Two periodic solutions of second-order neutral functional differential equations

Jun Wu ${ }^{\text {a,* }}$, Zhicheng Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Mathematics and Computer Science, Changsha University of Science Technology, Changsha 410076, China
${ }^{\text {b }}$ College of Mathematics and Econometrics, Hunan University, Changsha 410082, China
Received 1 January 2006
Available online 2 August 2006
Submitted by S.R. Grace

Abstract

In this paper, we consider a type of second-order neutral functional differential equations. We obtain some existence results of multiplicity and nonexistence of positive periodic solutions. Our approach is based on a fixed point theorem in cones.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Fixed point theorem; Positive periodic solution; Multiplicity; Neutral functional differential equations

1. Introduction

In this paper, we consider existence, multiplicity and nonexistence of positive ω-periodic solutions for the following second-order neutral functional differential equation:

$$
\begin{equation*}
(x(t)-c x(t-\delta))^{\prime \prime}+a(t) x(t)=\lambda b(t) f(x(t-\tau(t))) \tag{1.1}
\end{equation*}
$$

where λ is a positive parameter, c and δ are constants and $|c| \neq 1$.
The existence of periodic solutions for functional differential equations has been derived from many fields such as physics, biology and mechanics [5,6]. Many results were obtained by Kuang [6], Freedman and Wu [4], Wang [7] and many others by applying fixed point index

[^0]theory, theory of Fourier series, fixed point theorems in cones, Leray-Schauder continuation theorem, coincidence degree theory and so on. We refer to [8-14] for some recent results in this field.

Among the previous results on this problem, many of them concern neutral systems (Lu and Ge [10], Lu, Ge and Zheng [11] and Chen [13]). But to our best knowledge, papers on multiplicity of periodic solutions of neutral systems are few.

In this paper, we aim to establish existence, multiplicity and nonexistence of positive ω-periodic solutions for second-order neutral functional differential equation (1.1). Our approach is based on a fixed point theorem in cones as well as some analysis techniques used in [7,15].

Let

$$
f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}, \quad f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u},
$$

$i_{0}=$ number of zeros in the set $\left\{f_{0}, f_{\infty}\right\}$,
$i_{\infty}=$ number of infinities in the set $\left\{f_{0}, f_{\infty}\right\}$.
It is clear that $i_{0}, i_{\infty}=0,1$ or 2 . We will show that (1.1) has i_{0} or i_{∞} positive ω-periodic solution(s) for certain λ, respectively.

Let $\bar{f}=\frac{1}{\omega} \int_{0}^{\omega} f(s) d s$, where a is a continuous ω-periodic function. In what follows, we set

$$
X=\{x \mid x \in C(R, R), x(t+\omega) \equiv x(t)\}
$$

with the norm defined by $\|x\|_{X}=\max \{|x(t)|: t \in[0, \omega]\}$. Then $\left(X,\|\cdot\|_{X}\right)$ is a Banach space. Let $A: X \rightarrow X$ defined by $(A x)(t)=x(t)-c x(t-\delta)$.

Lemma 1.1. If $|c| \neq 1$, then A has continuous bounded inverse A^{-1} on X and for all $x \in X$,

$$
\left(A^{-1} x\right)(t)= \begin{cases}\sum_{j \geqslant 0} c^{j} x(t-j \delta), & \text { if }|c|<1, \tag{1.2}\\ -\sum_{j \geqslant 1} c^{-j} x(t+j \delta), & \text { if }|c|>1\end{cases}
$$

and

$$
\left\|A^{-1} x\right\|_{X} \leqslant \frac{\|x\|_{X}}{|1-|c||} .
$$

Proof. According to [9], we can get the equality (1.2) and then verify Lemma 1.1.
We consider the following assumptions:
($\left.\mathrm{A}_{1}\right) a, b \in C(R,(0,+\infty))$ are ω-periodic functions, $\max \{a(t): t \in[0, \omega]\}<\left(\frac{\pi}{\omega}\right)^{2}$, and $\tau \in$ $C(R, R)$ is a positive ω-periodic function.
$\left(\mathrm{A}_{2}\right) f \in C([0, \infty),[0, \infty))$ and $f(u)>0$ for $u>0$.
Let

$$
\begin{aligned}
& M=\max \{a(t): t \in[0, \omega]\}, \quad m=\min \{a(t): t \in[0, \omega]\}, \\
& \beta=\sqrt{M}, \quad L=\frac{1}{2 \beta \sin \frac{\beta \omega}{2}}, \quad l=\frac{\cos \frac{\beta \omega}{2}}{2 \beta \sin \frac{\beta \omega}{2}} \\
& k=l(M+m)+L M, \quad \alpha=\frac{l[m-|c|(M+m)]}{L M(1-|c|)}
\end{aligned}
$$

If the assumption $\left(\mathrm{A}_{1}\right)$ holds, then $M<\left(\frac{\pi}{\omega}\right)^{2}$. Thus we can see that $L \geqslant l>0$.
Additionally, define

$$
\begin{aligned}
& M(r)=\max \left\{f(t): 0 \leqslant t \leqslant \frac{r}{1-|c|}\right\}, \\
& m(r)=\min \left\{f(t): \alpha r \leqslant t \leqslant \frac{r}{1-|c|}\right\}, \quad k_{1}=\frac{k-\sqrt{k^{2}-4 L l M m}}{2 L M} .
\end{aligned}
$$

In this paper, we discuss existence of positive ω-periodic solutions of Eq. (1.1) when $c \in$ $\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$.

Theorem 1.1. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $-\min \left\{\frac{m}{M+m}, k_{1}\right\}<c \leqslant 0$.
(a) If $i_{0}=1$ or 2 , then (1.1) has i_{0} positive ω-periodic solution(s) for $\lambda>\frac{1}{m(1) \bar{b} l \omega}>0$;
(b) If $i_{\infty}=1$ or 2 , then (1.1) has i_{∞} positive ω-periodic solution(s) for $0<\lambda<\frac{m-(M+m)|c|}{L \bar{b} \omega(M-M|c|) M(1)}$;
(c) If $i_{\infty}=0$ or $i_{0}=0$, then (1.1) has no positive ω-periodic solution for sufficiently small or large $\lambda>0$, respectively.

Theorem 1.2. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $-\min \left\{\frac{m}{M+m}, k_{1}\right\}<c \leqslant 0$.
(a) If there exists a constant $c_{1}>0$ such that $f(u) \geqslant c_{1} u$ for $u \in[0,+\infty)$, then (1.1) has no positive ω-periodic solution for $\lambda>\frac{1-c^{2}}{\bar{b} \omega c_{1}(\alpha-|c|)}$;
(b) If there exists a constant $c_{2}>0$ such that $f(u) \leqslant c_{2} u$ for $u \in[0,+\infty)$, then (1.1) has no positive ω-periodic solution for $0<\lambda<\frac{m-(M+m)|c|}{\bar{b} \omega c_{2} L M}$.

Theorem 1.3. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold, $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$ and $i_{0}=$ $i_{\infty}=0$. If

$$
\frac{1-c^{2}}{\max \left\{f_{0}, f_{\infty}\right\} \bar{b} \omega l(\alpha-|c|)}<\lambda<\frac{m-(M+m)|c|}{\min \left\{f_{0}, f_{\infty}\right\} \bar{b} \omega L M}
$$

then (1.1) has one positive ω-periodic solution.
The rest of this paper is organized as follows: Section 2 is about statement of the method (a fixed point theorem in cones) and some prior estimations in order to prove our main results; in Section 3, we give the proofs of our main results by using our lemmas and present an example.

2. Preliminaries

We first state the well-known fixed point theorem in cones [1-3]. For the proof, we refer to the classical works [1-3].

Lemma 2.1. (Deimling [2], Guo and Lakshmikantham [3] and Krasnoselskii [1]) Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=\{u \in K:\|u\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}=\{u \in K:\|u\|=r\}$.
(i) If $\|T x\| \geqslant\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=0$;
(ii) If $\|T x\| \leqslant\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=1$.

Next, we transfer existence of positive ω-periodic solutions of neutral equation (1.1) into existence of positive fixed points of some fixed point mapping.

In order to establish existence, multiplicity and nonexistence of positive ω-periodic solutions for (1.1), we consider the following equation:

$$
\begin{equation*}
y^{\prime \prime}(t)+a(t)\left(A^{-1} y\right)(t)=\lambda b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \tag{2.1}
\end{equation*}
$$

where A^{-1} is defined by (1.2). By Lemma 1.1, we conclude that
Lemma 2.2. $y(t)$ is an ω-periodic solution of (2.1) if and only if $\left(A^{-1} y\right)(t)$ is an ω-periodic solution of (1.1).

Aiming to apply Lemma 2.1 to Eq. (2.1), we rewrite (2.1) as

$$
y^{\prime \prime}(t)+a(t) y(t)-a(t) G(y(t))=\lambda b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)
$$

where

$$
G(y(t))=y(t)-\left(A^{-1} y\right)(t)=-c\left(A^{-1} y\right)(t-\delta)
$$

Set $K=\left\{x \in X: x(t) \geqslant \alpha\|x\|_{X}\right\}$. Clearly, K is a cone in X. Note that $\Omega_{r}=\{x \in K$: $\left.\|x\|_{X}<r\right\}$ and $\partial \Omega_{r}=\left\{x \in K:\|x\|_{X}=r\right\}$. Additionally, we let $C_{\omega}=\left\{x \in C\left(R, R_{+}\right)\right.$: $x(t+\omega)=x(t)\}$.

By solving the inequality $|c|<\frac{l[m-|c|(M+m)]}{L M(1-|c| \mid)}$, we can obtain the following result immediately.
Lemma 2.3. If $|c|<\min \left\{k_{1}, \frac{m}{M+m}\right\}$, then $|c|<\alpha$.
Lemma 2.4. If $y \in K$ and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$, then
(a) $\frac{\alpha-|c|}{1-c^{2}}\|y\|_{X} \leqslant\left(A^{-1} y\right)(t) \leqslant \frac{1}{1-|c|}\|y\|_{X}$;
(b) $\frac{|c|(\alpha-|c|)}{1-c^{2}}\|y\|_{X} \leqslant G(y(t)) \leqslant \frac{|c|}{1-|c|}\|y\|_{X}, t \in[0, \omega]$.

Proof. Part (a). For $y \in K$ and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$, by Lemma 1.1, we have

$$
\begin{aligned}
& \left(A^{-1} y\right)(t)=\sum_{j \geqslant 0} c^{j} y(t-j \delta)=\sum_{j=2 i} c^{j} y(t-j \delta)-\sum_{j=2 i+1}|c|^{j} y(t-j \delta) \geqslant \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}, \\
& \left(A^{-1} y\right)(t) \leqslant \frac{1}{1-|c|}\|y\|_{X} .
\end{aligned}
$$

Part (b). From the definition of $G(y(t))$ and Part (a), we have

$$
\frac{|c|(\alpha-|c|)}{1-c^{2}}\|y\|_{X} \leqslant G(y(t)) \leqslant \frac{|c|}{1-|c|}\|y\|_{X} .
$$

The proof of Lemma 2.4 is completed.
Firstly, we consider the following equation:

$$
\begin{equation*}
y^{\prime \prime}(t)+M y(t)=\lambda h(t), \quad h \in C_{\omega} . \tag{2.2}
\end{equation*}
$$

Define $G(t, s)$ by

$$
G(t, s)=\frac{\cos \beta\left(t+\frac{\omega}{2}-s\right)}{2 \beta \sin \frac{\beta \omega}{2}}, \quad t \in R, t \leqslant s \leqslant t+\omega
$$

Thus,

$$
\begin{aligned}
& \begin{aligned}
& \int_{t}^{t+\omega} G(t, s) d s=\int_{t}^{t+\omega} \frac{\cos \beta\left(t+\frac{\omega}{2}-s\right)}{2 \beta \sin \frac{\beta \omega}{2}} d s=\left.\frac{-\sin \beta\left(t+\frac{\omega}{s}-s\right)}{2 \beta \sin \frac{\beta \omega}{2}}\right|_{t} ^{t+\omega} \\
&=\frac{1}{2 \beta^{2}}+\frac{1}{2 \beta^{2}}=\frac{1}{\beta^{2}}=\frac{1}{M} \\
& 0<l=\frac{\cos \frac{\beta \omega}{2}}{2 \beta \sin \frac{\beta \omega}{2}} \leqslant G(t, s) \leqslant \frac{1}{2 \beta \sin \frac{\beta \omega}{2}}=L
\end{aligned} \$.
\end{aligned}
$$

since $M<\left(\frac{\pi}{\omega}\right)^{2}$. Let

$$
T_{\lambda} h(t)=\lambda \int_{t}^{t+\omega} G(t, s) h(s) d s
$$

It is easy to show that $T_{\lambda} h(t)>0$ for $h(t)>0$. And by the properties of $G(t, s)$ and $h(t), T_{\lambda}$ is completely continuous. Also, by simple computations and the maximum principle, we establish the following lemma.

Lemma 2.5. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$. For any $h \in C_{\omega}, y(t)=T_{\lambda} h(t)$ is the unique positive ω-periodic solution of (2.2). Meanwhile, $\left\|T_{\lambda}\right\|=\frac{\lambda}{M}$.

Secondly, we study the following equation corresponding to (2.2):

$$
\begin{equation*}
y^{\prime \prime}(t)+a(t) y(t)-a(t) G(y(t))=\lambda h(t), \quad h \in C_{\omega} . \tag{2.3}
\end{equation*}
$$

Let $B y(t)=\frac{1}{\lambda}[(M-a(t)) y(t)+a(t) G(y(t))]$. Clearly, $\|B\| \leqslant \frac{1}{\lambda}\left(M-m+M \frac{|c|}{1-|c|}\right)$. Then, from Lemma 2.5, we have

$$
y(t)=T_{\lambda} h(t)+T_{\lambda} B y(t)
$$

$|c|<\min \left\{k_{1}, \frac{m}{M+m}\right\}$ implies that $\frac{M-m+m|c|}{M(1-|c|)}<1$. So $\left\|T_{\lambda} B\right\| \leqslant\left\|T_{\lambda}\right\|\|B\| \leqslant \frac{M-m+m|c|}{M(1-|c|)}<1$. Thus we have

$$
\begin{equation*}
y(t)=\left(I-T_{\lambda} B\right)^{-1} T_{\lambda} h(t) . \tag{2.4}
\end{equation*}
$$

Let

$$
P_{\lambda} h(t)=\left(I-T_{\lambda} B\right)^{-1} T_{\lambda} h(t) .
$$

Then we can make the following conclusion.
Lemma 2.6. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$. For any $h \in C_{\omega}, y(t)=P_{\lambda} h(t)$ is the unique positive ω-periodic solution of (2.3); P_{λ} is completely continuous and satisfies

$$
T_{\lambda} h(t) \leqslant P_{\lambda} h(t) \leqslant \frac{M(1-|c|)}{m-(M+m)|c|}\left\|T_{\lambda} h\right\|_{X}, \quad h \in C_{\omega} .
$$

Proof. By expansions of P_{λ},

$$
\begin{align*}
P_{\lambda} & =\left(I-T_{\lambda} B\right)^{-1} T_{\lambda}=\left(I+T_{\lambda} B+\left(T_{\lambda} B\right)^{2}+\cdots+\left(T_{\lambda} B\right)^{n}+\cdots\right) T_{\lambda} \\
& =T_{\lambda}+T_{\lambda} B T_{\lambda}+\left(T_{\lambda} B\right)^{2} T_{\lambda}+\cdots+\left(T_{\lambda} B\right)^{n} T_{\lambda}+\cdots, \tag{2.5}
\end{align*}
$$

P_{λ} is completely continuous since T_{λ} is completely continuous. From (2.5), we get

$$
T_{\lambda} h(t) \leqslant P_{\lambda} h(t) \leqslant \frac{M(1-|c|)}{m-(M+m)|c|}\left\|T_{\lambda} h\right\|_{X}, \quad h \in C_{\omega} .
$$

The proof is completed.
Lemmas 2.5 and 2.6 are obtained similarly with Lemmas 1 and 2 in [15].
Let $Q_{\lambda} y(t)=P_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right)$. Since P_{λ} is completely continuous, Q_{λ} is completely continuous by the continuity of $b(\cdot)$ and $f(\cdot)$. Also, from the definition of T_{λ} and P_{λ}, it follows that Q_{λ} is continuous about λ.

From the above arguments, we can obtain the following lemma immediately.
Lemma 2.7. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$. Then $Q_{\lambda}(K) \subset K$.

Proof. From the above arguments, it is easy to verify that $Q_{\lambda} y(t+\omega)=Q_{\lambda} y(t)$. For $y \in K$, we have

$$
\begin{aligned}
Q_{\lambda} y(t) & =P_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right) \geqslant T_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right) \\
& =\lambda \int_{t}^{t+\omega} G(t, s) b(s) f\left(\left(A^{-1} y\right)(s-\tau(s))\right) d s \geqslant \lambda l \int_{0}^{\omega} b(s) f\left(\left(A^{-1} y\right)(s-\tau(s))\right) d s, \\
Q_{\lambda} y(t) & =P_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right) \\
& \leqslant \frac{M(1-|c|)}{m-(M+m)|c|}\left\|T_{\lambda}\left(b(\cdot) f\left(\left(A^{-1} y\right)(\cdot-\tau(\cdot))\right)\right)\right\|_{X} \\
& =\lambda \frac{M(1-|c|)}{m-(M+m)|c|} \max _{t \in[0, \omega]} \int_{t}^{t+\omega} G(t, s) b(s) f\left(\left(A^{-1} y\right)(s-\tau(s))\right) d s \\
& \leqslant \lambda \frac{M(1-|c|)}{m-(M+m)|c|} L \int_{0}^{\omega} b(s) f\left(\left(A^{-1} y\right)(s-\tau(s))\right) d s .
\end{aligned}
$$

Therefore

$$
Q_{\lambda} y(t) \geqslant \frac{l[m-(M+m)|c|]}{L M(1-|c|)}\left\|Q_{\lambda} y\right\|_{X}=\alpha\left\|Q_{\lambda} y\right\|_{X} .
$$

So $Q_{\lambda}(K) \subset K$. This completes the proof.
Lemma 2.8. Suppose the assumptions $\left(\mathrm{A}_{1}\right)$, $\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$. Then $y(t)$ is a positive fixed point of Q_{λ} if and only if $\left(A^{-1} y\right)(t)$ is a positive ω-solution of (1.1).

Proof. If $y(t)$ is a positive fixed point of Q_{λ}, then $y(t)=P_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right)$ and $y \in K$ from Lemma 2.7. By Lemma 2.6, $y(t)$ is a positive ω-periodic solution of the equation

$$
y^{\prime \prime}(t)+a(t) y(t)-a(t) G(y(t))=\lambda b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)
$$

That is, $y(t)$ is a positive ω-periodic solution of (2.1). Since $y \in K$, it follows from Lemma 2.4 that $\left(A^{-1} y\right)(t)>0$. Therefore, $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1) by Lemma 2.2.

Suppose that there exists $y \in X$ such that $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1). Lemma 2.2 tells that $y(t)$ is an ω-periodic solution of (2.1), that is, $y(t)$ is an ω-periodic solution of the equation

$$
y^{\prime \prime}(t)+a(t) y(t)-a(t) G(y(t))=\lambda b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right) .
$$

Additionally, $y(t)=\left(A^{-1} y\right)(t)-c\left(A^{-1} y\right)(t-\delta)>0$ since $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$. It follows from Lemma 2.6 that $y(t)=P_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right)=Q_{\lambda} y(t)$. Thus $y(t)$ is a positive fixed point of Q_{λ}.

From Lemmas 2.2-2.8, in order to discuss existence of positive ω-periodic solutions of (1.1), it is sufficient to consider existence of positive fixed points of Q_{λ}. The following is about our prior estimations which play important roles in the proofs of our main results.

Lemma 2.9. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right], \eta>0$. If $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \geqslant\left(A^{-1} y\right)(t-\tau(t)) \eta$ for $t \in[0, \omega]$ and $y \in K$, then

$$
\left\|Q_{\lambda} y\right\|_{X} \geqslant \lambda \bar{b} l \omega \eta \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}
$$

Proof. For $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$ and $y \in K$, we have

$$
\begin{aligned}
Q_{\lambda} y(t) & =P_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right) \geqslant T_{\lambda}\left(b(t) f\left(\left(A^{-1} y\right)(t-\tau(t))\right)\right) \\
& =\lambda \int_{t}^{t+\omega} G(t, s) b(s) f\left(\left(A^{-1} y\right)(s-\tau(s))\right) d s \geqslant l \lambda \eta \int_{0}^{\omega} b(s)\left(A^{-1} y\right)(s-\tau(s)) d s \\
& \geqslant l \lambda \bar{b} \omega \eta \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X} .
\end{aligned}
$$

Hence

$$
\left\|Q_{\lambda} y\right\|_{X} \geqslant \lambda \bar{b} l \omega \eta \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}
$$

Lemma 2.10. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$. If there exists $\varepsilon>0$ such that $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \leqslant\left(A^{-1} y\right)(t-\tau(t)) \varepsilon$ for $t \in[0, \omega]$, then

$$
\left\|Q_{\lambda} y\right\|_{X} \leqslant \lambda \bar{b} \omega \varepsilon \frac{L M}{m-(M+m)|c|}\|y\|_{X} .
$$

Proof. In view of Lemmas 1.1, 2.4 and 2.6, we have

$$
\begin{aligned}
\left\|Q_{\lambda} y\right\|_{X} & \leqslant \lambda \frac{M(1-|c|)}{m-|c|(M+m)} L \int_{0}^{\omega} b(s) f\left(\left(A^{-1} y\right)(s-\tau(s))\right) d s \\
& \leqslant \lambda \frac{M(1-|c|)}{m-|c|(M+m)} L \varepsilon \int_{0}^{\omega} b(s)\left(A^{-1} y\right)(s-\tau(s)) d s \\
& \leqslant \lambda \bar{b} \omega \varepsilon \frac{L M}{m-|c|(M+m)}\|y\|_{X} .
\end{aligned}
$$

Lemma 2.11. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$. If $y \in$ $\partial \Omega_{r}, r>0$, then

$$
\left\|Q_{\lambda} y\right\|_{X} \geqslant l \lambda \bar{b} \omega m(r)
$$

Proof. Since $y \in \partial \Omega_{r}$ and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$, by Lemma 2.4, we obtain $\frac{\alpha-|c|}{1-c^{2}} r \leqslant$ $\left(A^{-1} y\right)(t-\tau(t)) \leqslant \frac{r}{1-|c|}$. Thus $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \geqslant m(r)$. Then it is easy to see that this lemma can be proved in a similar manner as in Lemma 2.9.

Lemma 2.12. Suppose the assumptions $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{2}\right)$ hold and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}\right.$, 0]. If $y \in$ $\partial \Omega_{r}, r>0$, then

$$
\left\|Q_{\lambda} y\right\|_{X} \leqslant L \lambda \bar{b} \omega \frac{M(1-|c|)}{m-(M+m)|c|} M(r) .
$$

Proof. Since $y \in \partial \Omega_{r}$ and $c \in\left(-\min \left\{k_{1}, \frac{m}{M+m}\right\}, 0\right]$, by Lemma 2.4, we obtain $0 \leqslant\left(A^{-1} y\right)(t-$ $\tau(t)) \leqslant \frac{r}{1-|c|}$. Thus $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \leqslant M(r)$. Then it is easy to see that this lemma can be shown in a similar manner as in Lemma 2.10.

3. Proofs of main results

In this section, we give the proofs of main results based on lemmas in Section 2.
Proof of Theorem 1.1. Part (a). Take $r_{1}=1$ and $\lambda_{0}=\frac{1}{m\left(r_{1}\right) \bar{b} l \omega}>0$. By Lemma 2.11, for $y \in$ $\partial \Omega_{r_{1}}$ and $\lambda>\lambda_{0}$,

$$
\left\|Q_{\lambda} y\right\|_{X}>\|y\|_{X}
$$

From Lemma 2.1, $i\left(Q_{\lambda}, \Omega_{r_{1}}, K\right)=0$.
Case I. If $f_{0}=0$, we can choose $0<\bar{r}_{2}<r_{1}$ so that $f(u) \leqslant \varepsilon u$ for $0 \leqslant u \leqslant \bar{r}_{2}$, where the constant $\varepsilon>0$ satisfies

$$
\begin{equation*}
\lambda \bar{b} \omega \varepsilon \frac{L M}{m-(M+m)|c|}<1 \tag{3.1}
\end{equation*}
$$

Let $r_{2}=(1-|c|) \bar{r}_{2}$. Since $0 \leqslant\left(A^{-1} y\right)(t-\tau(t)) \leqslant \frac{1}{1-|c|}\|y\|_{X} \leqslant \bar{r}_{2}$ for $y \in \partial \Omega_{r_{2}}$ by Lemma 2.4, we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \leqslant \varepsilon\left(A^{-1} y\right)(t-\tau(t))$. Thus we have by Lemma 2.10 and (3.1) that, for $y \in \partial \Omega_{r_{2}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \leqslant \lambda \bar{b} \omega \varepsilon \frac{L M}{m-(M+m)|c|}\|y\|_{X}<\|y\|_{X}
$$

It follows from Lemma 2.1 that $i\left(Q_{\lambda}, \Omega_{r_{2}}, K\right)=1$. Thus $i\left(Q_{\lambda}, \Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}, K\right)=-1$ and Q_{λ} has a fixed point y in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$. By Lemma 2.8, we see that $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1) for $\lambda>\lambda_{0}$.

Case II. If $f_{\infty}=0$, there exists a constant $\tilde{H}>0$ such that $f(u) \leqslant \varepsilon u$ for $u \geqslant \tilde{H}$, where the constant $\varepsilon>0$ satisfies inequality (3.1).

Let $r_{3}=\max \left\{2 r_{1}, \frac{\tilde{H}\left(1-c^{2}\right)}{\alpha-|c|}\right\}$. Since $\left(A^{-1} y\right)(t-\tau(t)) \geqslant \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X} \geqslant \tilde{H}$ for $y \in \partial \Omega_{r_{3}}$, we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \leqslant \varepsilon\left(A^{-1} y\right)(t-\tau(t))$. Thus we have by Lemma 2.10 and (3.1) that, for $y \in \partial \Omega_{r_{3}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \leqslant \lambda \bar{b} \omega \varepsilon \frac{L M}{m-(M+m)|c|}\|y\|_{X}<\|y\|_{X}
$$

It follows from Lemma 2.1 that $i\left(Q_{\lambda}, \Omega_{r_{3}}, K\right)=1$. Thus $i\left(Q_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$ and Q_{λ} has a fixed point y in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$. By Lemma 2.8, we see that $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1) for $\lambda>\lambda_{0}$.

Case III. If $f_{\infty}=f_{0}=0$, from the above arguments, there exist $0<r_{2}<r_{1}<r_{3}$ such that Q_{λ} has a fixed point $y_{1}(t)$ in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$ and a fixed point $y_{2}(t)$ in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$. Consequently, $\left(A^{-1} y_{1}\right)(t)$ and $\left(A^{-1} y_{2}\right)(t)$ are two positive ω-periodic solutions of (1.1) for $\lambda>\lambda_{0}$.

Part (b). Let $r_{1}=1$. Take $\lambda_{1}=\frac{m-(M+m)|c|}{L \bar{b} \omega(M-M|c|) M\left(r_{1}\right)}>0$. By Lemma 2.12, for $y \in \partial \Omega_{r_{1}}$ and $0<\lambda<\lambda_{1}$,

$$
\left\|Q_{\lambda} y\right\|_{X}<\|y\|_{X}
$$

By Lemma 2.1, $i\left(Q_{\lambda}, \Omega_{r_{1}}, K\right)=1$.
Case I. If $f_{0}=\infty$, we can choose $0<\bar{r}_{2}<r_{1}$ so that $f(u) \geqslant \eta u$ for $0 \leqslant u \leqslant \bar{r}_{2}$, where the constant $\eta>0$ satisfies

$$
\begin{equation*}
\lambda \bar{b} \omega \eta \frac{\alpha-|c|}{1-c^{2}}>1 \tag{3.2}
\end{equation*}
$$

Let $r_{2}=(1-|c|) \bar{r}_{2}$. Since $0 \leqslant\left(A^{-1} y\right)(t-\tau(t)) \leqslant \frac{1}{1-|c|}\|y\|_{X} \leqslant \bar{r}_{2}$ for $y \in \partial \Omega_{r_{2}}$, we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \geqslant \eta\left(A^{-1} y\right)(t-\tau(t))$. Thus we have by Lemma 2.9 and (3.2) that, for $y \in \partial \Omega_{r_{2}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \geqslant \lambda \bar{b} l \omega \eta \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}>\|y\|_{X}
$$

It follows from Lemma 2.1 that $i\left(Q_{\lambda}, \Omega_{r_{2}}, K\right)=0$. Thus $i\left(Q_{\lambda}, \Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}, K\right)=1$ and Q_{λ} has a fixed point y in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$. By Lemma 2.8, we see that $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1) for $\lambda \in\left(0, \lambda_{1}\right)$.

Case II. If $f_{\infty}=\infty$, there exists a constant $\tilde{H}>0$ such that $f(u) \geqslant \eta u$ for $u \geqslant \tilde{H}$, where the constant $\eta>0$ satisfies inequality (3.2).

Let $r_{3}=\max \left\{2 r_{1}, \frac{\tilde{H}\left(1-|c|^{2}\right)}{\alpha-|c|}\right\}$. Since $\left(A^{-1} y\right)(t-\tau(t)) \geqslant \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X} \geqslant \tilde{H}$ for $y \in \partial \Omega_{r_{3}}$ by Lemma 2.4, we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \geqslant \eta\left(A^{-1} y\right)(t-\tau(t))$. Thus we have by Lemma 2.9 and inequality (3.2) that, for $y \in \partial \Omega_{r_{3}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \geqslant \lambda \bar{b} l \omega \eta \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}>\|y\|_{X}
$$

It follows from Lemma 2.1 that $i\left(Q_{\lambda}, \Omega_{r_{3}}, K\right)=0$. Thus $i\left(Q_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$ and Q_{λ} has a fixed point y in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$. By Lemma 2.8, we see that $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1) for $\lambda \in\left(0, \lambda_{1}\right)$.

Case III. If $f_{\infty}=f_{0}=\infty$, it is clear from the above proofs that Q_{λ} has a fixed point y_{1} in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$ and a fixed point y_{2} in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$. Consequently, $\left(A^{-1} y_{1}\right)(t)$ and $\left(A^{-1} y_{2}\right)(t)$ are two positive ω-periodic solutions of (1.1) for $\lambda \in\left(0, \lambda_{1}\right)$.

Part (c). By Lemma 2.4, $\left(A^{-1} y\right)(t-\tau(t)) \geqslant \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X} \geqslant 0$ for $t \in[0, \omega]$ and $y \in K$.
Case I. If $i_{0}=0$, we have $f_{0}>0$ and $f_{\infty}>0$. Let $c_{1}=\min \left\{\frac{f(u)}{u}: u>0\right\}>0$, then we obtain

$$
f(u) \geqslant c_{1} u, \quad u \in[0,+\infty)
$$

Assume $y(t)$ is a positive ω-periodic solution of (1.1) for $\lambda>\lambda_{2}$, where $\lambda_{2}=\frac{1-c^{2}}{\bar{b} l \omega c_{1}(\alpha-|c|)}$. Since $Q_{\lambda} y(t)=y(t)$ for $t \in[0, \omega]$, it follows from Lemma 2.9 that, for $\lambda>\lambda_{2}$,

$$
\|y\|_{X}=\left\|Q_{\lambda} y\right\|_{X} \geqslant \lambda \bar{b} l \omega c_{1} \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}>\|y\|_{X}
$$

which is a contradiction.
Case II. If $i_{\infty}=0$, we have $f_{0}<\infty$ and $f_{\infty}<\infty$. Let $c_{2}=\max \left\{\frac{f(u)}{u}: u>0\right\}>0$, then we obtain

$$
f(u) \leqslant c_{2} u, \quad u \in[0,+\infty)
$$

Assume $y(t)$ is a positive ω-periodic solution of (1.1) for $\lambda \in\left(0, \lambda_{3}\right)$, where $\lambda_{3}=\frac{m-(M+m)|c|}{\bar{b} \omega c_{2} L M}$. Since $Q_{\lambda} y(t)=y(t)$ for $t \in[0, \omega]$, it follows from Lemma 2.10 that, for $\lambda \in\left(0, \lambda_{3}\right)$,

$$
\|y\|_{X}=\left\|Q_{\lambda} y\right\|_{X} \leqslant \lambda \bar{b} \omega c_{2} \frac{L M}{m-(M+m)|c|}\|y\|_{X}<\|y\|_{X}
$$

which is a contradiction.
Proof of Theorem 1.2. From the proof of part (c) in Theorem 1.1, we obtain this theorem immediately.

Proof of Theorem 1.3. Case I. $f_{0} \leqslant f_{\infty}$. In this case, we have

$$
\frac{1-c^{2}}{\bar{b} \omega l f_{\infty}(\alpha-|c|)}<\lambda<\frac{m-(M+m)|c|}{f_{0} \bar{b} \omega L M} .
$$

It is clear that there exists an $0<\varepsilon<f_{\infty}$ such that

$$
\frac{1-c^{2}}{\bar{b} \omega l\left(f_{\infty}-\varepsilon\right)(\alpha-|c|)}<\lambda<\frac{m-(M+m)|c|}{\left(f_{0}+\varepsilon\right) \bar{b} \omega L M} .
$$

For the above ε, we choose $0<\bar{r}_{1}$ so that $f(u) \leqslant\left(f_{0}+\varepsilon\right) u$ for $0 \leqslant u \leqslant \bar{r}_{1}$. Let $r_{1}=$ $(1-|c|) \bar{r}_{1}$. Since $0 \leqslant\left(A^{-1} y\right)(t-\tau(t)) \leqslant \frac{1}{1-|c|}\|y\|_{X} \leqslant \bar{r}_{1}$ for $y \in \partial \Omega_{r_{1}}$ by Lemma 2.4, we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \leqslant\left(f_{0}+\varepsilon\right)\left(A^{-1} y\right)(t-\tau(t))$. Thus we have by Lemma 2.10 that, for $y \in \partial \Omega_{r_{1}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \leqslant \lambda \bar{b} \omega\left(f_{0}+\varepsilon\right) \frac{L M}{m-(M+m)|c|}\|y\|_{X}<\|y\|_{X}
$$

On the other hand, there exists a constant $\tilde{H}>0$ such that $f(u) \geqslant\left(f_{\infty}-\varepsilon\right) u$ for $u \geqslant \tilde{H}$. Let $r_{2}=\max \left\{2 r_{1}, \frac{\tilde{H}\left(1-c^{2}\right)}{\alpha-|c|}\right\}$. Since $\left(A^{-1} y\right)(t-\tau(t)) \geqslant \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X} \geqslant \tilde{H}$ for $y \in \partial \Omega_{r_{2}}$ by Lemma 2.4,
we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \geqslant\left(f_{\infty}-\varepsilon\right)\left(A^{-1} y\right)(t-\tau(t))$. Thus we have by Lemma 2.9 that, for $y \in \partial \Omega_{r_{2}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \geqslant \lambda \bar{b} \omega l\left(f_{\infty}-\varepsilon\right) \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}>\|y\|_{X}
$$

It follows from Lemma 2.1 that

$$
i\left(Q_{\lambda}, \Omega_{r_{1}}, K\right)=1, \quad i\left(Q_{\lambda}, \Omega_{r_{2}}, K\right)=0
$$

Thus $i\left(Q_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$ and Q_{λ} has a fixed point y in $\Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$. By Lemma 2.8, we see that $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1).

Case II. $f_{0}>f_{\infty}$. In this case, we have

$$
\frac{1-c^{2}}{\bar{b} \omega l f_{0}(\alpha-|c|)}<\lambda<\frac{m-(M+m)|c|}{f_{\infty} \bar{b} \omega L M}
$$

It is clear that there exists an $0<\varepsilon<f_{0}$ such that

$$
\frac{1-c^{2}}{\bar{b} \omega l\left(f_{0}-\varepsilon\right)(\alpha-|c|)}<\lambda<\frac{m-(M+m)|c|}{\left(f_{\infty}+\varepsilon\right) \bar{b} \omega L M} .
$$

For the above ε, we choose $0<\bar{r}_{1}$ so that $f(u) \geqslant\left(f_{0}-\varepsilon\right) u$ for $0 \leqslant u \leqslant \bar{r}_{1}$. Let $r_{1}=(1-|c|) \bar{r}_{1}$. Since $0 \leqslant\left(A^{-1} y\right)(t-\tau(t)) \leqslant \frac{1}{1-|c|}\|y\|_{X} \leqslant \bar{r}_{1}$ for $y \in \partial \Omega_{r_{1}}$, we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \geqslant$ $\left(f_{0}-\varepsilon\right)\left(A^{-1} y\right)(t)$. Thus we have by Lemma 2.9 that, for $y \in \partial \Omega_{r_{1}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \geqslant \lambda \bar{b} l \omega\left(f_{0}-\varepsilon\right) \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X}>\|y\|_{X} .
$$

On the other hand, there exists a constant $\tilde{H}>0$ such that $f(u) \leqslant\left(f_{\infty}+\varepsilon\right) u$ for $u \geqslant \tilde{H}$. Let $r_{2}=\max \left\{2 r_{1}, \frac{\tilde{H}\left(1-c^{2}\right)}{\alpha-|c|}\right\}$. Since $\left(A^{-1} y\right)(t-\tau(t)) \geqslant \frac{\alpha-|c|}{1-c^{2}}\|y\|_{X} \geqslant \tilde{H}$ for $y \in \partial \Omega_{r_{2}}$, we obtain $f\left(\left(A^{-1} y\right)(t-\tau(t))\right) \leqslant\left(f_{\infty}+\varepsilon\right)\left(A^{-1} y\right)(t-\tau(t))$. Thus we have by Lemma 2.10 that, for $y \in \partial \Omega_{r_{2}}$,

$$
\left\|Q_{\lambda} y\right\|_{X} \leqslant \lambda \bar{b} \omega\left(f_{\infty}+\varepsilon\right) \frac{L M}{m-(M+m)|c|}\|y\|_{X}<\|y\|_{X} .
$$

It follows from Lemma 2.1 that

$$
i\left(Q_{\lambda}, \Omega_{r_{1}}, K\right)=0, \quad i\left(Q_{\lambda}, \Omega_{r_{2}}, K\right)=1
$$

Thus $i\left(Q_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$ and Q_{λ} has a fixed point y in $\Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$. By Lemma 2.8, we see that $\left(A^{-1} y\right)(t)$ is a positive ω-periodic solution of (1.1).

Our results are applicable to consider existence problem of periodic solutions of many neutral differential systems.

Example 3.1. We consider the following neutral functional differential equation:

$$
\begin{equation*}
\left[u(t)+\frac{1}{3} u\left(t-\frac{\pi}{2}\right)\right]^{\prime \prime}+\frac{1}{4} u(t)=\lambda[1-\sin 2 t] u^{a}(t-\tau(t)) e^{-u(t-\tau(t))}, \tag{3.3}
\end{equation*}
$$

where λ and a are positive parameters, $\tau(t+\pi) \equiv \tau(t)$. We see that $\delta=\frac{\pi}{2}, c=-\frac{1}{3}, a(t) \equiv \frac{1}{4}$, $b(t)=1-\sin 2 t, f(u)=u^{a} e^{-u}, M=m=\frac{1}{4}$. Additionally, $\max _{u \in[0, \infty)} f(u)=f(a)$.

Clearly, $M=\frac{1}{4}<\left(\frac{\pi}{\pi}\right)^{2}=1$. The assumptions $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ are satisfied and $f_{\infty}=0$. Then we conclude

Conclusion 3.2. (a) If $a \in(0,1)$, then (3.3) has one positive π-periodic solution for $\lambda>\frac{1}{\pi r_{0}}>0$ or $0<\lambda<\frac{\sqrt{2}}{4 \pi f(a)}$, where $r_{0}=\min \left\{f\left(\frac{\sqrt{2}}{4}\right), f\left(\frac{3}{2}\right)\right\}$;
(b) If $a=1$, then (3.3) has one positive π-periodic solution for $\lambda>\frac{1}{\pi r_{0}}>0$;
(c) If $a>1$, then (3.3) has two positive π-periodic solutions for $\lambda>\frac{1}{\pi r_{0}}>0$.

In fact, by simple computations, we have

$$
\begin{aligned}
& \beta=\frac{1}{2}, \quad L=\frac{1}{2 \beta \sin \frac{\beta \pi}{2}}=\sqrt{2}, \quad l=\frac{\cos \frac{\beta \pi}{2}}{2 \beta \sin \frac{\beta \pi}{2}}=1, \\
& k=\frac{2+\sqrt{2}}{4}, \quad \alpha=\frac{\sqrt{2}}{4}, \quad k_{1}=\frac{\sqrt{2}+1-\sqrt{3}}{2}, \\
& |c|=\frac{1}{3}<\min \left\{k_{1}, \frac{m}{m+M}\right\}=\frac{\sqrt{2}+1-\sqrt{3}}{2}, \quad|c|=\frac{1}{3}<\frac{\sqrt{2}}{4}=\alpha .
\end{aligned}
$$

Let $t_{0}=\min \left\{a, \frac{3}{2}\right\}$ and $r_{0}=\min \left\{f\left(\frac{\sqrt{2}}{4}\right), f\left(\frac{3}{2}\right)\right\}$, we have

$$
\begin{aligned}
& M(1)=\max \left\{f(t): 0 \leqslant t \leqslant \frac{3}{2}\right\}=f\left(t_{0}\right), \\
& m(1)=\min \left\{f(t): \frac{\sqrt{2}}{4} \leqslant t \leqslant \frac{3}{2}\right\}=\min \left\{f\left(\frac{3}{2}\right), f\left(\frac{\sqrt{2}}{4}\right)\right\}=r_{0}, \\
& \frac{1}{m(1) l \bar{b} \omega}=\frac{1}{\pi r_{0}}, \quad \frac{m-(M+m)|c|}{L \bar{b} \omega(M-M|c|) M(1)}=\frac{\sqrt{2}}{4 \pi f\left(t_{0}\right)} .
\end{aligned}
$$

Additionally, if $a \in(0,1), f_{0}=+\infty$; if $a=1, f_{0}=1$ and $f_{\infty}=0$; if $a>1, f_{0}=f_{\infty}=0$. From Theorem 1.1, we can obtain Conclusion 3.2.

Acknowledgments

The authors thank the reviewers for their valuable suggestions.

References

[1] M. Krasnoselskii, Positive Solutions of Operators Equations, Noordhoff, Groningen, 1964.
[2] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[3] D. Guo, V. Lakshmikantham, Nonlinear Problem in Abstract Cones, Academic Press, Orlando, FL, 1988.
[4] H.I. Freedman, J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal. 23 (1992) 689-701.
[5] J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[6] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
[7] X. Haiyan Wang, Positive periodic solutions of functional differential equations, J. Differential Equations 202 (2004) 354-366.
[8] Y. Li, Positive periodic solutions for a periodic neutral differential equation with feedback control, Nonlinear Anal. Real World Appl. 6 (2005) 145-154.
[9] M. Zhang, Periodic solution of linear and quasilinear neutral functional differential equations, J. Math. Anal. Appl. 189 (1995) 378-392.
[10] S. Lu, W. Ge, Periodic solutions of neutral differential equation with multiple deviating arguments, Appl. Math. Comput. 156 (2004) 705-717.
[11] S. Lu, W. Ge, Z. Zheng, Periodic solutions to a kind of neutral functional differential equation in the critical case, J. Math. Anal. Appl. 293 (2004) 462-475.
[12] S. Tanaka, Existence of positive solutions for a class of first-order neutral functional differential equations, J. Math. Anal. Appl. 229 (1999) 501-518.
[13] F. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput. 162 (2005) 1279-1302.
[14] M. Ait Babram, R. Benkhalti, Periodic solutions of functional differential equations of neutral type, J. Math. Anal. Appl. 204 (1996) 898-909.
[15] Y. Li, Positive periodic solutions of nonlinear second order ordinary differential equations, Acta Math. Sinica 45 (2002) 481-488.

[^0]: * Corresponding author.

 E-mail address: junwmath@hotmail.com (J. Wu).

