
JOURNAL OF MATHEhIATICAL ANALYSIS AND APPLICATIONS 58, 653464 (1977) 

An Approximation Method for a Class of Singularly 

Perturbed Second-Order Boundary Value Problems* 

F. A. HOWES 

School of Mathematics, Uniwrsity of Minnesota, Minneapolis, Mirmesota 55455 

Submitted bv K. L. Cooke 

1. INTRODUCTION 

In this note we present a method for generating successively better approx- 
imations to a solution of the second-order boundary value problem 

EYS =f(t, y, Y’, El, o<t<1, (1.1) 

Y(O, 4 = 4 Y(l, 4 = 8 (1.2) 

for small, positive values of the perturbation parameter E. The function f in 
(1.1) is assumed to be sufficiently smooth to permit the construction of an Nth- 
order outer solution, i.e., a solution of EU” =f(t, u, u’, E) + O(G’),l 0 < t < 1, 
u( 1, 6) = B, for N a positive integer. In addition, f is assumed to grow no faster 
than (Y’)~ as 1 y’ 1 + co. The first assumption is used in defining a sequence of 
approximate problems whose solutions are shown to exist and to satisfy the 
desired asymptotic estimates as a consequence of the growth restriction placed 
on f. Another essential requirement is that the partial derivative 2f/8y’ = f,, 
be strictly negative in a certain region around the function 1c,, = us(t), which is 
assumed to be a solution of the reduced problem 0 = f (t, u,, , u,,‘, 0), 0 < t < 1, 
u,(l) = B. The function u, will turn out to be the first term in the asymptotic 
expansion of the outer solution. 

The idea for the approximation scheme presented here originated from a 
similar discussion of a singularly perturbed second-order initial value problem 
in a paper by Nagumo [13]. This paper and an earlier one [12] formed the basis 
for Brish’s [l] original study of the nonlinear problem (l.l), (1.2). Unfortunately 
the results in [l, 131 have not attracted much attention, although the author 
has employed the methodology behind them with some success in [9, lo]. More 

* Supported by the National Science Foundation under Grant NSF-GP-37069-X. 
1 Here and throughout the paper 0 denotes the standard-order symbol, i.e., r(t, 6) = 

@‘(s(t, l )) if there is a constant K (independent of t, 6) such that 1 r(t, c)I < K I s(t, E)], 
for all (t, C) in a certain domain. 
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widely known are the techniques of matched expansions and two-timing, which 
are summarized and illustrated, for example, in the books by Cole [5] and 
O’Malley [14], respectively. However, these methods when applied to a boundary 
value problem like (1 .l), (1.2) involve certain formal matching relations whose 
validity is usually justified by either heuristic or a posteriori arguments. Although 
the book by Eckhaus [7] is successful in providing rigorous justification for the 
method of matched expansions, the matching formulas in [7] are unnecessarily 
complicated when applied to the problem presented here. In contrast, the 
method developed below does not require the use of any form of matching. 
Further, the existence of solutions and the resulting asymptotic estimates are 
established rigorously at each step of the approximation procedure. 

2. THE OUTER SOLUTION 

In this section the construction of an outer solution is outlined. A more com- 
plete discussion can be found, for instance, in [5] or [14]. Recall that the problem 
under consideration is 

cyn =f(4 y, Y’, 4, O<t<1, (2-l) 

y(0, c) = A, y(1, c) = B. (2.2) 

The parameter E is assumed to be positive here and throughout the paper, and 
for simplicity, the boundary conditions are taken to be independent of E. An 
Nth-order outer solution is then a function u = u(t, e) satisfying 

EU” =f(t, 24, u’, 6) + U(P), o<t<1, 

~(1, 6) = B. 

To determine such a function we tentatively set u(t, E) = CL, z+(t) & and insert 
this expression into (2.1), (2.2). Equating coefficients of pi, 0 <i < N, we have 
the following sequence of problems for the uj on (0, 1): 

0 =f(4 uo , u,‘, O), u,(l) = B, (2.3), 

44 =f&, uo , uo', 0) Ul +f,+, uo , uo', 0) Ul', u,(l) = 0, (2.3), 

uY-l =-f&t3 u0 3 uO’~ O) uj +f~‘(~, % 3 %I’, 0) uj’ + Yj(t), Uj(1) = 0, (2.3~ 

where yj is a function depending on u. , u1 ,..., uiel and their derivatives. We 
have assumed, of course, that the function f is sufficiently differentiable to allow 
the above expansions. If we now assume that the reduced problem (2.3), has a 
sufficiently differentiable solution u. = uo(t), then the resulting problems (2.3)j, 
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j 3 1, which are linear, can be solved provided fi/(t, u,, , u,, , 0) f  0 for t in 
(0, 1). This, however, is one of our basic assumptions; in fact, we assume 

f,* < -k < 0 in a region around us to be defined in the next section. 
The function u(t, c) == ~~=a uj(t) cj is then easily seen to be an Nth-order 

outer solution of (2.1), (2.2). N’e remark that if we had assumed instead that 
f,, 5~ k :- 0, then nonuniform (i.e., boundary layer) behavior would occur at 
t := 1. Consequently, the terms uj in the expansion of the outer solution should 
satisfy the initial conditions u,(O) = A, ~~(0) = 0, j :Z 1. Finally, if the boundary 
conditions A!, B have asymptotic expansions in t, i.e., -4(c) (B(E)) mm 
XL,, _-ljej (xF=, B,ej), then the functions uj should be made to satisfy uj( 1) = R, 
or ~~(0) = .ij , j 3 0, depending on the sign off,, . 

3. THE APPROXIMATION SEQUENCE 

Having indicated how to construct an Nth-order outer solution of the 
boundary value problem 

l Y” =f(t, y, Y’, 4, O<tcl, (3.1) 

y(0, c) == A, ~(1, c) = B, (3.2) 

we now present a method for obtaining both the existence of a solutiony = y(t, E) 
of (3.1), (3.2) for each E > 0, E sufficiently small, and the existence of an Nth- 
order uniform approximation of the solution for such E. To be specific, we 
construct a sequence of boundary value problems which effectively transforms 
an outer solution into a function yN = yN(t, c) satisfying y  - yx = P(P). 
The precise result is contained in the following two theorems. 

THEOREM 3.1. Assume 

(1) the reduced problem 0 =f(t, u0 , q,‘, 0), u,,( 1) = B, has n solution 
u. = q(t) of class CcNf2)[0, 11; 

(2) the function f  is of class C with respect to t and of class FN+” with 
respect to T, y’, E in the region R: 

0 <t .< 1, ! y  - u,(t)1 < 4 y’ j ( ,Kci, 

O<E<E1 (d > 0,O < l 1 .: 1); 

(3) the partial derivatives {f, , fgy , f,,, ,fu,r,> are qf order F(1) in R; in 
particular, 1 .f, 1 < P and f, + 0; 

(4) there is a constant k > 0 such that the partial derivative f!,, satisfies 
f,, .< -k in R. 
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Then the inductively-defined boundary value problems 

l r; = f(t, u(t, E), Yl’, E>1 o<t<1, 
(Ed 

l YC = f(t, YN-l(C 61, YN’, 61, o<t<1, 

YN(O, 4 = A, YN(l, c) = & 
(EN) 

have solutions yl(t, E), yz(t, E),..., yN(t, E), respectively, for each E, 0 < E ,< 

min(c, , k2(4d)-1}, which satisfy the estimates 

yj(t, C) - yjel(t, E) = O(eN) + fl(tj-l exp[--kt(2c)-1]) (*I 

for t in [0, I] and 1 ,( j < A? Here y,(t, e) = u(t, c) is an Nth-order outer solution 
of (3. I), (3.2). 

Proof. We begin by noting that the assumptions of the theorem allow the 
construction of an Nth-order outer solution II = u(t, e), for 0 < E ,< cI , as 
outlined in Section 2. 

To prove the existence of solutions of (E,),..., (EN) and the corresponding 
estimates (*), we will use a differential inequality theorem originally proved by 
Nagumo [12] and later refined by Jackson [l I]. In the present context, it asserts 
that if the function F = F(t, x, x’, c) is continuous in its variables and grows no 
faster than (x’)” as / x’ 1 -+ co, and if there exist functions LX, p of class C(“)[O, l] 
satisfying (Y < /3, a(O) < A < /I(O), a(l) < B </3(l), and ~a” > F(t, a, LX’, l ), 
$3” < F(t, /3, /I’, c) on (0, l), then the problem EX” =F(t, x, x’, l ), 0 < t < 1, 
x(0, l ) = A, x(1, 6) = B, has a solution x(t, l ) of class P)[O, l] with a(t, 6) < 
x(t, e) < /3(t, E), 0 < t -< 1. Since assumption (3) places the required growth 
restriction on f ,  to apply the Nagumo-Jackson theorem we must construct 
appropriate bounding solutions for each of the problems (E,),..., (EN). 

THE PROBLEM (E,). Define for t in [0, I] and 0 < E < co = min{el , P(4d)-r) 
the functions 

ctl(t, t) = u(t, E) - (~(0, E) - A) exp[--ktc-l] - .Ny,/-l exp[A(t - l)], 
if U(O,E> 24 

= u(t, l ) - 6N3/IF exp[h(t - l)], if u(0, c) < A; 

&(t, e) = u(t, 6) + d+~,f--’ exp[h(t - l)], if ~(0.4 > A, 
= u(t, l ) - (~(0, l ) - A) exp[-&c-l] + eNrIP exp[A(t - l)], 

if ~(0, c) < A. 
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Here h -7 A(E) < 0 is the root of rhs A kh + / = 0 which satisfies X =- --/km-’ -- 

P(c). (Such a A exists by virtue of the restriction that E :c @(4/)-r.) The constant 
yr is positive and will be determined below. 

Clearly aI -3: & , ar,(O, c) ,< ,4 < a(O, E), and ~~(1, 6) :< B :.-~ /3r(l, l ) (recall 
that U( 1, e) =-: B). It is just as easy to verify that (or , & satisfy the required 
differential inequalities. For example, suppose ~(0, l ) 13 .-l and consider iyr(r, E). 
Then, differentiating 01~ , substituting into the equation in (E,), and expanding 
bv the 1Iean I’alue Theorem, we have 

=-: a” - k”c-l(u(O, 6) - A) exp[--ktr-‘1 

- d2Pylk1 exp[A(t - I)] - f(t, u, u’, f) 

- f!,,[t, l ] {kc-l(u(O, c) - -3) exp[-k-r] - A&,fP1 exp[A(t - I)]:, 

where [t, 61 is the appropriate intermediate point. Since u is an JVth-order outer 
solution, there is a constant Kr such that 1 .s” -f(t, II, u’, c)l < cNK, , 
0 5: t : 1, 0 -: E :; EL . This, together with the assumption that f,,,[t, 61 ::.. 

--k < 0. allows us to continue with the inequality 

: k k’c-‘(~(0, .s) - =1) esp[--k-l] - #Py,C-r esp[X(l - t)] 

- cNh', - kXcNy,f--l exp[A(l - t)] 

-E"Kl T cNyl erp[h(t - I)], 

since cY -~ kA - / = 0. Thus by choosing y1 2: K, , we have the desired 
inequality. The other verifications follow similarly and we conclude by the 
Nagumo-Jackson theorem that for each E, 0 < E < E” , the problem (E,) has a 
solution \a1 = ~r(t, c) with 
c(esp[--kfc l]), 0 -r; t < 1. 

~~r(t, c) .Y< a(t, c) :< &(t, c), i.e., .I’, - N := Pi(?) L 

THE PROBLEM (E,). We consider nest the problem 

El’; _ =.f(4 J&l E), y*‘, E), 0 < t -c: 1, ~~(0, cj y  -4, ~~(1, <) = B, 

where x,(t, c) is the solution of (E,) w h ose existence was proved above. Define 

for t in [0, I] and 0 < e ,< Ed the functions 

cb(f, l ) == y,(t, c) - l , exp[--kt(2e)-r] - cNy,L-’ exp[X(t - l)], 

P?(t, l ) 1 yl(t, c) + l T, exp[--kt(2e)-l] + cNy&-l exp[h(r -- I)]. 

Here r? , yz are positive constants whose magnitudes are determined below, and 
X = -0-r L e(d) is the root of rXa 1 kX -t- P = 0, as before. 
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Then a2 < & , c+@, e) < A d B2(0, ~1, and tia( 1, l ) < B < p2( 1, e) (recall 
yl(O, 4 = A, n(l, 6) = B). T o verify that the differential inequalities are 
satisfied, consider ,6z; the verification for % follows by symmetry. Differentiating 

B 2, substituting into the equation in (E,), and expanding by the Mean Value 
Theorem, we have 

f(fl Yl(h 4192’, c) - & 

= f(t, y1 , yl’, e) +f,ft, c] {- &kT’, exp[-kt(2<)-l] + hoNy,L’-l exp[h(t - l)]) 

- cy4’; - $k’I’, exp[-kt(2c)-l] - ~/\~r~y,~-‘exp[h(t - l)] 

>f(t, y1 , yl’, c) - q(’ + (4 - t) k2T2 exp[-kt(2e))‘1 

- (&I2 + kh) d$P1 exp[A(t - l)] 

= f(t, y1 , yl’, c) - cy; + ak”T, exp[-kt(2c)-r] + cNy2 exp[h(t - l)]. 

We now rewrite f(t, y1 , yr’, l ) as f(t, II + (yl - u), yl’, l ) and note that 

f(t, u + (Yl - u), ?(I', 6) =f(t, 11, Yl', 4 + q3'1 - 24 I> 

=f(t, u, yl’, E) + U(C”) + B(exp[--Kt(2~)-1]), 

since f, = e(l) and yr - u = O(P) + 8(exp[-kt(2~)-1]). More precisely, 
there are positive constants K, , R2 such that 

f(t, y1 , yl’, c> >f(t, u, yl’, l ) - cNK2 - K2 exp[-k@)-ll. 

We then have the desired inequality 

> f(t, u, yl’, 6) - ey; - cNK2 - & exp[-kt(2<)-‘) 

+ &k2r2 exp[-kt(2c)-1] + eNy2 exp[y(t - l)] > 0, 

if we choose r2 3 4x2k-* and y2 > K2 , since l y’; =f(t, u, yr’, l ). Thus, applying 
the Nagumo- Jackson theorem, we conclude that (E,) has a solution y2 = yz(t, l ) 
for each E, 0 < E < E,, , satisfying yz - y1 = O(eN) + O(C exp[-kt(2c)-I]), 
o<t<1. 

THE PROBLEM (E,), j > 3. The pattern is now clear. To deduce the existence 
of a solution yi = yj(t, l ) of the problem 

er; =.m YA, 4 Y;, 4, O<t<l, 

Y,(O, 4 = A, ~4, ~1 = B, 
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satisfying yj - yj-i = 0(P) + 0(@ exp[--kt(2r)-l]), we simply define, for t 
in[O,l]andO<E<c,,, 

a,(t, c) = Tlel(fr l ) - d--lr, exp[--Rt(2e)-l] - l y,/-l exp[h(f - I)], 

/3j( t ,  6) = yjel(t, c) + d-lrj exp[--kt(2c)-l] $- l Nyj/-’ exp[A(t - I)], 

for r, , Yj sufficiently large, and proceed as in the case of (E,). This concludes 
the proof of Theorem 3. I. 

Remark I. iVe have tacitly assumed that the constant d in the definition 
of the region R is large enough to permit the various expansions carried out 

above. Indeed, the parameter E was allowed to be as large as min{E, , k”(4E)mll. 
However, if one is interested in problems involving only very small values of E, 
i.e., 0 < l < 1, then it is sufficient for d to satisfy / d - uO(0)i < d, where 
u0 is the solution of the reduced problem. This follows bl; noting that ~(t, C) - 
zcO(t) +- F(C) and, consequently, 

yj(t, E) = ~j-l(t, l ) + O(C”) + cT(E’-~ exp[-kt(2E)-l]) 

= u,,(t) + 1 A - u,(O)1 exp[-kt(2c)-l] + P(E), forj 1:. I. 

Remark 2. We can also make the following observation concerning the 
range of E > 0 for which Theorem 3.1 is valid. I f  the function f, is positively 
bounded away from zero, i.e., if there are positive constants v, /(v < d) such that 
v  -g f, :< Fin R, then the conclusion of the theorem holds for each E, 0 < E :;I pi . 
Of course, we assume that the constant d is sufficiently large (cf. Remark 1 
above). This is easily seen by defining the following functions ‘Y~ , pi for t in 
[0, 11 and 0 =-:: E .T.: cl: 

q(t, c) = u(t, c) - (~(0, c) - -4) exp[-ktc’] - cNylv-l, 

= zc(t, c) - Pylv-1, 

A(& c) = u(t, 6) + ENyF1, 

== u(t, c) - (~(0, 6) - A) exp[-kte-l] + cNylv-l, 

and for j == 2,..., lV, 

if 

if 

if 

if 

xj(t, 6) = ;vjel(t, l ) - .+lr, exp[-kt(2<)-l] - l ~,v-l, 
,Llj(t, l ) = yjMl(t, 6) + ,j-lI’; exp[-kt(2c)-l] + EDIFY--], 

where rj , yj are sufficiently large positive constants. The verifications that these 
01~ , flj satisfy the required inequalities are quite similar to those given above 
and are omitted. 

Remark 3. If, in place of assumption (4), we assume that f,, ;: k > 0 in R, 
then an analogous result can be proved, provided we assume that the Nth order 
outer solution u(t, C) satisfies ~(0, l ) : .-1 = ~(0, 6). We simply make the 
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change of independent variable 7 = 1 - t and apply Theorem 3.1 to the trans- 
formed problem. The estimate (*) for yj(t, E) - )rj-i(t, l ) then becomes 

yj(t, l ) - yjel(t, C) =: U(eN) + U(cj-l exp[--k(2E)-l (1 - t)]), O<t<l. 

Remark 4. It is possible to consider boundary conditions A, B which are 
sufficiently regular functions of E to permit the construction of an Nth-order 
outer solution u(t, l ) satisfying u( 1, l ) = B(E) + O(@‘) (or ~(0, l ) = A(E) + O(P)). 
The only change required in the proof of Theorem 3.1 is to make the constant 
yi appearing in the definition of (pi , fii large enough so that, additionally, 
ay1(1, ~1 < B(4 <Ml, 4. 

Remark 5. The differential equations in (Ej) are of first order in yj’ and, as a 
result, it is generally possible to determine exact or numerical solutions for E 
in the indicated range. 

Remark 6. We note finally that if the function f = f (t, y, y’, l ) is independ- 
ent ofy, i.e., f, 3 0, then the sequence of problems (E,),..., (EN) reduces to the 
original problem (3.1), (3.2), and, consequently, the method presented above 
does not apply in this case. 

We are now in a position to prove the existence of a solution y = y(t, l ) of 
the boundary value problem (3.1), (3.2). At the same time, we show that the 
solution yN = yN(t, l ) of (EN) constructed above is a uniform-order 0(P)- 
approximation to y. 

THEOREM 3.2. Make the same assumptions as in Theorem 3.1. Then for each 
E, 0 < E < min{e, , k”(4C)-I}, there exists a solution y  =y(t, l ) of (3.1), (3.2). 
In addition, 

(i) y - yN = U(P), 0 < t < 1; 

(ii) y’ - yN’ = O(G’) + 8(&l exp[-kt(2e)-I]), 0 < t < 1, 

where yN = yN(t, l ) is the solution of (EN) considered in Theorem 3.1. 

Proof. The theorem is proved by noting that since 

yN - y,-, = O(E~) + fl(+l exp[-kt(2<)-l]), O<t<1, 

we may rewrite the function f in (EN) as 

f (6 YN + (YN-1 - YN), YN’, 4 
= f (t, yN , yN’, 6) + @(c”) + @(eN-l exp[-kt(2c)-l]), 

That is, yN is a solution of 

l $.J = f(t, J’N , yj.,‘, C) + @+“) + 8(cN-’ exp[-kt(2c)-‘I), o<t<1, 

4’N(o, e) == ~4, yN(l, c) = B. 
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This is, however, precisely the type of approximate solution discussed by 1Villett 

[16], ErdClyi [8], Chang [3], and the present author [9, Chap. 61. Indeed, to 
prove the existence of a solution of the original problem (3.1), (3.2) satisfying 
estimate (i), we need only define, for t in [0, I] and 0 < E .< E” , 

a(t, c) = yN(t, c) - l ~rexp[---Kt(2~)-~] - eNy&-l exp[X(t - I)], 

P(t? l ) = yN(t, 6) + ENrexp[--Rt(2E)-l] + +&-l exp[/\(t - l)]. 

As in the proof of Theorem 3.1, these functions are seen to satisfy the required 

inequalities for I’, y  sufficiently large and h = -&l $- p(c), the root of 
l h2 + kX + G = 0. The details of the argument, together with a proof of estimate 
(ii), can be found in [9, Chap. 61. 

The comments made after the proof of Theorem 3.1 apply equally to 
Theorem 3.2. We remark, however, that the hypotheses in these theorems are 

only sufficient conditions for the existence of a uniform approximate solution 
of an actual solution of (3.1), (3.2). Another approach is presented very briefly 
in Section 6 of the paper by Dorr, Parter, and Shampine [6]. These authors 
consider the problem 

cy” - W) Y’ - g(t, Y) = 0, o<t<1, (3.3) 

y(0, c) = A, y&c) = B, A-l < B, (3.4) 

where b > 0 and g, > 0, under assumptions which guarantee that the solution 
u,, = u,(t) of the reduced problem, b(t) uo’+g(t,uo)=~O,O<t< l,uo(0) ---1, 
satisfies u,“(t) > 0, 0 < t < 1. They then use the solution w ..- w(t, E) of the 
approximate problem (cf. (E,)) 

EWX - b(t) w’ - g(t, u,(t)) = 0, o<t<1, 

w(0, c) = A, w(l,~) = B 

to obtain the estimate z+,(t) < y(t, ) E < w(t, e) for the solution ~1 -y(t, 6) of 
(3.3), (3.4). In addition, the limits lim,,, w(t, 6) =: lim,,,y(t, l ) = u,(t), 
0 < t < 1, are shown to hold by means of maximum principle arguments. 
This is as far as the approximation procedure is carried. 

4. D~scuss~os 

In Theorem 3.2 we proved that the solution yN(t, G) of (EN) is a uniform 
approximation of order O(G) of an actual solution of the original problem (3. l), 
(3.2). However, it is clear from the estimates (*) in Theorem 3.1 that each of the 

solutions yl(t, e) ,..., yNpl(t, E) of (E,) ,..., (EN-d. respectively, could be used to 
construct a solution of (3.1), (3.2). For example, the function yz ==yZ(f, c) 
is a solution of <yi =f(t, yl(t, E), yp’, E), 0 < t < I, J~~(O, c) ~== .-I, F~( I, c) -7 B, 

-+09/$3,‘3-15 
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which satisfies the estimate y2 - yl(t, c) = U(eN) + S(c exp[--kt(2c)-l]). 
Consequently, Ya is actually a solution of l yi = f(t, Ye , ya’, 6) + A + 
U(E exp[--kt(2c)-1]). W e may now proceed as in the proof of Theorem 3.2 to 
construct a solution y =J(t, c) of (3.1), (3.2) which satisfies j - yz = f!?(P) + 
P(E” exp[--kt(2<)-l]), 0 < t < 1. There arises then the question of whether the 
solution y constructed from YN(t, E), N 3 3, say, is equal to this solution j. 
However, this is easily seen to be the case in view of the estimates (*), provided 
E is sufficiently small. For, more generally, if zi = zj(t, c) are solutions of (3.1) 
(3.2) constructed from the solutions Yj(t, l ) of (E,), then the estimates 

Zj - yj = U(EN) + U(Ei exp[--kt(2<)-l]), 

yj - yiel = U(eN) + U(@ exp[--kt(2E)-l]) 

imply that zj - zj-l = O(E) (or better), j = 2 ,..., N. 
We note, on the other hand, that if an Nth-order outer solution distinct 

from u := u(t, l ) is used to generate the analogous sequence (E,),..., (EN), then 
it is conceivable that another solution of (3.1), (3.2) could be constructed as in 
Theorem 3.2. It is understood that, in this case, the function f in (3.1) is suf- 
ficiently nonlinear so that (3.1), (3.2) possesses multiple solutions. 

5. A QUASILINEAR PROBLEM 

In proving Theorems 3.1 and 3.2 we made essential use of the assumption 
that f, was of order 8(l) in R. However, consider the following quasilinear 
problem (treated, e.g., in [2, 4, 13, 151) 

EY M = At, y, 4 3” + 44 y, 4, O<t<l, (5.1) 

Y(Q4 = 4 Y(l, 4 = & (5.2) 

where g > 0 and g, h are of class C(l) in R. If g, # O(E), then the function 
f (t, y, y’, c) = g(t, y, c) y’ + h(t, Y, l ) does not satisfy f, = O(1) in R, since 
f, = g,y’ + h, = O(E-l) near t = 0. Consequently, the approximation method 
described above does not apply to such problems. As a specific example, consider 
the problem 

Eye = 31 + 3Y2)Y’, O<t<l, (5.3) 

y(0, 6) = 3-rp, y(1, c) = 0. (5.4) 

In this simple case, the outer solution to all orders of E is u(t, c) 3 0. The first 
approximate problem (El) is then 

cy; = -(I + 3u2)y1’ = -yl’, O<t<1, 
yl(O, E) = 3-1’2, y,(l, c> = 0, 
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whose solution, to asymptotically small terms, is ~i(l, c) =_ 3 lr2 e?rp[--f<ml]. 
However, the solution of (5.3), (5.4), g a ain to asymptotically small terms, is 
~(t, c) = $exp[-tr-l] (1 - aexp[-2tc-1])-1’“. Consequently,J(t, G) - ~*t(t, 6) ~;- 
e(c), 0 5: t < 1; for instance, y(~, c) -- ~‘~(6, c) =: $e-l(l ~- *e-r). I.‘? - 3 -lPJe -I 
is not small with respect to E -+ 0 f. This failure of the first approximate solution 
y1 is propagated throughout the sequence (E,),..., (E,), and as a result, at the 
;Vth step, y  - yK f  P(P). It is interesting to note, however, that in general the 
breakdown of the approximation sequence occurs only for t in the range 
0 c: t ::< ~(5, 0 a positive constant depending on the problem. 

In the case of the general quasilinear problem (5. I), (5.2), if g, is identicall! 

zero or if g, = P(E) in R, then Theorems 3.1 and 3.2 apply without difficult\-. 
If, on the contrary, g, is not small near t = 0, it is still possible to construct an 
approximation sequence like (Ej). We simply define (lZi)‘. for 1 2 :i ..- -I’, 
inductively as the problems 

where, as usual, y&t, c) -G u(t, c) is an 1L’th order outer solution of (5.1), (5.2). 

Results corresponding to Theorems 3.1 and 3.2 then follow by the above 
construction applied to (E,)‘. Of course, this sequence is of value only if h!, 
is not identically zero in R. 

6. CONCLUDING REMARKS 

It is possible to apply the approximation method developed above to problems 
with more general boundary conditions, i.e., problems of the form 

cy“ = f(t, J’, Y’, c). 0 <t <I 1, (6.1) 

qy(O, c> + &!y’(O, c) = 4 b&l, 6) + b,y’(l, c) = R, (6.2) 

where / a, 1 + 1 a, 1 > 0, 1 6, 1 + 1 b, / > 0. Indeed, if a, :,= 0 in (6.2) and 
jU, 2,’ --k, the original approximation technique of Nagumo [13] for initial 
value problems can be applied in conjunction with a type of shooting method 
to prove results similar to Theorems 3.1 and 3.2. On the other hand, if a, =. 0, 
these theorems apply almost directly to (6.1), (6.2) under certain additional 
assumptions. These statements are most easily verified by consulting the dis- 
cussion of (6. I), (6.2) in [I ; 9, Chaps. 4 and 71 and then applying the techniques 
in [13] or Section 3 where appropriate. The details are straightforward and are 
omitted. Finally, we note that a very special problem of this type was treated 
briefly in [6, Sect. 61. 
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