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Abstract

In this paper, we consider a type of second-order neutral functional differential equations. We obtain some
existence results of multiplicity and nonexistence of positive periodic solutions. Our approach is based on
a fixed point theorem in cones.
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1. Introduction

In this paper, we consider existence, multiplicity and nonexistence of positive ω-periodic
solutions for the following second-order neutral functional differential equation:(

x(t) − cx(t − δ)
)′′ + a(t)x(t) = λb(t)f

(
x
(
t − τ(t)

))
, (1.1)

where λ is a positive parameter, c and δ are constants and |c| �= 1.
The existence of periodic solutions for functional differential equations has been derived

from many fields such as physics, biology and mechanics [5,6]. Many results were obtained
by Kuang [6], Freedman and Wu [4], Wang [7] and many others by applying fixed point index
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theory, theory of Fourier series, fixed point theorems in cones, Leray–Schauder continuation the-
orem, coincidence degree theory and so on. We refer to [8–14] for some recent results in this
field.

Among the previous results on this problem, many of them concern neutral systems (Lu and
Ge [10], Lu, Ge and Zheng [11] and Chen [13]). But to our best knowledge, papers on multiplicity
of periodic solutions of neutral systems are few.

In this paper, we aim to establish existence, multiplicity and nonexistence of positive
ω-periodic solutions for second-order neutral functional differential equation (1.1). Our approach
is based on a fixed point theorem in cones as well as some analysis techniques used in [7,15].

Let

f0 = lim
u→0+

f (u)

u
, f∞ = lim

u→∞
f (u)

u
,

i0 = number of zeros in the set {f0, f∞},
i∞ = number of infinities in the set {f0, f∞}.

It is clear that i0, i∞ = 0,1 or 2. We will show that (1.1) has i0 or i∞ positive ω-periodic
solution(s) for certain λ, respectively.

Let f̄ = 1
ω

∫ ω

0 f (s) ds, where a is a continuous ω-periodic function. In what follows, we set

X = {
x | x ∈ C(R,R), x(t + ω) ≡ x(t)

}
with the norm defined by ‖x‖X = max{|x(t)|: t ∈ [0,ω]}. Then (X,‖ · ‖X) is a Banach space.
Let A :X → X defined by (Ax)(t) = x(t) − cx(t − δ).

Lemma 1.1. If |c| �= 1, then A has continuous bounded inverse A−1 on X and for all x ∈ X,

(
A−1x

)
(t) =

{∑
j�0 cj x(t − jδ), if |c| < 1,

−∑
j�1 c−j x(t + jδ), if |c| > 1,

(1.2)

and ∥∥A−1x
∥∥

X
� ‖x‖X

|1 − |c|| .

Proof. According to [9], we can get the equality (1.2) and then verify Lemma 1.1.
We consider the following assumptions:

(A1) a, b ∈ C(R, (0,+∞)) are ω-periodic functions, max{a(t): t ∈ [0,ω]} < (π
ω
)2, and τ ∈

C(R,R) is a positive ω-periodic function.
(A2) f ∈ C([0,∞), [0,∞)) and f (u) > 0 for u > 0.

Let

M = max
{
a(t): t ∈ [0,ω]}, m = min

{
a(t): t ∈ [0,ω]},

β = √
M, L = 1

2β sin βω
2

, l = cos βω
2

2β sin βω
2

,

k = l(M + m) + LM, α = l[m − |c|(M + m)]
.

LM(1 − |c|)
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If the assumption (A1) holds, then M < (π
ω
)2. Thus we can see that L � l > 0.

Additionally, define

M(r) = max

{
f (t): 0 � t � r

1 − |c|
}
,

m(r) = min

{
f (t): αr � t � r

1 − |c|
}
, k1 = k − √

k2 − 4LlMm

2LM
. �

In this paper, we discuss existence of positive ω-periodic solutions of Eq. (1.1) when c ∈
(−min{k1,

m
M+m

},0].
Theorem 1.1. Suppose the assumptions (A1), (A2) hold and −min{ m

M+m
,k1} < c � 0.

(a) If i0 = 1 or 2, then (1.1) has i0 positive ω-periodic solution(s) for λ > 1
m(1)b̄lω

> 0;

(b) If i∞ = 1 or 2, then (1.1) has i∞ positive ω-periodic solution(s) for 0 < λ <
m−(M+m)|c|

Lb̄ω(M−M|c|)M(1)
;

(c) If i∞ = 0 or i0 = 0, then (1.1) has no positive ω-periodic solution for sufficiently small or
large λ > 0, respectively.

Theorem 1.2. Suppose the assumptions (A1), (A2) hold and −min{ m
M+m

,k1} < c � 0.

(a) If there exists a constant c1 > 0 such that f (u) � c1u for u ∈ [0,+∞), then (1.1) has no

positive ω-periodic solution for λ > 1−c2

b̄lωc1(α−|c|) ;

(b) If there exists a constant c2 > 0 such that f (u) � c2u for u ∈ [0,+∞), then (1.1) has no
positive ω-periodic solution for 0 < λ <

m−(M+m)|c|
b̄ωc2LM

.

Theorem 1.3. Suppose the assumptions (A1), (A2) hold, c ∈ (−min{k1,
m

M+m
},0] and i0 =

i∞ = 0. If

1 − c2

max{f0, f∞}b̄ωl(α − |c|) < λ <
m − (M + m)|c|

min{f0, f∞}b̄ωLM
,

then (1.1) has one positive ω-periodic solution.

The rest of this paper is organized as follows: Section 2 is about statement of the method
(a fixed point theorem in cones) and some prior estimations in order to prove our main results; in
Section 3, we give the proofs of our main results by using our lemmas and present an example.

2. Preliminaries

We first state the well-known fixed point theorem in cones [1–3]. For the proof, we refer to
the classical works [1–3].

Lemma 2.1. (Deimling [2], Guo and Lakshmikantham [3] and Krasnoselskii [1]) Let E be a
Banach space and K a cone in E. For r > 0, define Kr = {u ∈ K: ‖u‖ < r}. Assume that
T :Kr → K is completely continuous such that T x �= x for x ∈ ∂Kr = {u ∈ K: ‖u‖ = r}.

(i) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then i(T ,Kr,K) = 0;
(ii) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then i(T ,Kr,K) = 1.
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Next, we transfer existence of positive ω-periodic solutions of neutral equation (1.1) into
existence of positive fixed points of some fixed point mapping.

In order to establish existence, multiplicity and nonexistence of positive ω-periodic solutions
for (1.1), we consider the following equation:

y′′(t) + a(t)
(
A−1y

)
(t) = λb(t)f

((
A−1y

)(
t − τ(t)

))
, (2.1)

where A−1 is defined by (1.2). By Lemma 1.1, we conclude that

Lemma 2.2. y(t) is an ω-periodic solution of (2.1) if and only if (A−1y)(t) is an ω-periodic
solution of (1.1).

Aiming to apply Lemma 2.1 to Eq. (2.1), we rewrite (2.1) as

y′′(t) + a(t)y(t) − a(t)G
(
y(t)

) = λb(t)f
((

A−1y
)(

t − τ(t)
))

,

where

G
(
y(t)

) = y(t) − (
A−1y

)
(t) = −c

(
A−1y

)
(t − δ).

Set K = {x ∈ X: x(t) � α‖x‖X}. Clearly, K is a cone in X. Note that Ωr = {x ∈ K:
‖x‖X < r} and ∂Ωr = {x ∈ K: ‖x‖X = r}. Additionally, we let Cω = {x ∈ C(R,R+):
x(t + ω) = x(t)}.

By solving the inequality |c| < l[m−|c|(M+m)]
LM(1−|c|) , we can obtain the following result immediately.

Lemma 2.3. If |c| < min{k1,
m

M+m
}, then |c| < α.

Lemma 2.4. If y ∈ K and c ∈ (−min{k1,
m

M+m
},0], then

(a) α−|c|
1−c2 ‖y‖X � (A−1y)(t) � 1

1−|c| ‖y‖X;

(b) |c|(α−|c|)
1−c2 ‖y‖X � G(y(t)) � |c|

1−|c| ‖y‖X , t ∈ [0,ω].

Proof. Part (a). For y ∈ K and c ∈ (−min{k1,
m

M+m
},0], by Lemma 1.1, we have

(
A−1y

)
(t) =

∑
j�0

cj y(t − jδ) =
∑
j=2i

cj y(t − jδ) −
∑

j=2i+1

|c|j y(t − jδ) � α − |c|
1 − c2

‖y‖X,

(
A−1y

)
(t) � 1

1 − |c| ‖y‖X.

Part (b). From the definition of G(y(t)) and Part (a), we have

|c|(α − |c|)
1 − c2

‖y‖X � G
(
y(t)

)
� |c|

1 − |c| ‖y‖X.

The proof of Lemma 2.4 is completed. �
Firstly, we consider the following equation:

y′′(t) + My(t) = λh(t), h ∈ Cω. (2.2)
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Define G(t, s) by

G(t, s) = cosβ(t + ω
2 − s)

2β sin βω
2

, t ∈ R, t � s � t + ω.

Thus,
t+ω∫
t

G(t, s) ds =
t+ω∫
t

cosβ(t + ω
2 − s)

2β sin βω
2

ds = − sinβ(t + ω
s

− s)

2β sin βω
2

∣∣∣∣
t+ω

t

= 1

2β2
+ 1

2β2
= 1

β2
= 1

M
,

0 < l = cos βω
2

2β sin βω
2

� G(t, s) � 1

2β sin βω
2

= L

since M < (π
ω
)2. Let

Tλh(t) = λ

t+ω∫
t

G(t, s)h(s) ds.

It is easy to show that Tλh(t) > 0 for h(t) > 0. And by the properties of G(t, s) and h(t), Tλ is
completely continuous. Also, by simple computations and the maximum principle, we establish
the following lemma.

Lemma 2.5. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,
m

M+m
},0]. For any

h ∈ Cω, y(t) = Tλh(t) is the unique positive ω-periodic solution of (2.2). Meanwhile, ‖Tλ‖ = λ
M

.

Secondly, we study the following equation corresponding to (2.2):

y′′(t) + a(t)y(t) − a(t)G
(
y(t)

) = λh(t), h ∈ Cω. (2.3)

Let By(t) = 1
λ
[(M − a(t))y(t) + a(t)G(y(t))]. Clearly, ‖B‖ � 1

λ
(M − m + M

|c|
1−|c| ). Then,

from Lemma 2.5, we have

y(t) = Tλh(t) + TλBy(t).

|c| < min{k1,
m

M+m
} implies that M−m+m|c|

M(1−|c|) < 1. So ‖TλB‖ � ‖Tλ‖‖B‖ � M−m+m|c|
M(1−|c|) < 1. Thus

we have

y(t) = (I − TλB)−1Tλh(t). (2.4)

Let

Pλh(t) = (I − TλB)−1Tλh(t).

Then we can make the following conclusion.

Lemma 2.6. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,
m

M+m
},0]. For any

h ∈ Cω, y(t) = Pλh(t) is the unique positive ω-periodic solution of (2.3); Pλ is completely
continuous and satisfies

Tλh(t) � Pλh(t) � M(1 − |c|)
m − (M + m)|c| ‖Tλh‖X, h ∈ Cω.
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Proof. By expansions of Pλ,

Pλ = (I − TλB)−1Tλ = (
I + TλB + (TλB)2 + · · · + (TλB)n + · · ·)Tλ

= Tλ + TλBTλ + (TλB)2Tλ + · · · + (TλB)nTλ + · · · , (2.5)

Pλ is completely continuous since Tλ is completely continuous. From (2.5), we get

Tλh(t) � Pλh(t) � M(1 − |c|)
m − (M + m)|c| ‖Tλh‖X, h ∈ Cω.

The proof is completed. �
Lemmas 2.5 and 2.6 are obtained similarly with Lemmas 1 and 2 in [15].
Let Qλy(t) = Pλ(b(t)f ((A−1y)(t − τ(t)))). Since Pλ is completely continuous, Qλ is com-

pletely continuous by the continuity of b(·) and f (·). Also, from the definition of Tλ and Pλ, it
follows that Qλ is continuous about λ.

From the above arguments, we can obtain the following lemma immediately.

Lemma 2.7. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,
m

M+m
},0]. Then

Qλ(K) ⊂ K .

Proof. From the above arguments, it is easy to verify that Qλy(t +ω) = Qλy(t). For y ∈ K , we
have

Qλy(t) = Pλ

(
b(t)f

((
A−1y

)(
t − τ(t)

)))
� Tλ

(
b(t)f

((
A−1y

)(
t − τ(t)

)))

= λ

t+ω∫
t

G(t, s)b(s)f
((

A−1y
)(

s − τ(s)
))

ds � λl

ω∫
0

b(s)f
((

A−1y
)(

s − τ(s)
))

ds,

Qλy(t) = Pλ

(
b(t)f

((
A−1y

)(
t − τ(t)

)))
� M(1 − |c|)

m − (M + m)|c|
∥∥Tλ

(
b(·)f ((

A−1y
)(· − τ(·))))∥∥

X

= λ
M(1 − |c|)

m − (M + m)|c| max
t∈[0,ω]

t+ω∫
t

G(t, s)b(s)f
((

A−1y
)(

s − τ(s)
))

ds

� λ
M(1 − |c|)

m − (M + m)|c|L
ω∫

0

b(s)f
((

A−1y
)(

s − τ(s)
))

ds.

Therefore

Qλy(t) � l[m − (M + m)|c|]
LM(1 − |c|) ‖Qλy‖X = α‖Qλy‖X.

So Qλ(K) ⊂ K . This completes the proof. �
Lemma 2.8. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,

m
M+m

},0]. Then y(t)

is a positive fixed point of Qλ if and only if (A−1y)(t) is a positive ω-solution of (1.1).
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Proof. If y(t) is a positive fixed point of Qλ, then y(t) = Pλ(b(t)f ((A−1y)(t − τ(t)))) and
y ∈ K from Lemma 2.7. By Lemma 2.6, y(t) is a positive ω-periodic solution of the equation

y′′(t) + a(t)y(t) − a(t)G
(
y(t)

) = λb(t)f
((

A−1y
)(

t − τ(t)
))

.

That is, y(t) is a positive ω-periodic solution of (2.1). Since y ∈ K , it follows from Lemma 2.4
that (A−1y)(t) > 0. Therefore, (A−1y)(t) is a positive ω-periodic solution of (1.1) by
Lemma 2.2.

Suppose that there exists y ∈ X such that (A−1y)(t) is a positive ω-periodic solution of (1.1).
Lemma 2.2 tells that y(t) is an ω-periodic solution of (2.1), that is, y(t) is an ω-periodic solution
of the equation

y′′(t) + a(t)y(t) − a(t)G
(
y(t)

) = λb(t)f
((

A−1y
)(

t − τ(t)
))

.

Additionally, y(t) = (A−1y)(t) − c(A−1y)(t − δ) > 0 since c ∈ (−min{k1,
m

M+m
},0]. It follows

from Lemma 2.6 that y(t) = Pλ(b(t)f ((A−1y)(t − τ(t)))) = Qλy(t). Thus y(t) is a positive
fixed point of Qλ. �

From Lemmas 2.2–2.8, in order to discuss existence of positive ω-periodic solutions of (1.1),
it is sufficient to consider existence of positive fixed points of Qλ. The following is about our
prior estimations which play important roles in the proofs of our main results.

Lemma 2.9. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,
m

M+m
},0], η > 0. If

f ((A−1y)(t − τ(t))) � (A−1y)(t − τ(t))η for t ∈ [0,ω] and y ∈ K , then

‖Qλy‖X � λb̄lωη
α − |c|
1 − c2

‖y‖X.

Proof. For c ∈ (−min{k1,
m

M+m
},0] and y ∈ K , we have

Qλy(t) = Pλ

(
b(t)f

((
A−1y

)(
t − τ(t)

)))
� Tλ

(
b(t)f

((
A−1y

)(
t − τ(t)

)))

= λ

t+ω∫
t

G(t, s)b(s)f
((

A−1y
)(

s − τ(s)
))

ds � lλη

ω∫
0

b(s)
(
A−1y

)(
s − τ(s)

)
ds

� lλb̄ωη
α − |c|
1 − c2

‖y‖X.

Hence

‖Qλy‖X � λb̄lωη
α − |c|
1 − c2

‖y‖X. �
Lemma 2.10. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,

m
M+m

},0]. If there

exists ε > 0 such that f ((A−1y)(t − τ(t))) � (A−1y)(t − τ(t))ε for t ∈ [0,ω], then

‖Qλy‖X � λb̄ωε
LM

m − (M + m)|c| ‖y‖X.

Proof. In view of Lemmas 1.1, 2.4 and 2.6, we have
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‖Qλy‖X � λ
M(1 − |c|)

m − |c|(M + m)
L

ω∫
0

b(s)f
((

A−1y
)(

s − τ(s)
))

ds

� λ
M(1 − |c|)

m − |c|(M + m)
Lε

ω∫
0

b(s)
(
A−1y

)(
s − τ(s)

)
ds

� λb̄ωε
LM

m − |c|(M + m)
‖y‖X. �

Lemma 2.11. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,
m

M+m
},0]. If y ∈

∂Ωr, r > 0, then

‖Qλy‖X � lλb̄ωm(r).

Proof. Since y ∈ ∂Ωr and c ∈ (−min{k1,
m

M+m
},0], by Lemma 2.4, we obtain α−|c|

1−c2 r �
(A−1y)(t − τ(t)) � r

1−|c| . Thus f ((A−1y)(t − τ(t))) � m(r). Then it is easy to see that this
lemma can be proved in a similar manner as in Lemma 2.9. �
Lemma 2.12. Suppose the assumptions (A1), (A2) hold and c ∈ (−min{k1,

m
M+m

},0]. If y ∈
∂Ωr, r > 0, then

‖Qλy‖X � Lλb̄ω
M(1 − |c|)

m − (M + m)|c|M(r).

Proof. Since y ∈ ∂Ωr and c ∈ (−min{k1,
m

M+m
},0], by Lemma 2.4, we obtain 0 � (A−1y)(t −

τ(t)) � r
1−|c| . Thus f ((A−1y)(t − τ(t))) � M(r). Then it is easy to see that this lemma can be

shown in a similar manner as in Lemma 2.10. �
3. Proofs of main results

In this section, we give the proofs of main results based on lemmas in Section 2.

Proof of Theorem 1.1. Part (a). Take r1 = 1 and λ0 = 1
m(r1)b̄lω

> 0. By Lemma 2.11, for y ∈
∂Ωr1 and λ > λ0,

‖Qλy‖X > ‖y‖X.

From Lemma 2.1, i(Qλ,Ωr1,K) = 0.

Case I. If f0 = 0, we can choose 0 < r̄2 < r1 so that f (u) � εu for 0 � u � r̄2, where the
constant ε > 0 satisfies

λb̄ωε
LM

m − (M + m)|c| < 1. (3.1)

Let r2 = (1 − |c|)r̄2. Since 0 � (A−1y)(t − τ(t)) � 1
1−|c| ‖y‖X � r̄2 for y ∈ ∂Ωr2 by Lemma 2.4,

we obtain f ((A−1y)(t − τ(t))) � ε(A−1y)(t − τ(t)). Thus we have by Lemma 2.10 and (3.1)
that, for y ∈ ∂Ωr2 ,

‖Qλy‖X � λb̄ωε
LM ‖y‖X < ‖y‖X.
m − (M + m)|c|
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It follows from Lemma 2.1 that i(Qλ,Ωr2,K) = 1. Thus i(Qλ,Ωr1 \ Ω̄r2,K) = −1 and Qλ

has a fixed point y in Ωr1 \ Ω̄r2 . By Lemma 2.8, we see that (A−1y)(t) is a positive ω-periodic
solution of (1.1) for λ > λ0.

Case II. If f∞ = 0, there exists a constant H̃ > 0 such that f (u) � εu for u � H̃ , where the
constant ε > 0 satisfies inequality (3.1).

Let r3 = max{2r1,
H̃ (1−c2)

α−|c| }. Since (A−1y)(t − τ(t)) � α−|c|
1−c2 ‖y‖X � H̃ for y ∈ ∂Ωr3 , we

obtain f ((A−1y)(t − τ(t))) � ε(A−1y)(t − τ(t)). Thus we have by Lemma 2.10 and (3.1) that,
for y ∈ ∂Ωr3 ,

‖Qλy‖X � λb̄ωε
LM

m − (M + m)|c| ‖y‖X < ‖y‖X.

It follows from Lemma 2.1 that i(Qλ,Ωr3,K) = 1. Thus i(Qλ,Ωr3 \ Ω̄r1,K) = 1 and Qλ has a
fixed point y in Ωr3 \Ω̄r1 . By Lemma 2.8, we see that (A−1y)(t) is a positive ω-periodic solution
of (1.1) for λ > λ0.

Case III. If f∞ = f0 = 0, from the above arguments, there exist 0 < r2 < r1 < r3 such that
Qλ has a fixed point y1(t) in Ωr1 \ Ω̄r2 and a fixed point y2(t) in Ωr3 \ Ω̄r1 . Consequently,
(A−1y1)(t) and (A−1y2)(t) are two positive ω-periodic solutions of (1.1) for λ > λ0.

Part (b). Let r1 = 1. Take λ1 = m−(M+m)|c|
Lb̄ω(M−M|c|)M(r1)

> 0. By Lemma 2.12, for y ∈ ∂Ωr1 and

0 < λ < λ1,

‖Qλy‖X < ‖y‖X.

By Lemma 2.1, i(Qλ,Ωr1,K) = 1.
Case I. If f0 = ∞, we can choose 0 < r̄2 < r1 so that f (u) � ηu for 0 � u � r̄2, where the

constant η > 0 satisfies

λb̄ωη
α − |c|
1 − c2

> 1. (3.2)

Let r2 = (1 − |c|)r̄2. Since 0 � (A−1y)(t − τ(t)) � 1
1−|c| ‖y‖X � r̄2 for y ∈ ∂Ωr2 , we obtain

f ((A−1y)(t − τ(t))) � η(A−1y)(t − τ(t)). Thus we have by Lemma 2.9 and (3.2) that, for
y ∈ ∂Ωr2 ,

‖Qλy‖X � λb̄lωη
α − |c|
1 − c2

‖y‖X > ‖y‖X.

It follows from Lemma 2.1 that i(Qλ,Ωr2,K) = 0. Thus i(Qλ,Ωr1 \ Ω̄r2,K) = 1 and Qλ has a
fixed point y in Ωr1 \Ω̄r2 . By Lemma 2.8, we see that (A−1y)(t) is a positive ω-periodic solution
of (1.1) for λ ∈ (0, λ1).

Case II. If f∞ = ∞, there exists a constant H̃ > 0 such that f (u) � ηu for u � H̃ , where the
constant η > 0 satisfies inequality (3.2).

Let r3 = max{2r1,
H̃ (1−|c|2)

α−|c| }. Since (A−1y)(t − τ(t)) � α−|c|
1−c2 ‖y‖X � H̃ for y ∈ ∂Ωr3 by

Lemma 2.4, we obtain f ((A−1y)(t − τ(t))) � η(A−1y)(t − τ(t)). Thus we have by Lemma 2.9
and inequality (3.2) that, for y ∈ ∂Ωr3 ,

‖Qλy‖X � λb̄lωη
α − |c|
1 − c2

‖y‖X > ‖y‖X.

It follows from Lemma 2.1 that i(Qλ,Ωr3,K) = 0. Thus i(Qλ,Ωr3 \ Ω̄r1,K) = −1 and Qλ

has a fixed point y in Ωr3 \ Ω̄r1 . By Lemma 2.8, we see that (A−1y)(t) is a positive ω-periodic
solution of (1.1) for λ ∈ (0, λ1).
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Case III. If f∞ = f0 = ∞, it is clear from the above proofs that Qλ has a fixed point y1 in
Ωr1 \ Ω̄r2 and a fixed point y2 in Ωr3 \ Ω̄r1 . Consequently, (A−1y1)(t) and (A−1y2)(t) are two
positive ω-periodic solutions of (1.1) for λ ∈ (0, λ1).

Part (c). By Lemma 2.4, (A−1y)(t − τ(t)) � α−|c|
1−c2 ‖y‖X � 0 for t ∈ [0,ω] and y ∈ K .

Case I. If i0 = 0, we have f0 > 0 and f∞ > 0. Let c1 = min{f (u)
u

: u > 0} > 0, then we obtain

f (u) � c1u, u ∈ [0,+∞).

Assume y(t) is a positive ω-periodic solution of (1.1) for λ > λ2, where λ2 = 1−c2

b̄lωc1(α−|c|) .

Since Qλy(t) = y(t) for t ∈ [0,ω], it follows from Lemma 2.9 that, for λ > λ2,

‖y‖X = ‖Qλy‖X � λb̄lωc1
α − |c|
1 − c2

‖y‖X > ‖y‖X,

which is a contradiction.
Case II. If i∞ = 0, we have f0 < ∞ and f∞ < ∞. Let c2 = max{f (u)

u
: u > 0} > 0, then we

obtain

f (u) � c2u, u ∈ [0,+∞).

Assume y(t) is a positive ω-periodic solution of (1.1) for λ ∈ (0, λ3), where λ3 = m−(M+m)|c|
b̄ωc2LM

.

Since Qλy(t) = y(t) for t ∈ [0,ω], it follows from Lemma 2.10 that, for λ ∈ (0, λ3),

‖y‖X = ‖Qλy‖X � λb̄ωc2
LM

m − (M + m)|c| ‖y‖X < ‖y‖X,

which is a contradiction. �
Proof of Theorem 1.2. From the proof of part (c) in Theorem 1.1, we obtain this theorem
immediately. �
Proof of Theorem 1.3. Case I. f0 � f∞. In this case, we have

1 − c2

b̄ωlf∞(α − |c|) < λ <
m − (M + m)|c|

f0b̄ωLM
.

It is clear that there exists an 0 < ε < f∞ such that

1 − c2

b̄ωl(f∞ − ε)(α − |c|) < λ <
m − (M + m)|c|
(f0 + ε)b̄ωLM

.

For the above ε, we choose 0 < r̄1 so that f (u) � (f0 + ε)u for 0 � u � r̄1. Let r1 =
(1 − |c|)r̄1. Since 0 � (A−1y)(t − τ(t)) � 1

1−|c| ‖y‖X � r̄1 for y ∈ ∂Ωr1 by Lemma 2.4, we

obtain f ((A−1y)(t − τ(t))) � (f0 + ε)(A−1y)(t − τ(t)). Thus we have by Lemma 2.10 that, for
y ∈ ∂Ωr1 ,

‖Qλy‖X � λb̄ω(f0 + ε)
LM

m − (M + m)|c| ‖y‖X < ‖y‖X.

On the other hand, there exists a constant H̃ > 0 such that f (u) � (f∞ − ε)u for u � H̃ . Let

r2 = max{2r1,
H̃ (1−c2) }. Since (A−1y)(t − τ(t)) � α−|c|

2 ‖y‖X � H̃ for y ∈ ∂Ωr2 by Lemma 2.4,

α−|c| 1−c
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we obtain f ((A−1y)(t − τ(t))) � (f∞ − ε)(A−1y)(t − τ(t)). Thus we have by Lemma 2.9 that,
for y ∈ ∂Ωr2 ,

‖Qλy‖X � λb̄ωl(f∞ − ε)
α − |c|
1 − c2

‖y‖X > ‖y‖X.

It follows from Lemma 2.1 that

i(Qλ,Ωr1,K) = 1, i(Qλ,Ωr2,K) = 0.

Thus i(Qλ,Ωr2 \ Ω̄r1,K) = −1 and Qλ has a fixed point y in Ωr2 \ Ω̄r1 . By Lemma 2.8, we see
that (A−1y)(t) is a positive ω-periodic solution of (1.1).

Case II. f0 > f∞. In this case, we have

1 − c2

b̄ωlf0(α − |c|) < λ <
m − (M + m)|c|

f∞b̄ωLM
.

It is clear that there exists an 0 < ε < f0 such that

1 − c2

b̄ωl(f0 − ε)(α − |c|) < λ <
m − (M + m)|c|
(f∞ + ε)b̄ωLM

.

For the above ε, we choose 0 < r̄1 so that f (u) � (f0 − ε)u for 0 � u � r̄1. Let r1 = (1 − |c|)r̄1.
Since 0 � (A−1y)(t − τ(t)) � 1

1−|c| ‖y‖X � r̄1 for y ∈ ∂Ωr1 , we obtain f ((A−1y)(t − τ(t))) �
(f0 − ε)(A−1y)(t). Thus we have by Lemma 2.9 that, for y ∈ ∂Ωr1 ,

‖Qλy‖X � λb̄lω(f0 − ε)
α − |c|
1 − c2

‖y‖X > ‖y‖X.

On the other hand, there exists a constant H̃ > 0 such that f (u) � (f∞ + ε)u for u � H̃ .

Let r2 = max{2r1,
H̃ (1−c2)

α−|c| }. Since (A−1y)(t − τ(t)) � α−|c|
1−c2 ‖y‖X � H̃ for y ∈ ∂Ωr2 , we ob-

tain f ((A−1y)(t − τ(t))) � (f∞ + ε)(A−1y)(t − τ(t)). Thus we have by Lemma 2.10 that, for
y ∈ ∂Ωr2 ,

‖Qλy‖X � λb̄ω(f∞ + ε)
LM

m − (M + m)|c| ‖y‖X < ‖y‖X.

It follows from Lemma 2.1 that

i(Qλ,Ωr1,K) = 0, i(Qλ,Ωr2,K) = 1.

Thus i(Qλ,Ωr2 \ Ω̄r1,K) = 1 and Qλ has a fixed point y in Ωr2 \ Ω̄r1 . By Lemma 2.8, we see
that (A−1y)(t) is a positive ω-periodic solution of (1.1). �

Our results are applicable to consider existence problem of periodic solutions of many neutral
differential systems.

Example 3.1. We consider the following neutral functional differential equation:[
u(t) + 1

3
u

(
t − π

2

)]′′
+ 1

4
u(t) = λ[1 − sin 2t]ua

(
t − τ(t)

)
e−u(t−τ(t)), (3.3)

where λ and a are positive parameters, τ(t + π) ≡ τ(t). We see that δ = π
2 , c = − 1

3 , a(t) ≡ 1
4 ,

b(t) = 1 − sin 2t , f (u) = uae−u, M = m = 1 . Additionally, maxu∈[0,∞) f (u) = f (a).
4
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Clearly, M = 1
4 < (π

π
)2 = 1. The assumptions (A1) and (A2) are satisfied and f∞ = 0. Then

we conclude

Conclusion 3.2. (a) If a ∈ (0,1), then (3.3) has one positive π -periodic solution for λ > 1
πr0

> 0

or 0 < λ <
√

2
4πf (a)

, where r0 = min{f (
√

2
4 ), f ( 3

2 )};
(b) If a = 1, then (3.3) has one positive π -periodic solution for λ > 1

πr0
> 0;

(c) If a > 1, then (3.3) has two positive π -periodic solutions for λ > 1
πr0

> 0.
In fact, by simple computations, we have

β = 1

2
, L = 1

2β sin βπ
2

= √
2, l = cos βπ

2

2β sin βπ
2

= 1,

k = 2 + √
2

4
, α =

√
2

4
, k1 =

√
2 + 1 − √

3

2
,

|c| = 1

3
< min

{
k1,

m

m + M

}
=

√
2 + 1 − √

3

2
, |c| = 1

3
<

√
2

4
= α.

Let t0 = min{a, 3
2 } and r0 = min{f (

√
2

4 ), f ( 3
2 )}, we have

M(1) = max

{
f (t): 0 � t � 3

2

}
= f (t0),

m(1) = min

{
f (t):

√
2

4
� t � 3

2

}
= min

{
f

(
3

2

)
, f

(√
2

4

)}
= r0,

1

m(1)lb̄ω
= 1

πr0
,

m − (M + m)|c|
Lb̄ω(M − M|c|)M(1)

=
√

2

4πf (t0)
.

Additionally, if a ∈ (0,1), f0 = +∞; if a = 1, f0 = 1 and f∞ = 0; if a > 1, f0 = f∞ = 0.
From Theorem 1.1, we can obtain Conclusion 3.2.
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