop an online fault detection
method which can update the parameters in the established
detection model in line with the newly observed data.

This paper studies navigation system fault detection meth-

od based on BRB. To alleviate the computation burden and
achieve online detection, we propose an online estimation
algorithm based on the expectation maximization (EM) algo-

rithm to update the parameters of BRB-based detection model
in such a way that the parameters can be updated recursively
once new information becomes available. This is largely due

to the recursive nature of the EM algorithm by maximizing
the likelihood function. In addition, the effectiveness of the
proposed method is demonstrated via a navigation experiment

platform composed of strapdown inertial navigation system
(SINS), global positioning system (GPS) and celestial naviga-
tion system (CNS).

2. BRB approach

Based on decision making theory,14 Dempster–Shafer evidence
theory,15 and fuzzy sets theory,16 BRB approach describes

knowledge with the conception of belief rule and takes eviden-
tial reasoning (ER) algorithm10,17 as reasoning machine, being
able to reflect the dynamic nature of decision making problem.

The basic approach of BRB relative to this paper is briefly de-
scribed as follows.

2.1. Basic structure of BRB

In order to catch the system’s dynamic nature, BRB consists of
the belief rule sets showed as Eq. (1):9

Rk : If x1 is Ak
1 ^ x2 is Ak

2 ^ � � � ^ xM is Ak
M

Then y ¼ fðF1; b1;kÞ; ðF2; b2;kÞ; . . . ; ðFN; bN;kÞg
ð1Þ

where x = [x1 x2 � � � xM] denotes the input of the kth rule, M

the input sum of rule base, Ak
mðm ¼ 1; 2; . . . ;MÞ the value of

xm at the kth rule, bj,k (j = 1, 2, . . . , N; k= 1, 2, . . . , L)
the belief distributed to Fj, and ‘‘ � ’’ represents logical relation
‘‘and’’.

2.2. BRB reasoning model based on ER algorithm

This section presents the fault detection model structure under

the ER frame. Please refer to Refs. 17,18 to find the details
about the ER algorithm. Assume that the input and output
data of the system can be represented in the form of a data pair

(x(t),y(t)) while x(t) represents the input at the time instant t
and y(t) the detected output value describing system fault state.
The relationship between the input and the output can be rep-

resented as

ŷðtÞ ¼ fðx1ðtÞ; x2ðtÞ; . . . ; xpðtÞÞ ð2Þ
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where ŷðtÞ is the model estimation of yðtÞ; xðtÞ ¼
x1ðtÞ x2ðtÞ � � � xpðtÞ½ � a p-dimensional input vector, and
p the dimensions of basic attributes related to the detection va-
lue. Intuitively, the more the basic attributes, the higher preci-

sion the estimated detection value is estimated with. However,
on the condition of a fixed sample, the more the input dimen-
sion is, the sparser the sample is distributed in the space and
the fewer the relevant data information appears. The number

of the attributes depends on the real situation. The purpose
of using ER algorithm is to identify the relationship between
the input and the output. The key to solving the detection

problem is how to approximate the function f(Æ).
Define N distinctive evaluation grades as

F ¼ fF1;F2; . . . ;FNg ð3Þ

where Fn(n= 1,2, . . . ,N) represents the nth fault grade, which

can be served as the evaluation grade of the system fault state
and is selected according to the practice. It is worth noting that
F provides a mutually exclusive complete set. Usually, the

more the evaluation grades are, the more specific the studied
problem appears, but the heavier the computation burden is.

In order to apply ER algorithm, the input data should be
transformed into belief distribution structure. Rule-based

equivalence transformation techniques can be used in this case,
and more discussion on this issue can be found in Ref. 19. As a
result, each input attribute can be represented as a distribution

on referential values using a belief structure. So
xðtÞ ¼ x1ðtÞ x2ðtÞ . . . xpðtÞ½ � can be described as

Sðxt;iÞ ¼ fðFn; bn;iðt; iÞÞ; n ¼ 1; 2; . . . ;N; i ¼ 1; 2; . . . ; pg ð4Þ

where bn,i(t,i) denotes the matched degree to the grade Fn . The

above assessment implies that the attribute xt,i is assessed to
the grade Fn with the degree bn,i. bn,i can be generated using
various ways, depending on the attribute.20 The advantage of

doing so is that the precise data, the random numbers, and
the subjective judgments with uncertainty can be consistently
modeled under the same framework.9,13,17

After representing each attribute using Eq. (4), the ER algo-
rithm can be directly applied to combine all attributes and gen-
erate the final detection result ŷðtÞ. Specifically, ŷðtÞ has the
following belief distribution:21

OðŷðtÞÞ ¼ fðFn; b̂nðtÞÞ; n ¼ 1; 2; . . . ;Ng ð5Þ

where b̂nðtÞ is the belief of the grade Fn, and it can be obtained

by the ER analytical algorithm as follows:

b̂nðtÞ ¼
l
YL
i¼1

wib̂n;i þ 1� wi

XN
j¼1

bj;i

 !
�
YL
i¼1

1� wi

XN
j¼1

bj;i

 !" #

1� l
YL
i¼1
ð1� wiÞ

" # ð6Þ

l ¼
XN
n¼1
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i¼1

wibn;i þ 1� wi

XN
j¼1
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 !
� ðN� 1Þ

YL
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XN
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bj;i

 !�1
ð7Þ

where wi is the drive weight of the ith rule, and it can be ob-

tained as follows:

wi ¼ hi

Yp
m¼1

ai
m

� �dm XL
l¼1

hl

Yp
m¼1

al
m

� �dm,
ð8Þ

where hi 2 [0,1] (i= 1, 2, . . . , L) is the relative weight of the ith
rule, dm 2 [0,1] (m= 1, 2, . . . , p) the relative weight of the mth

input attribute in the ith rule; ai
m denotes the matching degree
between the real input and the referring value Ai
m, and it de-

pends on premise attributes natures and data characteristic.
Eq. (5) represents the overall assessment of fault state at

time t. However, in engineering practice, the system’s output

value ŷðtÞ is usually numerical. Therefore, it is desirable to gen-
erate numerical value equivalent to the distributed assessments
Eq. (5). The concept of expected utility is introduced to define
such value.9,13,22 Suppose ui(i = 1, 2, . . . , N) represents the

utility corresponding to fault grades Fi(i= 1, 2, . . . , N), plus
these natures that decision maker prefers Fj to Fi, so ui < uj.
Generally, utility ui may be estimated using prior objective

or expert knowledge, or it can be obtained from optimism
model, and we select the later in this paper. Eventually, the
numerical output equivalent to Eq. (5) can be calculated by

ŷðtÞ ¼
XN
j¼1

b̂jðtÞuj ð9Þ

From Eqs. (5), (6) and (9), it can be seen that the numerical out-
put ŷðtÞ is a function of dmðm ¼ 1; 2; . . . ; pÞ; hiði ¼
1; 2; . . . ;LÞ; x; b̂n;i and uj (j= 1, 2, . . . , N). Among them, attri-

bute weight, rule weight and utility are the parameters of BRB
reasoning model. If these parameters are proper, the model is
correctly established. Otherwise, a huge error tends to

occur andmay lead to unreliability of the detected result. There-
fore, the value of parameters will directly affect the output re-
sult. As such, there is a need to develop a method that can

optimally learn parameters using observed data information,
which will be elaborated in the following section of this paper.

3. Navigation system fault detection model based on BRB

3.1. Integrated navigation system structure design

To improve the precision and reliability of navigation sys-
tem, the multi-navigation system integrated schemes for air-
craft are the most popular policy at present. Among those

schemes, INS/GPS integration is the maturest one since it
can get steady position, velocity and attitude information.
But the invalidity of GPS inevitably happens owing to some

factors such as strong jamming, blackout effect appearing
during near space flying phase. Therefore, another assistant
navigation approach is necessary. As an assistant navigation

approach, CNS has a nice autonomy and is able to provide
a certain precise attitude adjusting information, being free
from the afore-mentioned factors influence. As a result,

INS/CNS integration is able to achieve navigation task dur-
ing the invalidity phase of GPS, seizing GPS information
after GPS recovering and furthermore adjusting the system.
For this reason, INS/GPS/CNS integration is a feasible ap-

proach.23 To ensure fault tolerance capability, we adopt the
non-reset federal filter structure to fuse the information of
the three sub-systems, and this structure has the best fault

tolerance capability.24,25 Finally, the fault tolerance filter
structure is designed, as shown in Fig. 1. SINS is the main
reference system. Two local filter systems are composed of

GPS and CNS assisting SINS, respectively. The most opti-
mal state estimation is obtained by fusing the two local fil-
ters information in the main filter. It is worth noting that
fault detection and isolation device is designed respectively

for each local filter to detect and dispose the sub-system
fault in time, ensuring the reliability of navigation system.



Fig. 1 SINS/GPS/CNS fault-tolerant system structure.
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3.2. Fault detection model establishing

Within the framework of BRB, this section studies the model-
ing of the fault detection for INS/GPS/CNS integration navi-

gation system.
For filter algorithm of navigation system, the fault detection is

implemented by monitoring residual r and relevant values to r in

general, as in the cases of Ref. 26 that detects system gradual fault
by gathering residual features and Ref. 27 that adjusts filter gain
through residual and effectively kicks off system fault. The stan-
dard chi-square test method constructs analytical fault detection

function (FDF) also through residual. In fact, when fault happens
in the assistant navigation system, not only residual r has a gradual
or sudden changing tendency, but _r also has a certain changing

tendency.28Therefore, themeasuring residual and its changing rate
are used as the input attribute parameters of the fault detection
model in this paper, namely xðtÞ ¼ ½rðtÞ _rðtÞ�. And the fault

detection value of residual test method based on analytical model
is used as the model output. Considering the detection ability of
analytical method is susceptible to system model, the FDF in

non-analytical form is defined as

yðtÞ ¼ fðxðtÞÞ ¼ fðrðtÞ; _rðtÞÞ ð10Þ

One crucial problem needing to be solved is how to obtain the
training data y(t) at the initial implementation of the algorithm.
Since y(t) corresponds to the FDF value of the residual test

method, this paper uses the relatively accurate output of residual
test method as the training data. In the calculating process, the
relatively accurate residual and its variance information need to

be known in advance, and this is based on the premise that the
prediction state variables are accurate. Different schemes corre-
sponding to different cases should be adopted to satisfy the pre-

mise in the experiment. Three schemes can be used to obtain the
training data y(t) in different contexts as follows:

Scheme 1

In the simulation, it can use a period of the standard state vari-
ables obtained by the pre-established flying trajectory to calcu-

late the accurate residual and its variance, and then the results
are adopted to get the training data y(t).
Scheme 2

In the actual flying test, it can use the history flying trajectory

data to calculate the accurate residual and its variance, and
then to get the training data y(t).

Scheme 3

In the actual flying test, in view of the short-term high-preci-
sion characteristic of SINS, its short-term high precision state
information can be used to calculate the accurate residual and

its variance, and furthermore to get the training data y(t).

In practice, the selection of the above schemes is context-

dependent. Since the algorithms are tested by the simulation,
this paper adopts Scheme 1.

The fault detection model based on BRB can then be estab-

lished as the specific procedures going like below

Step 1 Set up input evaluation framework of attributes. Since
both r and _r are numerical data, it is necessary to

transform them to belief distribution structure using
BRB reasoning approach. With the traits of measure-
ments in fault and normal states, the language grade

intuitively compartmentalized in the same way is
introduced to represent numerical characteristics of
attributes: S––small, M––moderate and B––big. In this

way, the input attribute evaluation framework shall be
defined as A= (S, M, B).

Step 2 Achieve equivalent transformation of belief distribu-

tion. Quantified referential points corresponding to
evaluation framework are selected in accordance with
data distribution characteristics of the input attributes
r and _r. All input attributes may then be assessed with

reference to this framework using the rule-based infor-
mation transformation technique.29

Step 3 Define discernment framework of the detected output.

To evaluate the local system fault state, the navigation
system state is divided into two categories: normal and
fault. Of course, we can select more state and different

divisions. In order to simplify problem, this paper only
takes into consideration the above states. Hence,
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define the following discernment framework of naviga-

tion system state:

OðŷÞ ¼ fðF1; b̂1Þ; ðF2; b̂2Þg ¼ fðNormal; b̂1Þ; ðFault; b̂1Þg ð11Þ

Step 4 Establish the initial BRB of the detection model. In
fact, the attributes r and _r are zero mean Gauss white
noise in normal state, but such characteristic does not

exist under fault state. The bigger r and _r are, the more
distinct the fault appears and the higher the degree of
belief distributed to fault state is. Therefore, the initial

BRB for fault detection of navigation system can be
established as Table 1. The belief rules in Table 1
reflect the causality between the input attributes and
the fault state of navigation system. Take the example

of the Rule 9, which means if r and _r are big at current
time instant, then the belief given to the fault state of
navigation system is 1, namely complete fault; while

the rule weight is 1, namely believing the rule com-
pletely. Other rules can be explained similarly.

Step 5 Update model parameters and calculate detection func-

tion.As explainedbefore, obtaining thedetection function
value through model is on the premise that the model
parameters, including hi (i= 1, 2, . . . , L), dm(m= 1, 2,

. . . , p) and uj (j= 1, 2, . . . , N), are known already. Step
4 endows parameters initial values, and the starting value
of the model, whereas the actual values shall be deter-
mined by an optimism algorithm. This paper proposes

an online updating algorithm to determine parameters
and the specific steps are elaborated in the following sec-
tion.Afterknowing theparameters, thedetection function

value turns available by Eqs. (5)–(9).

3.3. Criterion of fault discrimination

During fault detection, detection function value fluctuates in a
range normally, and there is a reference benchmark �y when the
state is normal. Therefore, the fault occurrence can be defined

by detecting the distance between detection function value ŷðtÞ
and the reference benchmark �y.

Definition 1. As for the parameter y(t) describing the fault feature
of navigation system, ŷðtÞ denotes its estimation value calculated

by BRBmodel at the time instant t, and �y its reference benchmark
under normal state obtained fromprior knowledge.WhenEq. (12)
is valid, the complete fault of the system can be confirmed:

dt ¼ jŷðtÞ � �yjP Thr ð12Þ

where Thr is the threshold given previously and dt the distance.
Table 1 Initial BRB for fault detection of navigation system.

Rule serial

number

r _r [b1,k b2,k] Rule weight

1 S S [0.95 0.05] 1.00

2 S M [0.78 0.22] 0.98

3 S B [0.66 0.34] 1.00

4 M S [0.55 0.45] 0.99

5 M M [0.50 0.50] 1.00

6 M B [0.36 0.64] 0.85

7 B S [0.24 0.76] 1.00

8 B M [0.10 0.90] 0.90

9 B B [0 1.00] 1.00
4. Parameter updating recursive algorithm of fault detection

model

If the parameters of the detection model are not given a priori

or only known partially or imprecisely, the model accuracy will
be affected dramatically. To solve this problem, Liu et al.12,13

established BRB nonlinear optimization model based on min-

imum average variance method. But this method is an offline
type in essence, and its tracking ability will get degraded if
the system state changes. Regarding the navigation system
reality, it is necessary to develop a method that can optimally

estimate BRB parameter and track the system change timely
and quickly. Therefore, the paper proposes a BRB parameter
updating recursive algorithm.

Assume that the input/output data pairs (x(n),y(n)) of the
detection model are known (for description convenience, t
appearing before is replaced by n here), the history input/out-

put data pairs (x(1),y(1)), (x(2),y(2)), . . ., (x(n),y(n)) must be
accounted because this approach applies mathematical statis-
tics method to estimate parameters. y(n) is belief distribution

form or numerical and the latter is preferred considering the
study background of this paper. Firstly, a theorem gives the
parameters updating recursive equation directly and then fol-
lowed by its detailed demonstration and derivation.

Theorem 1. Assume that the probability density function (PDF)
of y(n) is f(y(n)Œx(n),Q), where Q refers to unknown model
parameter vector to be evaluated. And assume that the BRB

inputs x(1),x(2),. . ., x(n) are relatively independent and so are
the outputs y(1),y(2),. . .,y(n), then the below recursive equation
is valid:

Qðnþ 1Þ ¼
Y
H

QðnÞ þ 1

n
½NðQðnÞÞ��1CðQðnÞÞ

� �
ð13Þ

where

CðQðnÞÞ ¼ $Q lg fðyðnÞjxðnÞ;QðnÞÞ ð14Þ
NðQðnÞÞ ¼ Ef�$Q$T

Q lg fðyðnÞjxðnÞ;QÞjxðnÞ;QðnÞg ð15Þ

where $Q is column gradient operator related to Q;
Q

Hf�g the
projection onto the constraint condition H, E{ Æ Œ Æ } conditional

expectation and N(Q(n)) is the augmented information matrix
calculated atQ(n). Besides, the theorem gives the general expres-
sion to solve model parameters. What is included in Q is up to the
actual studied subject. As to this paper, Q consists of three parts,

V= [hi dm]
T, u = [uj]

T and other PDF parameter r of y(n).

Proof. According to the independent assumption, after know-
ing the history input/output data pairs, we can obtain directly

fðyð1Þ; yð2Þ; . . . ; yðnÞjxð1Þ; xð2Þ; . . . ; xðnÞ;QÞ

¼
Yn
s¼1

fðyðsÞjxðsÞ;QÞ ð16Þ

From Eq. (16), the expectation of log-likelihood function at
time instant n is defined as

Lnþ1ðQÞ ¼ E lg
Yn
s¼1

fðyðsÞjxðsÞ;QÞjxð1Þ; xð2Þ; . . . ; xðnÞ;QðnÞ
( )

¼ E
Xn
s¼1

lg fðyðsÞjxðsÞ;QÞjxð1Þ; xð2Þ; . . . ; xðnÞ;QðnÞ
( )

ð17Þ
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Then Eq. (17) can further be written as

Lnþ1ðQÞ ¼ E
Xn�1
s¼1

lg fðyðsÞjxðsÞ;QÞjxð1Þ; xð2Þ; . . . ; xðn� 1Þ;
(

Qðn� 1Þg þ Eflg fðyðnÞjxðnÞ;QÞjxðnÞ;QðnÞg ¼ LnðQÞ

þ Eflg fðyðnÞjxðnÞ;QÞjxðnÞ;QðnÞ
�

ð18Þ

To obtain the expression of Ln+1(Q), we consider the Talyor
expansion of the first term on the right-hand side of Eq. (18)

and get

LnðQÞ ¼ LnðQðnÞÞ þ ½$QLnðQðnÞÞ�ðQ�QðnÞÞ þ 1

2
ðQ

�QðnÞÞT $Q$T
QLnðQðnÞÞ

h i
ðQ�QðnÞÞ ð19Þ

By defining LnðQÞ;$Q$T
QLnðQðnÞÞ can be given by Refs. 30,31

$Q$T
QLnðQðnÞÞ � �ðn� 1ÞNðQðnÞÞ ð20Þ

where NðQðnÞÞ ¼ E �$Q$T
Q lg fðyðnÞ j xðnÞ;QÞ j xðnÞ;QðnÞ

n o
.

Because Q(n) in Eq. (19) is the maximum point of Ln(Q), there is

$QLnðQðnÞÞ ¼ 0 ð21Þ

Substituting Eqs. (15) and (21) into Eq. (19), we can get

LnðQÞ�LnðQðnÞÞ�
1

2
ðQ�QðnÞÞT½ðn�1ÞNðQðnÞÞ�ðQ�QðnÞÞ ð22Þ

Then taking Taylor expansion, there is

lg fðyðnÞjxðnÞ;QÞ � lg fðyðnÞjxðnÞ;QðnÞÞ þ ð$Q lg fðyðnÞjxðnÞ;

�QðnÞÞÞðQ�QðnÞÞ þ 1

2
ðQ�QðnÞÞT

$Q$T
Q lg fðyðnÞjxðnÞ;QðnÞÞ

� �
� ðQ�QðnÞÞ

ð23Þ

Define

CðQðnÞÞ ¼ $Q lg fðyðnÞjxðnÞ;QðnÞÞ

where $Q lg fðyðnÞjxðnÞ;QðnÞÞ represents the gradient vector at
Q(n).

So the conditional expectation of Eq. (23) can be written as

Eflg fðyðnÞjxðnÞ;QÞjxðnÞ;QðnÞg ¼ Eflg fðyðnÞjxðnÞ;QðnÞÞjxðnÞ;
QðnÞg þ CðQðnÞÞðQ�QðnÞÞ

þ 1

2
ðQ�QðnÞÞT � E $Q$T

Q lg fðyðnÞjxðnÞ;
n

QðnÞÞjxðnÞ;QðnÞgðQ�QðnÞÞ ð24Þ

Eqs. (18), (22) and (24) lead to the following expression:

Lnþ1ðQÞ ¼ LnðQðnÞÞ
þ E lg fðyðnÞjxðnÞ;QðnÞÞjxðnÞ;QðnÞf g

þ C QðnÞð Þ Q�QðnÞð Þ � n

2
Q�QðnÞð ÞT

� NðQðnÞÞ½ �ðQ�QðnÞÞ ð25Þ

Similarly, since Q(n + 1) is the maximum point of Ln+1(Q) in

Eq. (25) and the first and second terms of Eq. (25) are the con-
stants, we obtain

$QLnþ1ðQðnþ 1ÞÞ ¼ 0 ð26Þ
So the maximizing parameter Q(n + 1) is given by

Qðnþ 1Þ ¼ QðnÞ þ 1

n
½NðQðnÞÞ��1CðQðnÞÞ ð27Þ

As to actual system, every parameter of Q must meet a certain
constraint condition. The constraint conditions of parameters

in this paper are
Constraint 1

Since the rule weights are normalized, there are

0 6 hi 6 1 ði ¼ 1; 2; . . . ;LÞ ð28Þ

Constraint 2

Since the relative weights of attributes are normalized, there
are

0 6 dm 6 1 ðm ¼ 1; 2; . . . ; pÞ ð29Þ

Constraint 3

Utility value shall meet the following conditions:

0 6 uj ðj ¼ 1; 2; . . . ;NÞ ð30Þ

And if Fj is preferred to Fi, then

ui < uj ð31Þ

Under the condition of the above constraints, Eq. (27) is
revised as follows:

Qðnþ 1Þ ¼
Y
H

QðnÞ þ 1

n
½NðQðnÞÞ��1CðQðnÞÞ

� �
where

Q
Hf�g is the projection onto the constraint condition H

composed by Eqs. (28)–(31). This completes the proof. h

Theorem 1 is the parameter updating recursive algorithm of
the detection model. Knowing from the theorem proofing pro-

cess, parameter updating recursive algorithm demands a known
PDF of y(n) previously. Next we study the realization of the
algorithm with the assumption that f(y(n)Œx(n),Q) is known.

In normal state, the estimated output value ŷðnÞ shall get close
to actual y(n) as much as possible giving x(n). y(n) herein is viewed
as a randomvariable, and ŷðnÞ denotes its expectation. So, assume

that the PDF of y(n) is Gaussian distribution as follows:

fðyðnÞjxðnÞ;QÞ ¼ 1ffiffiffiffiffiffiffiffi
2pr
p exp �ðyðnÞ � ŷðnÞÞ2

2r

( )
ð32Þ

where Q = [ST r]T is a parameter vector, r variance, and
S= [VT uT]T = [S1 S2 . . . SL+p+N]

T.

Due to the independence between the elements of S and,
N (Q(n)) and C(Q(n)) in Eq. (13) can be expressed as

NðQðnÞÞ ¼
N0ðQðnÞÞ 0

0 N00ðQðnÞÞ

	 

ð33Þ

CðQðnÞÞ ¼ ½C0ðQðnÞÞT C00ðQðnÞÞT�T ð34Þ

where N0(Q(n)) and C0(Q(n)) are the first-order derivatives with
respect to S, and N00(Q(n)) and C00(Q(n)) the second order deriv-
atives with respect to r. Obviously, there is

½NðQðnÞÞ��1 ¼ ½N0ðQðnÞÞ��1 0

0 ½N00ðQðnÞÞ��1

" #
ð35Þ
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Considering S only, the parameter recursive algorithm Eqs.

(27) and (13) can be transformed into the following form by
Eqs. (34) and (35):

Sðnþ 1Þ ¼ SðnÞ þ 1

n
½N0ðQðnÞÞ��1C0ðQðnÞÞ ð36Þ

Sðnþ 1Þ ¼
Y
H

SðnÞ þ 1

n
½N0ðQðnÞÞ��1C0ðQðnÞÞ

� �
ð37Þ

In Eq. (37), S(n) is known. The parameter recursive calculation

can be completed as long as N0(Q(n)) and C0(Q(n)) are known.
Their expressions are as follows:

(1) If a,b = 1, 2, . . . , L + p, the ath element of C0(Q(n)) and

the entries of N0(Q(n)) at time instant n are

½C0ðQðnÞÞ�a ¼
ðyðnÞ � ŷðnÞÞ

rðnÞ
XN
j¼1

ljðnÞ
ob̂jðnÞ
oSa

�����
S¼SðnÞ

ð38Þ

½N0ðQðnÞÞ�a;b ¼ E 1
r

oŷðnÞ
oSa

oŷðnÞ
oSb
� 1

r
o2 ŷðnÞ
oSaoSb

n
�ðyðnÞ � ŷðnÞÞjQðnÞg

¼ 1
rðnÞ

XN
j¼1

ljðnÞ
ob̂jðnÞ
oSa

" # XN
j¼1

ljðnÞ
ob̂jðnÞ
oSb

" #�����
S¼SðnÞ

ð39Þ

(2) If a,b = L + p+ 1, . . . ,L + p+ N, there are

½C0ðQðnÞÞ�a ¼
b̂a�L�pðnÞðyðnÞ � ŷðnÞÞ

rðnÞ

�����
S¼SðnÞ

ð40Þ

½N0ðQðnÞÞ�a;b ¼
b̂a�L�pðnÞb̂b�L�pðnÞ

rðnÞ

�����
S¼SðnÞ

ð41Þ

In Eqs. (38) and (39), ob̂j=oSa needs to be calculated, so it is
given in the following text.

Assume

Bj ¼
YL
k¼1

wkbj;k þ 1� wk

XN
i¼1

bi;k

 !
�
YL
k¼1

1� wk

XN
i¼1

bi;k

 !
ð42Þ

C ¼
XN
j¼1

YL
k¼1

wkbj;k þ 1� wk

XN
i¼1

bi;k

 !

� ðN� 1Þ
YL
k¼1

1� wk

XN
i¼1

bi;k

 !
�
YL
k¼1
ð1� wkÞ ð43Þ

Then there is

b̂j ¼ Bj=C ð44Þ

Define

n1ðqÞ ¼
YL
k¼1
k–q

1� wk

XN
i¼1

bi;k

 !
ð45Þ

v1ðq; jÞ ¼
YL
k¼1
k–q

wkbj;k þ 1� wk

XN
i¼1

bi;k

 !
ð46Þ

The first-order derivatives of b̂jðj ¼ 1; 2; . . . ;NÞ with respect to

Sa(a= 1, 2, . . ., L + p) are represented as
ob̂j

oSa

¼ 1

C2

oBj

oSa

C� oC

oSa

Bj

� 
ð47Þ

oBj

owq

¼ bj;q �
XN
i¼1

bi;q

 !
v1ðq; jÞ þ n1ðqÞ

XN
i¼1

bi;q ð48Þ

oC

owq

¼
XN
j¼1

bj;q �
XN
i¼1

bi;q

 !
v1ðq; jÞ þ ðN� 1Þn1ðqÞ

XN
i¼1

bi;q

þ
YL
k¼1
k–q

ð1� xkÞ ð49Þ

owq

ohq

¼

Yp
m¼1

aq
m

� �dm ! XL
l¼1
l–q

hl

Yp
m¼1

al
m

� �dm0@ 1A
XL
l¼1

hl

Yp
m¼1

al
m

� �dm !2
ð50Þ

owq

odc

¼

PL
l¼1
l–c

hqhl

Yp
m¼1

al
m

� �dm !
ln aq

c

� �
� ln al

c

� �� �" #
PL
l¼1

hl

Yp
m¼1

al
m

� �dm !2
ð51Þ

where j = 1, 2, . . ., N; q= 1, 2, . . ., L; c = 1, 2, . . ., p.
Besides, r(n) also needs to be calculated, and it can be esti-

mated through

rðnÞ ¼ argmax
r

lg fðyðnÞjxðnÞ;QÞjS¼SðnÞ

¼ ðyðnÞ � ŷðnÞÞ2jS¼SðnÞ ð52Þ

Then the recursive algorithm with the constraints shown in Eq.

(37) should be given in detail. First, Constraints 1 and 2 can be
replaced as

0 6 Sd 6 1 ðd ¼ 1; 2; . . . ;Lþ pÞ ð53Þ

Constraint 3 is equivalent to

hgðSLþpþi;SLþpþjÞ ¼ li � lj < 0

ði ¼ 1; 2; . . . ;N� 1; j ¼ iþ 1; iþ 2; . . . ;NÞ
ð54Þ

where g ¼ ði� 1ÞðN� 1Þ �
Pi�2

k¼1ði� k� 1Þ þ j� i.
The constraints given by Eq. (53) require that the parame-

ters Sd (d= 1, 2, . . . , L+ p) derived from Eq. (36) have up
and down limits. Using the projection algorithm, we define
the projecting operator as

p1ðSðnþ 1ÞÞ ¼
XLþp
d¼1

bSdðnþ 1Þed ð55Þ

where ed is a vector whose dth element is 1 and the other ele-
ments are 0; bSdðnþ 1Þ is obtained from

bSdðnþ 1Þ ¼
0; Sdðnþ 1Þ < 0

1; Sdðnþ 1Þ > 1

Sdðnþ 1Þ; 0 6 Sdðnþ 1Þ 6 1

8><>: ð56Þ

For constraints given in Eq. (54), let

hðSÞ ¼ ½h1ðSÞ h2ðSÞ . . . hGðSÞ�T

where G ¼ ðN� 1ÞðN� 2Þ �
PN�3

k¼1 ðN� 2� kÞ þ 1. Suppose

that H(S) denotes the Jacobian matrix of h(S), then we deal
with the constraints given by Eq. (54) applying the following
algorithm:30
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UðSðnÞÞ ¼ I N �HðSðnÞÞT

� ðHðSðnÞÞHðSðnÞÞTÞ�1HðSðnÞÞ ð57Þ

where IN is the identity matrix whose dimension is N.
In addition, it is possible for BRB detection system that

only some belief rules are activated at time instant n, which re-
sults in the parameters updated partially. This may make the
matrix N0(Q(n)) be singular, and it needs an amendment.10

Hence, the revision coefficient # P 0 is introduced to ensure
N0(Q(n)) positive definiteness. Besides, the step factor f P 1
is adopted to improve the algorithm’s convergence rate. At

last, the parameter updating recursive algorithm of the detec-
tion system can be described as

Sðnþ 1Þ ¼ p1fSðnþ 1Þg ð58Þ

Sðnþ 1Þ ¼ SðnÞ þ f
n
p2fSðnÞg � ½N0ðQðnÞÞ

þ #I LþpþN��1C0ðQðnÞÞ ð59Þ

with

p1fSðnþ 1Þg ¼
XLþp
d¼1

bSdðnþ 1Þed ð60Þ

p2fSðnÞg ¼
I Lþp 0ðLþpÞ�N

0N�ðLþpÞ UðSðnÞÞ

	 

ð61Þ

where IL+p and IL+p+N are all identity matrixes with L + p

dimension and L + p+ N dimension respectively.
As a result, the procedure for the recursive algorithm for

updating the BRB-based model based on the numerical output

and normal distribution assumption may be summarized as the
following steps:

Step 1 Given the initial values of the parameter vector S(0)
and the variance r(0). S(0) must satisfy the con-
straints (53) and (54).

Step 2 When the observations x(0) and y(0) are available, the

recursive algorithm Eq. (58) is used to estimate S(1).
Then r(1) is estimated using Eq. (52).

Step 3 When x(n),y(n) and S(n) are available, r(n) is esti-

mated using Eq. (52), and S(n + 1) is obtained from
Eq. (58).

Step 4 Once the BRB-based model is updated, ŷðnþ 1Þ is
estimated by Eq. (9), and then the next updating step
is performed.

Remark 1. Due to the proposed algorithms under the
assumptions of Gaussian distributions, they converge for
Ergodic assumptions.

Remark 2. The proposed recursive algorithms for updating

BRB-based detection model are based on the stochastic
approximation algorithm. In addition, the convergence theo-
rem of the stochastic approximation algorithm has been

proved by Kushner et al.32 Based on Remarks 1 and 2, there
is no need to analyze the convergence of the recursive algo-
rithm again.

Comparison analysis of algorithms: the recursive algorithm is
inferior to the residual test in terms of the calculation complex-
ity, but the latter one is not so effective for the soft fault, and

the proposed recursive algorithm just aims at solving this
problem. Compared with the afore-mentioned multi-objective
optimization learning method, the recursive algorithm has

the following two advantages:

(1) Its calculation complexity is relatively lower and thus it
fits to the online implementation. The multi-objective

optimization learning method is based on the least mean
squared error measure and the parameter estimation is
achieved by the traditional nonlinear programming with

an off-line nature. In addition, this method adopts off-
line data to train model parameters again and again,
and then the trained model is used online. However, rep-

etitious training implies completing multiple cycles of
calculation until getting the parameters with satisfactory
precision, so this process is rather time-consuming and
its computing burden is difficult to be expressed as an

analytic form. The proposed algorithm is a recursive
method and has analytic expressions, so the algorithm
can immediately update the parameters of BRB as long

as the system receives new observations. That is to esti-
mate model parameters in real time through Eq. (58),
which ensures the speed of the algorithm and satisfies

the real-time requirement in engineering application.
This paper validates the above analysis through experi-
ments and the simulation results, as shown in Section 5.

(2) The precision of the parameter estimation is relatively
high. Indeed, the offline approach can make use of the
acquired data to train the model parameter such that
more precise model can be attained, yet this kind of

high-precision model is concerned with the training
data. Since the system studied here is a dynamic naviga-
tion one and the system is constantly affected by various

uncertain disturbances, the model parameters have to be
updated in real time, which cannot be fulfilled by offline
approach. Therefore, as the system works, the estima-

tion precision will deteriorate gradually. On the con-
trary, the online updating method can use the real-
time data and update the parameter accordingly, mak-
ing it as close to the real system as possible. It can be

concluded that the online approach possesses better
dynamic adaptability and the precision of the parameter
estimation is relatively high. As far as we know, real-

time estimation is desirable in practice so that the condi-
tion of a monitored system is repeatedly updated during
its operation to ensure that the most recently calculated

state value accurately reflects the current reality of the
system.

5. Navigation system fault detection experiment

5.1. Experiment scheme design

To validate the proposed detection method, this section devel-

ops an experimental study. Since it is hard to obtain the SINS/
GPS/CNS integrated navigation data in high dynamic condi-
tions through outfield test, we collect the data by hardware-
in-the-loop simulation. The field data collection process is

illustrated in Fig. 2. A standard flying trajectory is set



Table 2 Table of flight process.

Flight time interval (s) State description and relevant parameters

0–100 Uniformly accelerated flight, accelerated

velocity is 0.5g

101–140 Upward climb flight, pitch angel rate is

0.5 (�)/s
141–340 Uniform climb flight

341–380 Downward flight, pitch angle rate is

�0.5 (�)/s
381–390 Roll flight, roll angle rate �1 (�)/s
391–612 Turning flight

613–622 Roll flight, roll angle rate 1 (�)/s
623–922 Uniform flight

Table 3 Setting of faults.

Navigation

system

Flight time

interval (s)

Fault mode Measurement Fault

value

GPS 260–375 Gradual change Satellite 2’s

pseudo-range

0.3 m/s

GPS 660–690 Sudden fault Satellite 9’s 60 m
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previously. Then NS300 satellite signal simulator is used to
generate the high dynamic GPS radio-frequency signal, and
GN0204 receiver is used to receive satellite signal and process

measurement information about pseudo-range and pseudo-
range rate. SINS and CNS data are generated by the signal
simulators designed in accordance with the flying trajectory.

Finally, all generated measurement information is transferred
to the information fusion and fault detection device for verify-
ing the proposed method.

In addition, we compare our method with the residual chi-
square test, the offline optimal training method proposed in
Ref. 13 based on nonlinear multi-target optimism and the fuzzy
neural network (FNN) method proposed in Ref. 33 The de-

tailed parameters are set as follows.

(1) Setting of flying trajectory: Aircraft initial position is at

34.3441� north latitude, 108.7346� north longitude,
20.5 km above sea level; initial velocity and attitude
are both zero; initial director is north straight; flight pro-

cess is demonstrated in Table 2.
(2) Sensor precision grade: Gyro random drift rate is 0.01

(�)/h, accelerometer measured constant drift 30 lg, star
sensor precision 1000, GPS receiver position precision
10 m, and the measured velocity precision 0.1 m/s.

(3) Fault simulation and parameter setting: To verify the
proposed online fault detection method towards sudden

fault as well as gradual fault, fault information is set
artificially by adding sudden and gradual faults into
measure information. Fault information is set up as

Table 3. False alarm rate is a = 0.01, and threshold cor-
responding to SINS/GPS system is 16.812.

(4) Initial setting of model parameters: Initial rule weights

and the corresponding output belief are given in Table 1.
The initial attribute weights are d1 = d2 = 1; the step
factor f = 300 and the singular matrix revision coeffi-

cient #= 0.15; the initial utility [u1 u2] = [0.94 0.66].

5.2. Experimental result and analysis

Based on the above simulation conditions, in ideal case, the
system FDF value is shown in Fig. 3. The horizontal dot dash
line describes the threshold value in Fig. 3. From Fig. 3, the

FDF value does not surpass threshold at 261 s, but surpass
threshold when the gradual fault lasting for 7 s or so. This hap-
pens because the fault degree is equivalent to noise degree in
Fig. 2 Field data collection process.
the initial period. In fact, the FDF value is about 2 m calcu-
lated with the set gradual-changing rate at 268 s.

Fig. 4 shows the FDF value obtained by residual chi-square

method and Fig. 5 is the corresponding position errors. From
Fig. 4, it can be observed that the residual method is not sen-
sitive to detect gradual fault, unable to provide reliable diagno-

sis result if the gradual fault exists. It can also be seen that false
alarm appears in the period of 376–450 s after the gradual fault
is gone. The reason is that the gradual fault which is not dis-

covered in initial period pollutes the system estimation states
to some extent, and thus a large error is generated subse-
quently causing the false alarm. This point can also be proved
from the east-orientation position and north-orientation posi-

tion errors shown in Fig. 5. The positioning result shows that
during the existence of gradual fault and false alarm (about
260–450 s), position errors exceed normal range. Then, due

to the adaptive adjustment of the filter, the system convergenc-
es back to normal range again. However, with regard to sud-
den fault, the residual method expresses nice diagnosis ability

without delay or error detection occurring in experiment.
Fig. 6 shows the result generated by the offline

optimal training method mentioned above. For the sake of
pseudo-range

Fig. 3 Theoretical value of FDF.
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comparison, the theoretical value is also showed in actual line
while detection result in short dashed line in Fig. 6. Besides,
two local amplificatory figures are illustrated in Fig. 6. In the

simulated result, it is shown that this offline method is also
quite effective to discover both gradual and sudden faults,
but un-detection and false alarm exist. From the local amplifi-

catory figures, we can see that the gradual fault is not detected
until almost 30 s later. And at this moment, the fault value is
about 9 m in the satellite pseudo-range direction, and the value

is more than normal noise. Besides, there is an almost 20 s false
alarm after the gradual fault disappears. Also, there is some-
what false alarm after the sudden fault disappears. In addition,
during the period without any faults, FDF value with this off-

line method has an obvious error. Nevertheless, the detected
value is within threshold, having no effect on the final discrim-
ination of the fault.

The detection result using FNN is illustrated in Fig. 7,
where the theory result is also compared with the real one. It
can be observed from Fig. 7 that this approach can also detect

the sudden and soft faults. However, since FNN is also an off-
line training approach but used online, missing detection and
false alarm also exist in the detection. For example, the soft

fault was not detected until 15 s later, and the false alarm oc-
curred after both the end of soft and sudden faults. In addi-
tion, in local zooming part of the Fig. 7, at the end of the
experiment, FNN also has some minor false alarm, which is

caused by the dynamic response of the system. The dynamic
variation of the navigation system decreases the approaching
performance of the FNN with respect to the real system at

the early stage, and makes the detection results imprecise. This
Fig. 4 FDF of residual chi-square method.

Fig. 5 Navigation system position errors using residual chi-

square method.
indicates that in order to solve the fault detection problem for
dynamic navigation systems, only prior knowledge and histor-
ical data are not enough, and the new observation information

is also needed to constantly adjust the parameters of the detec-
tion model.

The result generated by the proposed online updating meth-

od is shown in Fig. 8. Similarly, we compare our method with
the theoretical value. Also, the FDF values of gradual and sud-
den faults are amplified, corresponding to Zoom A and Zoom

B, respectively. In Fig. 8, compared with theoretical value
regarding gradual fault, the proposed method has a delay of
5 s which means a maximum 3.6 m fault value in the corre-
sponding pseudo-range direction. Since the fault value of

3.6 m is approximately equivalent to the noise degree, the
detection delay influencing position results does not exist basi-
cally. In addition, when the gradual fault disappears, the sys-

tem can convergence back to normal range timely, and there
is no false alarm. As to sudden fault, the proposed method is
able to detect the fault timely and there is no false alarm after

the fault disappears. Furthermore, during the period without
any faults, the value generated by the proposed method goes
well consistent with theoretical value. Table 4 shows some up-

dated BRB parameters. We can see from Table 4 that every
rule weight has been updated. The weight of rule 4 is only
0.0624, and it demonstrates that this conditional rule plays a
smaller role in fault detection. What is more, the updated input

attribute weights are d1 = 0.8676, d2 = 0.5147, respectively,
Fig. 6 FDF value of offline optimism study training method.

Fig. 7 FDF value of FNN method.



Fig. 8 FDF value of online updating method.

Table 4 Updated BRB for fault detection of navigation.

Rule serial

number

r _r [b1,k b2,k] Rule weight

1 S S [0.9984 0.0016] 1.0000

2 S M [0.8356 0.1644] 0.9887

3 S B [0.2987 0.7013] 0.9625

4 M S [0.7569 0.2431] 0.0624

5 M M [0.5362 0.4638] 0.8754

6 M B [0.3695 0.6305] 0.9168

7 B S [0.2263 0.7737] 1.0000

8 B M [0.0024 0.9976] 0.9994

9 B B [0.0001 0.9999] 1.0000

Table 5 Comparison of detection results under four methods.

Item Residual test

RMSE Normal 3.5005

Soft fault 124.6764

Sudden fault 4.6224

All process 66.7060

False detection time (s) False alarm 17

Missing detection 109

Updating/training time (s) 1.52 · 10�6
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and this demonstrates that r plays a leading role in fault detec-
tion, which matches the reality as well.

To further illustrate the performance of the proposed recur-

sive algorithm, the comparison of detection result and the
time-consuming performance is conducted in Table 5, where
the prediction precision, the fault detection performance and

the operation effectiveness are measure by the root mean
square error (RMSE), the time of false alarm and missing
detection and the one step time-consuming. The ‘‘normal’’ re-

fers to the case where there is no fault time period in the obser-
vation data, the ‘‘soft fault’’ and ‘‘sudden fault’’ refer to the
corresponding fault time period, and the ‘‘all process’’ refers
to the entire experiment period. It has to be noted that the time

consumed here also considers the off-line training process,
which is necessary for dynamic systems.

Table 5 indicates that the online updating method is supe-

rior to the residual one in terms of the estimation precision
and the fault detection performance, though the residual meth-
od is a bit faster. This is because the analytical model of the

residual uses the intermediate fertility variables. Nevertheless,
the residual method is the least sensitive one with respect to
the other three methods, and its fault detection performance

is the worst. Since the latest observation information is used,
the online updating method is also superior to the offline train-
ing and FNN approaches in terms of the estimation precision
and fault detection. Compared with the aforementioned two

algorithms, the time consumed by the online updating method
is also the shortest when the time of parameter optimization is
also considered, which satisfies the dynamic requirements of

the navigation system. In addition, compared with offline
training, FNN also has better fault-detection performance
and efficiency. The main cause is that the optimization model

is multi-objective optimization.20 In reality, to solve multi-
Off-line training13 FNN33 Online updating

48.7655 36.0699 2.7520

42.9577 17.9069 14.7459

42.9231 8.9509 5.5401

53.4600 33.9767 6.0053

29 24 3

31 15 5

0.80902 0.01542 0.00392

Fig. 9 Navigation system positioning errors using online

updating method.
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objective optimization problem is much more difficult than to
solve single-objective optimization problem. Practically, it is
very difficult to obtain the general optimal solution for mul-

ti-objective optimization problems.
Fig. 9 shows the final position errors corresponding to the

proposed method. And the results further verify that the pro-

posed online fault detection method correctly estimates fault
function values, providing a reliable basis for disposing the
fault and achieving smooth position errors with a precision

of 2 m.

6. Conclusion

As an important guarantee to system reliability, the online
fault detection technique of the integrated navigation system
draws extensive attention. This paper investigates an online

fault detection technique with the SINS/GPS/CNS inte-
grated navigation platform. In particular, we study a fault
detection method based on non-analytical model instead of
the common analytical model which is generally unable to

thoroughly solve the gradual and sudden fault. The naviga-
tion system fault detection model is established based on
BRB. Compared with the traditional IF-THEN rule base,

information included by BRB is richer in terms of knowl-
edge description. To realize online fault detection and over-
come the shortcomings of inadequate tracking and long-time

consumption owned by the current BRB parameter offline
optimal method, a parameter recursive updating algorithm
based on EM is proposed, and the online parameter estima-
tion of the fault detection system is realized. An experimen-

tal study for the aircraft navigation system fault detection is
examined to demonstrate how the proposed detection meth-
od can be implemented. The results show that the solution is

able to online update the detection model parameters effec-
tively and the output value can well track the fault state of
system. It is superior to offline optimal training method in

terms of its detection performance (especially in the proba-
bility of false detection) and thus increases the reliability
and positioning accuracy of the navigation system. It has

to be noted that the proposed method has been verified very
well using Scheme 1 in the hardware-in-the-loop experiment.
Considering the actual flying test, the verification of the pro-
posed method using Schemes 2 and 3 will also be studied in

the future.
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