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Abstract

In this paper, we consider a type of second-order neutral functional differential equations. We obtain some
existence results of multiplicity and nonexistence of positive periodic solutions. Our approach is based on
a fixed point theorem in cones.
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1. Introduction

In this paper, we consider existence, multiplicity and nonexistence of positive w-periodic
solutions for the following second-order neutral functional differential equation:

(x(1) —ex(t = 8))" +ax ) = 1b(0) f (x(t — (1)), (1.1)

where X is a positive parameter, ¢ and § are constants and |c| # 1.

The existence of periodic solutions for functional differential equations has been derived
from many fields such as physics, biology and mechanics [5,6]. Many results were obtained
by Kuang [6], Freedman and Wu [4], Wang [7] and many others by applying fixed point index
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theory, theory of Fourier series, fixed point theorems in cones, Leray—Schauder continuation the-
orem, coincidence degree theory and so on. We refer to [8—14] for some recent results in this
field.

Among the previous results on this problem, many of them concern neutral systems (Lu and
Ge [10], Lu, Ge and Zheng [11] and Chen [13]). But to our best knowledge, papers on multiplicity
of periodic solutions of neutral systems are few.

In this paper, we aim to establish existence, multiplicity and nonexistence of positive
w-periodic solutions for second-order neutral functional differential equation (1.1). Our approach
is based on a fixed point theorem in cones as well as some analysis techniques used in [7,15].

Let

u—0t u u—00 Y

ip = number of zeros in the set { fo, foo},

iso = number of infinities in the set { fy, foo}.

It is clear that ip, icc = 0, 1 or 2. We will show that (1.1) has iy or i, positive w-periodic
solution(s) for certain X, respectively.
Let f = i fow f(s)ds, where a is a continuous w-periodic function. In what follows, we set

X:{xlxeC(R,R), x(t+w)5x(t)}

with the norm defined by | x||x = max{|x(#)|: ¢ € [0, w]}. Then (X, || - ||x) is a Banach space.
Let A: X — X defined by (Ax)(¢) = x(t) — cx(t — §).

Lemma 1.1. If |c| # 1, then A has continuous bounded inverse A~" on X and for all x € X,

Y isoc!x(t = jo), iflc| <1,

PR | 1.2
(a71x) ) SY T+ 8, iflel> 1, -
and
» lxllx
|A x||X<|1_|C||'

Proof. According to [9], we can get the equality (1.2) and then verify Lemma 1.1.
We consider the following assumptions:

(A1) a,b e C(R,(0,+00)) are w-periodic functions, max{a(z): t € [0, w]} < (%)2, and 7 €
C(R, R) is a positive w-periodic function.

(A2) f e C([0,00),[0,00)) and f(u) > 0 for u > 0.

Let

M =max{a(1): t € [0, »]}, m =min{a(?): t € [0, w]},

Bw
=M. L=—1 _ 87
Zﬂsin’%w ZﬂsinﬂTw

_Am —c|(M +m)]

k=I(M LM,
(M +m) + LMD
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If the assumption (A1) holds, then M < (%)2. Thus we can see that L > [ > 0.
Additionally, define

M(r):max{f(t): 0<r < r },
1—|c|

k—~Vk?—4LIMm

m(r)=min{f(t): ar <t < i }, k= i

1 —|c]

In this paper, we discuss existence of positive w-periodic solutions of Eq. (1.1) when ¢ €
(_ min{kl’ ML-i-m}’ O]
m

Theorem 1.1. Suppose the assumptions (A1), (A2) hold and — min{ i k1l <e<0.

(@) Ifio =1 or 2, then (1.1) has iy positive w-periodic solution(s) for A > L 0;

m()blw
(b) Ifico = 10r2, then (1.1) has i positive w-periodic solution(s) for 0 < A < %,

©) Ifico =0 0ripg =0, then (1.1) has no positive w-periodic solution for sufficiently small or
large ) > 0, respectively.

Theorem 1.2. Suppose the assumptions (A1), (Az) hold and — min{MLm, ki} <c<O.

(a) If there exists a constant c; > 0 such that f(u) > ciu for u € [0, 400), then (1.1) has no
1—c? .

blwcy (e—|cl)’

(b) If there exists a constant ¢y > 0 such that f(u) < cou for u € [0, +00), then (1.1) has no

o i . m—(M+m)ic|
positive w-periodic solution for 0 < A < Do LM

positive w-periodic solution for A >

Theorem 1.3. Suppose the assumptions (A1), (Az) hold, ¢ € (—min{kq,
ico =0.If

ML_H”},O] and iy =
1—c? m— (M + m)|c|
= <A< — = ,
max{ fo, foolbwl (o —|c|) min{ fo, foo}bw LM

then (1.1) has one positive w-periodic solution.

The rest of this paper is organized as follows: Section 2 is about statement of the method
(a fixed point theorem in cones) and some prior estimations in order to prove our main results; in
Section 3, we give the proofs of our main results by using our lemmas and present an example.

2. Preliminaries

We first state the well-known fixed point theorem in cones [1-3]. For the proof, we refer to
the classical works [1-3].

Lemma 2.1. (Deimling [2], Guo and Lakshmikantham [3] and Krasnoselskii [1]) Let E be a
Banach space and K a cone in E. For r > 0, define K, = {u € K: |u|l < r}. Assume that
T:K, — K is completely continuous such that Tx # x for x € 0K, ={u € K: |lu|| =r}.

() If|Tx| > ||x|| for x € 3K,, then i(T, K,, K) = 0;
Gi) IfITx|| < |x| for x € 3Ky, then i (T, K,, K) = 1.
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Next, we transfer existence of positive w-periodic solutions of neutral equation (1.1) into
existence of positive fixed points of some fixed point mapping.

In order to establish existence, multiplicity and nonexistence of positive w-periodic solutions
for (1.1), we consider the following equation:

Y'(0) +a® (A7 y)0) =26 f((A7y) (e — T(1))). 2.1)
where A~! is defined by (1.2). By Lemma 1.1, we conclude that

Lemma 2.2. y(7) is an w-periodic solution of (2.1) if and only if (A~'y)(t) is an w-periodic
solution of (1.1).

Aiming to apply Lemma 2.1 to Eq. (2.1), we rewrite (2.1) as
Y0 +a@®)y®) —a®G(y@) =20 f((A'Y) (1 — @),

where

Gy@®) =y®) — (A7'y) () = —c(A7y)(t — 8).

Set K ={x € X: x(t) > «o|lx||x}. Clearly, K is a cone in X. Note that 2, = {x € K:
lxllx < r} and 082, = {x € K: ||x|lx = r}. Additionally, we let C, = {x € C(R, R}):
x(t +w) =x()}.

By solving the inequality |c| < % we can obtain the following result immediately.

Lemma 2.3. [f |c| < min{k;, }, then |c| < a.

m
M~+m

Lemma 2.4. If y € K and c € (—min{ky, }, 0], then

_m__
M+m

@ Sylx <@ o < gyl
(b) =Dy x < Gy0)) < L lIylix, £ €10, w].

Proof. Part (a). For y € K and ¢ € (— min{kq, Mi-s-m}’ 0], by Lemma 1.1, we have
_ . . . . . . o —|c|
(A0 = cye—jo =3 cIya—jd— Y lelye—jd>—FIylx
j=0 j=2i j=2i+1
A7) < )
(A7y)® T

Part (b). From the definition of G (y(¢)) and Part (a), we have

lel (e — fel)

|c|
2 Mix<G(h®) <

1 —|cl

Iyllx.

The proof of Lemma 2.4 is completed. O

Firstly, we consider the following equation:

Y'(t) + My(t) =h(t), heC,. (2.2)
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Define G (¢, s) by
cosB(t+ 75 —s)

G(t,s)= — , teR, t<s<t+ow.
2B sin 5~
Thus,
-+ t+
¢ “cos Bt + 2 —5) _sinB(r+ 2 —g) [t
/G(t,s)ds:/ — 5w ds = - ﬂ‘;
J / 2B sin 5~ 2B sin 5+ ‘
1 1 1 1
:——|——:—:—’
282 282 B2 M
Bw
ST 1
0<l=7ﬂ<G(I,S)<—ﬂ=L
2 sin 57 2 sin 57
since M < (%)2. Let
t+w

Th(t) =X / G(t,s)h(s)ds.
t
It is easy to show that 7, i (¢) > O for h(t) > 0. And by the properties of G(¢, s) and h(¢), T), is
completely continuous. Also, by simple computations and the maximum principle, we establish
the following lemma.

Lemma 2.5. Suppose the assumptions (A1), (Az) hold and ¢ € (—min{kq, M’_’:_m },0]. For any

h € Cy, y(t) = T, h(t) is the unique positive w-periodic solution of (2.2). Meanwhile, ||T) || = %

Secondly, we study the following equation corresponding to (2.2):
Y'(@t) +at)y(t) — a(t)G(y(t)) =Mh(t), heC,. (2.3)

Let By(1) = L[(M — a(t))y(t) + a()G(y(1))]. Clearly, | B| < (M —m + M 1‘_0\'60- Then,
from Lemma 2.5, we have

y() =Toh(t) + THBy(t).

lc| < min{k;, 372} implies that % <1.S0 | Bl < ITall B < % < 1. Thus
we have

y(t)=U —T,B)"'Th(1). (2.4)
Let

Ph(t) = — T, B) "' Toh(1).

Then we can make the following conclusion.

Lemma 2.6. Suppose the assumptions (A1), (A2) hold and ¢ € (—min{kq, MLM}, 0]. For any
h € Cy, y(t) = Pyh(t) is the unique positive w-periodic solution of (2.3); P, is completely
continuous and satisfies

M —c])

Thh(t) < Pbh(t) < —————||Twh||x, heC,.
ah(t) < Poh(t) m—(M—I—m)|C|”)L“X "
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Proof. By expansions of Py,

Po=(—-TB) 'T=(I+ LB+ (B + -+ (L.B)" +-- )T,
=T+ BT+ (B Ti+ -+ (LB T+ -+, 2.5)
P, is completely continuous since T, is completely continuous. From (2.5), we get
1) < Pah() < —2 Dz e,
m— (M +m)c|

The proof is completed. O

Lemmas 2.5 and 2.6 are obtained similarly with Lemmas 1 and 2 in [15].

Let Q;y(t) = Py (b(t) f (A~'y)(t — T(¢)))). Since P; is completely continuous, Q;, is com-
pletely continuous by the continuity of b(-) and f(-). Also, from the definition of 7, and P;, it
follows that Q}, is continuous about A.

From the above arguments, we can obtain the following lemma immediately.

Lemma 2.7. Suppose the assumptions (A1), (Az) hold and ¢ € (—min{ky, MLM},O]. Then
0,(K)CK.

Proof. From the above arguments, it is easy to verify that Q, y(f + w) = Q,y(¢t). Fory € K, we
have

Quy() =P (b@) f((A'y)(t —®))) = T (b F (A7 y) (£ — 7))

t+w w
=) / Gt, )b F((A"y)(s —t(s))) ds > u/b(s)f((/rly)(s —7(s))) ds,
! 0
(1) = P (A7) (1 ~7(1))))
M(1 — |c|) .
S m” LOF(A7)(=7O))lx
M(1 = |e) T

CMa—k) L
HOID e [ G (475) (s~ 7)) ds
t

w

_ MA—leh g
< m—(M+m)|c|L/b(S)f((A y)(s T(S)))ds.
0
Therefore
Im — (M
0uy(n) > W= MM iy =l Oayllx.

LM — |c|)
So 0, (K) C K. This completes the proof. O

Lemma 2.8. Suppose the assumptions (A1), (Az) hold and ¢ € (— min{ky, MLM}, 0]. Then y(t)

is a positive fixed point of Qy, if and only if (A~'y)(1) is a positive w-solution of (1.1).
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Proof. If y(¢) is a positive fixed point of Q;, then y(¢) = P;L(b(t)f((A_ly)(t —1(¢)))) and
y € K from Lemma 2.7. By Lemma 2.6, y(¢) is a positive w-periodic solution of the equation

Y +a@)y®) —a@®)G(y() =rb@) f((A7'y) (t — (0))).

That is, y(¢) is a positive w-periodic solution of (2.1). Since y € K, it follows from Lemma 2.4
that (A~1 y)(t) > 0. Therefore, a1 y)(t) is a positive w-periodic solution of (1.1) by
Lemma 2.2.

Suppose that there exists y € X such that (A~!y)(z) is a positive w-periodic solution of (1.1).
Lemma 2.2 tells that y(¢) is an w-periodic solution of (2.1), that is, y(¢) is an w-periodic solution
of the equation

Y/ +a®)y(t) —a)G(y®) =rb@) f((A7'y)(t — T())).

Additionally, y(r) = (A~1y)(r) — c(A™1y)(r — 8) > O since ¢ € (— min{ky, MLHH}, 0]. It follows
from Lemma 2.6 that y(r) = P5.(b(t) f (A" y)(t — ©(1)))) = Q,y(t). Thus y(¢) is a positive
fixed pointof Q,. O

From Lemmas 2.2-2.8, in order to discuss existence of positive w-periodic solutions of (1.1),
it is sufficient to consider existence of positive fixed points of Q. The following is about our
prior estimations which play important roles in the proofs of our main results.

Lemma 2.9. Suppose the assumptions (A1), (Ay) hold and ¢ € (—min{ky, MLer}, 0], n>0.1If
FUATIY(E —T1@)) = (A7)t —t@)n fort €[0,w] and y € K, then

— lcl
19xyllx = )»blwn 2|I yix.

Proof. For ¢ € (—min{k, },0] and y € K, we have

0y =P (b (A7) (1 =) = T(b@ f (A y) (1 — T (1))
=A / G(t, s)b(s)f((Aily) (s — ‘L'(S))) ds >1\n / b(s)(Aily) (s — t(s)) ds

t

- o—|c|
> ibon— Iyllx.

Hence

103¥llx > *blon® . |Iy|Ix O

Lemma 2.10. Suppose the assumptions (A1), (Az) hold and ¢ € (— min{ky, M’j-m} 0]. If there
exists € > 0 such that f((A~'y)(t — t(1))) < (A7)t — (1))e for t € [0, w), then

S bwe .
AVIX M el Yilx

Proof. In view of Lemmas 1.1, 2.4 and 2.6, we have
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_Ma-le) , f v
10:yllx < Ao — S L [ POF (A7) (s — 7)) ds
0
_Ma-le) ,f v
m_|C|(M+m)L8[b(S)(A y)(s T(S))ds
0

S el )y

Lemma 2.11. Suppose the assumptions (A1), (A2) hold and ¢ € (—min{kq, M”im} 0l Ify e
082,,r >0, then

10xyllx = Ixbom(r).

Proof. Since y € 982, and ¢ € (—min{k;, 3/2-},0], by Lemma 2.4, we obtain 4= ‘g'r <
(A~ '@ — (1) < 1+Ic| Thus f((A~'y)(t — T(1))) > m(r). Then it is easy to see that this

lemma can be proved in a similar manner as in Lemma 2.9. 0O

Lemma 2.12. Suppose the assumptions (A1), (Az) hold and ¢ € (—min{ky, M’—j_m}, 0. Ifye
082,,r >0, then
10y < Labo =Dy
— (M +m)|c|
Proof. Since y € 082, and ¢ € (— min{kq, M’:’_m} 0], by Lemma 2.4, we obtain 0 < (A_ly)(t —
(M) < 55 IcI Thus f((A™ y) (t —t(¢))) < M(r). Then it is easy to see that this lemma can be
shown in a similar manner as in Lemma 2.10. 0O

3. Proofs of main results
In this section, we give the proofs of main results based on lemmas in Section 2.

Proof of Theorem 1.1. Part (a). Take r{ =1 and Ao =
082, and A > Ao,

1
mobe 0. By Lemma 2.11, for y €

1Qaylix > llyllx-

From Lemma 2.1, i (Q,, £2,,, K) =0.
Case 1. If fo =0, we can choose 0 < 7 < rq so that f(u) < eu for 0 < u < rp, where the
constant & > 0 satisfies
_ LM
Abwe—+————— < 1. 3.1)
m — (M + m)|c|
Let r» = (1 — |¢|)F». Since 0 < (A~ y)(t — 7 (1)) < 1+M Iyllx <72 for y € 382,, by Lemma 2.4,
we obtain f((A_ly)(t —1(1))) < s(A_ly)(t — 7(t)). Thus we have by Lemma 2.10 and (3.1)
that, for y € 982,,,

y )Lba)é‘ < .
AVIX X (M )| | Yix Yilx
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It follows from Lemma 2.1 that i(Q,;, £2,,, K) = 1. Thus i(Q3, £2,, \ (_Zrz, K)=—1 and Q)
has a fixed point y in £2,, \ £2,,. By Lemma 2.8, we see that (A™1y)(2) is a positive w-periodic
solution of (1.1) for A > Ag.

Case 1. If foo =0, there exists a constant H > 0 such that f(u) <eéeuforu> H , Where the
constant ¢ > 0 satisfies 1nequa11ty (3.1).

Let r3 = max{2rq, H({ <)y Since (A~1y)(t — (1)) > Ll yllx > H for y € 082,,. we

obtain f((A™ y)(t — T(t))) e(A™ y)(t — 7(¢)). Thus we have by Lemma 2.10 and (3.1) that,
for y € 082,,,

< Abwe < .
RAID¢ M el Yilx Yilx

It follows from Lemma 2.1 that i (Q;,, £2,, K) = 1. Thus i (Q;,, £2,; \ .(_2,1, K)=1and Q) hasa
fixed point y in §2,, \ £2,,. By Lemma 2.8, we see that (A™1y)(2) is a positive w-periodic solution
of (1.1) for A > Ag.

Case 1II. If foo = fo =0, from the above arguments, there exist 0 < r, < r; < r3 such that
0O has a fixed p01nt yi(t) in £2, \ .Qr2 and a fixed point y>(¢) in £2,, \ .er Consequently,
(A~ y1) (1) and (A~ y2)(¢) are two positive w-periodic solutions of (1.1) for A > Xo.

Part (b). Let r; = 1. Take A; = #m > 0. By Lemma 2.12, for y € 9£2,, and
O0<X<Ap,

IOxyllx <llyllx-
By Lemma 2.1, i(Q;, £2,,, K) = 1.
Case 1. If fy = oo, we can choose 0 < rp < ry so that f(u) > nu for 0 < u < rp, where the
constant 1 > 0 satisfies
—c|

1—¢?

rbw n > 1. (3.2)

Let r, = (1 — |¢|)7. Since 0 < (A~ y)(r — (1)) < g |L| lyllx <7 for y € 0§2,,, we obtain
f(A™ y)(t —1(1))) =2 n(A~ y)(t — 7(¢)). Thus we have by Lemma 2.9 and (3.2) that, for
y € 89}’27

— o —|c|
1Qxyllx = Ablown —a Iyllx > lIylix.

It follows from Lemma 2.1 that i (Q;, £2,,, K) =0. Thus i (Q;, £2,, \Qrz, K)=1and Q) hasa
fixed point y in £2,, \ £2,,. By Lemma 2.8, we see that (A~!y)(¢) is a positive w-periodic solution
of (1.1) for A € (0, Ay).

Case IL If f», = o0, there exists a constant H > 0 such that f(u) > nu for u > H, where the
constant n > 0 satisfies inequality (3.2).

Let r3 = max{2r, Z4=1D)y Since (A~1y)(1 — (1)) > ‘||y||x H for y € 382, by

a—|c|
Lemma 2.4, we obtain f((A~ y)(t —1(t))) =2 n(A~ y)(t — r(t)). Thus we have by Lemma 2.9
and inequality (3.2) that, for y € 0§2,,,

— o —|c|
1Qxyllx = Ablon — 2 Iyllx > llylix.

It follows from Lemma 2.1 Ehat i(Qy, $2r,, K) =0. Thus i(Q;, 2,5 \ erl, K)=—1 and Q)
has a fixed point y in £2,, \ £2,,. By Lemma 2.8, we see that (A~1y)(1) is a positive w-periodic
solution of (1.1) for A € (0, Ay).
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Case IIL. If foo = fo = 00, it is clear from the above proofs that Q) has a fixed point y; in
£2,, \ £2,, and a fixed point y, in £2,, \ £2,,. Consequently, (A~'y)(r) and (A~ 1y,)(¢) are two
positive w-periodic solutions of (1.1) for A € (0, A1).

Part (c). By Lemma 2.4, (A~'y)(r — 7 (1)) > ‘j:'cg' Iyllx =0 forze[0,w]and y € K.

Case 1. If ip =0, we have fy > 0 and f > 0. Let ¢; = min{ f(“). u > 0} > 0, then we obtain

fw) =cu, wuel0,+00).

1-c2

Assume y(t) is a positive w-periodic solution of (1.1) for A > A, where Ay = Foer @D

Since Q,y(t) = y(¢) for t € [0, w], it follows from Lemma 2.9 that, for A > A5,

ooa—|c|
Iyllx =11Qayllx = Ablwe — 2 Iyllx > lyllx.

which is a contradiction. _
Case Il. If io =0, we have fy < oo and foo < 00. Let ¢ = max{%: u > 0} > 0, then we
obtain

fu) <cou, uel0,+00).

Assume y(t) is a positive w-periodic solution of (1.1) for A € (0, A3), where A3 = %
Since Q,y(t) = y(¢) for t € [0, w], it follows from Lemma 2.10 that, for A € (0, A3),
Iyl = 1Qsyllx < Mbwer——2—iyllx < Iyllx,
m— (M +m)|c|

which is a contradiction. 0O

Proof of Theorem 1.2. From the proof of part (c) in Theorem 1.1, we obtain this theorem
immediately. O
Proof of Theorem 1.3. Casel. fo < foo. In this case, we have

1—c? m— (M + m)|c|
= <A< = .
bl foo (@ — |c|) fobwL M

It is clear that there exists an 0 < & < f, such that

1—¢? m— (M +m)|c|
— <A< — .
bol(foo —&)(a —Ic]) (fo+e)bol M
For the above e, we choose 0 < r; so that f(u) < (fo + e)u for 0 < u < rp. Let r| =
(1 — |e|)71. Since 0 < (A~ 1y)(r — (1)) < 1+\C|||Y||X <7y for y € 082, by Lemma 2.4, we

obtain (A=)t — 7)) < (fo+€)(A~1y)(r — 7(¢)). Thus we have by Lemma 2.10 that, for
y € aer ’

LM
Moo (fo+ &) ———————— < .
10yllx < Abw(fo+¢) = (M el Iylix < lylx

On the other hand, there exists a constant H > 0 such that fw) > (foo —&)uforu > > H. Let

ra = max{2r1, 20=1 Since (A~ y)(r — 7(1)) = %= —Lyllx > H for y € 382,, by Lemma 2.4,

a—|c|
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we obtain f((A_ly) t—t1) 2 (foo — s)(A_ly)(t — 7(t)). Thus we have by Lemma 2.9 that,
fory € 952,,,

o —|c]

- c
10xylx = Abol(foo — 8)ﬁ||yllx > Iyllx-

—c
It follows from Lemma 2.1 that
i(Q)uersK)=13 i(Q}w‘Qrst)ZO'

Thus i(Q;, £2,, \ [_Z,I ,K)=—1and Q) has a fixed point y in £2,, \ .{_2,1 . By Lemma 2.8, we see
that (A~1y)(r) is a positive w-periodic solution of (1.1).
Case 1l. fy > foo. In this case, we have
1—¢? m — (M +m)|c|
= <A< = .
bolfo(a — |c|) foobw LM

It is clear that there exists an 0 < ¢ < fy such that

1—¢c? m— (M +m)|c|
= <A< = .
bwl(fo —¢&)(a —|cl) (foo + )b LM
For the above ¢, we choose 0 < 71 so that f(u) > (fo —e)uforO <u <ry. Letry = (1 —|c|)r.
Since 0 < (A~'y)(t = (1)) < T lyllx <1 for y € 92, we obtain f((A™')(t = 7(1))) >
(fo— 8)(A’] ¥)(t). Thus we have by Lemma 2.9 that, for y € 9§2,,,

o — |c]
1

10 yllx = Ablo(fo — &) Iyllx > 1Iyllx.

—c2

On the other han~d, there exists a constant H > 0 such that fW) < (foo + &)u for u > H.
Let r, = max{2ry, H(l_cz)}. Since (A~1y)(t — 1(t)) > L |yx > H for y € 982,, we ob-

a—|c| 1—c2

tain £((A~'y)(t — 1)) < (foo + &) (A1 y)(t — 7(1)). Thus we have by Lemma 2.10 that, for
y € 897’2’

- LM
<Abw +&)———— < .
1Qxyllx (foo +€)°— M+ mlel Iylix < llylx

It follows from Lemma 2.1 that
i(Q)\_,er,K)ZO, i(Q)nQiQ’K):l'
Thus i (Q;., 2, \ £2-,, K) = 1 and Qj has a fixed point y in £2,, \ £2,,. By Lemma 2.8, we see
that (A~1y)(r) is a positive w-periodic solution of (1.1). O

Our results are applicable to consider existence problem of periodic solutions of many neutral
differential systems.

Example 3.1. We consider the following neutral functional differential equation:

1 M|
[u(t) + §u<z — %)} (0 =201 = sin20Ju (1 - T(1))e =T, (3.3)
where A and a are positive parameters, T(t + ) = 7(¢). We see that § = %, c= —%, a(t) = %,

b(t)=1—sin2t, f(u) =ue™, M =m= 1 Additionally, max,c[o,00) f (1) = f(a).
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Clearly, M = }T < (%)2 = 1. The assumptions (A1) and (Aj) are satisfied and fo, = 0. Then
we conclude

Conclusion 3.2. (a) If a € (0, 1), then (3.3) has one positive w-periodic solution for A > n— >0

or0 <A< 47;;;1), where rg = mln{f(*/—) f( )}
(b) If @ = 1, then (3.3) has one positive 7 -periodic solution for A > —— > 0;

(c) If a > 1, then (3.3) has two positive 7 -periodic solutions for A > ﬂ_ro > 0.
In fact, by simple computations, we have

ﬂn

1 cos
p==, L= 7—«/— l=—2_ =1,
2 2B sin X ﬂ" 28 s1nﬁ7”
2442 ﬁ V24+1-43
k= s o =—, k1: ’
4 4 2
[ m V2+1-43 1 V2
|c] = = < min{ kg, = , lcl=z< —=0.
3 m+M 2 3 4

Let 1o = min{a, %} and rg = min{f(%), f(%)}, we have

M) =max{f<r): 0<i< %} — f(t0).

m(l):min{f(t): ¥<I<%}:min{f(%)f(?)}:ro,
! ! m—(M+mlel V2

m(lbo _ 7ro’ Lbo(M — M|c)M(1)  4rf(tp)

Additionally, if a € (0, 1), fo=4o0;ifa=1, fo=1and foo =0;ifa > 1, fo = foo =0.
From Theorem 1.1, we can obtain Conclusion 3.2.
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