Metric characterization of apartments in dual polar spaces

Mark Pankov
Department of Mathematics and Informatics, University of Warmia and Mazury, Żolnierska 14A, 10-561 Olsztyn, Poland

A R T I C L E I N F O

Article history:

Received 10 September 2010
Available online 19 January 2011

Keywords:

Apartment
Dual polar space
Hypercube graph
Isometric embedding

Abstract

Let Π be a polar space of rank n and let $\mathcal{G}_{k}(\Pi), k \in\{0, \ldots, n-1\}$ be the polar Grassmannian formed by k-dimensional singular subspaces of Π. The corresponding Grassmann graph will be denoted by $\Gamma_{k}(\Pi)$. We consider the polar Grassmannian $\mathcal{G}_{n-1}(\Pi)$ formed by maximal singular subspaces of Π and show that the image of every isometric embedding of the n-dimensional hypercube graph H_{n} in $\Gamma_{n-1}(\Pi)$ is an apartment of $\mathcal{G}_{n-1}(\Pi)$. This follows from a more general result concerning isometric embeddings of $H_{m}, m \leqslant n$ in $\Gamma_{n-1}(\Pi)$. As an application, we classify all isometric embeddings of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$, where Π^{\prime} is a polar space of rank $n^{\prime} \geqslant n$.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The problem discussed in this note was first considered in [12] and motivated by the well-known metric characterization of apartments in Tits buildings (Theorem 1). By [14], a building is a simplicial complex Δ containing a family of subcomplexes called apartments and satisfying certain axioms. One of the axioms says that all apartments are isomorphic to a certain Coxeter complex - the simplicial complex associated with a Coxeter system. The diagram of this Coxeter system defines the type of the building Δ.

Maximal simplices of Δ, they are called chambers, have the same cardinal number n (the rank of Δ). Two chambers are said to be adjacent if their intersection consists of $n-1$ vertices. We write $\mathrm{Ch}(\Delta)$ for the set of all chambers and denote by $\Gamma_{\mathrm{ch}}(\Delta)$ the graph whose vertex set is $\mathrm{Ch}(\Delta)$ and whose edges are pairs of adjacent chambers. Let \mathcal{A} be the intersection of $\mathrm{Ch}(\Delta)$ with an apartment of Δ and let $\Gamma(\mathcal{A})$ be the restriction of the graph $\Gamma_{\mathrm{ch}}(\Delta)$ to \mathcal{A}.

Theorem 1. (See [2, p. 90].) A subset of $\operatorname{Ch}(\Delta)$ is the intersection of $\mathrm{Ch}(\Delta)$ with an apartment of Δ if and only if it is the image of an isometric embedding of $\Gamma(\mathcal{A})$ in $\Gamma_{\mathrm{ch}}(\Delta)$.

[^0]The vertex set of Δ can be naturally decomposed in n disjoint subsets called Grassmannians: the vertex set is labeled by the nodes of the associated diagram (such a labeling is unique up to a permutation on the set of nodes) and all vertices corresponding to the same node form a Grassmannian. More general Grassmannians defined by parts of the diagram were investigated in [13].

Let \mathcal{G} be a Grassmannian of Δ. We say that $a, b \in \mathcal{G}$ are adjacent if there exists a simplex $P \in \Delta$ such that $P \cup\{a\}$ and $P \cup\{b\}$ both are chambers; in this case, the set of all $c \in \mathcal{G}$ such that $P \cup\{c\}$ is a chamber will be called the line joining a and b. The Grassmannian \mathcal{G} together with the set of all such lines is a partial linear space; it is called the Grassmann space corresponding to \mathcal{G}. The associated Grassmann graph is the graph $\Gamma_{\mathcal{G}}$ whose vertex set is \mathcal{G} and whose edges are pairs of adjacent vertices; in other words, $\Gamma_{\mathcal{G}}$ is the collinearity graph of the Grassmann space. It is well known that this graph is connected. The intersections of \mathcal{G} with apartments of Δ are called apartments of the Grassmannian \mathcal{G}.

In $[4,5,9,10]$ apartments of some Grassmannians were characterized in terms of the associated Grassmann spaces. We are interested in a metric characterization of apartments in Grassmannians similar to Theorem 1.

Every building of type $A_{n-1}, n \geqslant 4$ is the flag complex of an n-dimensional vector space V (over a division ring). The Grassmannians of this building are the usual Grassmannians $\mathcal{G}_{k}(V), k \in\{1, \ldots$, $n-1$ \} formed by k-dimensional subspaces of V. Two elements of $\mathcal{G}_{k}(V)$ are adjacent if their intersection is $(k-1)$-dimensional. The associated Grassmann graph is denoted by $\Gamma_{k}(V)$. If $k=1, n-1$ then any two distinct vertices of $\Gamma_{k}(V)$ are adjacent and the corresponding Grassmann space is the projective space Π_{V} associated with V or the dual projective space Π_{V}^{*}, respectively. Every apartment of $\mathcal{G}_{k}(V)$ is defined by a certain base $B \subset V$: it consists of all k-dimensional subspaces spanned by subsets of B. For every $S, U \in \mathcal{G}_{k}(V)$ the distance $d(S, U)$ in $\Gamma_{k}(V)$ is equal to

$$
k-\operatorname{dim}(S \cap U)
$$

and all apartments of $\mathcal{G}_{k}(V)$ are the images of isometric embeddings of the Johnson graph $J(n, k)$ in $\Gamma_{k}(V)$. However, the image of every isometric embedding of $J(n, k)$ in $\Gamma_{k}(V)$ is an apartment of $\mathcal{G}_{k}(V)$ if and only if $n=2 k$. This follows from the classification of isometric embeddings of Johnson graphs $J(l, m), 1<m<l-1$ in the Grassmann graph $\Gamma_{k}(V), 1<k<n-1$ given in [12].

Every building of type C_{n} is the flag complex of a rank n polar space Π, i.e. it consists of all flags formed by singular subspaces of Π. Apartments of this building are defined by frames of Π and the associated Grassmannians are the polar Grassmannians $\mathcal{G}_{k}(\Pi), k \in\{0, \ldots, n-1\}$ consisting of k-dimensional singular subspaces of Π. We restrict ourself to the Grassmannian $\mathcal{G}_{n-1}(\Pi)$ formed by maximal singular subspaces of Π. Two elements of $\mathcal{G}_{n-1}(\Pi)$ are adjacent if their intersection is ($n-2$)-dimensional. The corresponding Grassmann graph is denoted by $\Gamma_{n-1}(\Pi)$. The associated Grassmann space is known as the dual polar space of Π. We show that apartments of $\mathcal{G}_{n-1}(\Pi)$ can be characterized as the images of isometric embeddings of the n-dimensional hypercube graph H_{n} in $\Gamma_{n-1}(\Pi)$. This is a partial case of a more general result (Theorem 2) concerning isometric embeddings of $H_{m}, m \leqslant n$ in $\Gamma_{n-1}(\Pi)$. As an application, we describe all isometric embeddings of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$, where Π^{\prime} is a polar space of rank $n^{\prime} \geqslant n$ (Theorem 3). This result generalizes classical Chow's theorem [3] on automorphisms of the graph $\Gamma_{n-1}(\Pi)$.

2. Basics

2.1. Graph theory

Let Γ be a connected graph. The distance $d(v, w)$ between two vertices $v, w \in \Gamma$ is defined as the smallest number i such that there exists a path of length i (a path consisting of i edges) between v and w; a path connecting v and w is called a geodesic if it consists of $d(v, w)$ edges. The number

$$
\max \{d(v, w): v, w \in \Gamma\}
$$

is called the diameter of Γ. Suppose that it is finite. Two vertices of Γ are said to be opposite if the distance between them is maximal (is equal to the diameter).

An isometric embedding of a graph Γ in a graph Γ^{\prime} is an injection of the vertex set of Γ to the vertex set of Γ^{\prime} preserving the distance between vertices. The existence of isometric embeddings of Γ in Γ^{\prime} implies that the diameter of Γ is not greater than the diameter of Γ^{\prime}. An isometric embedding of Γ in Γ^{\prime} is an isomorphism of Γ to a subgraph of Γ^{\prime}; the converse fails, an isomorphism of Γ to a proper subgraph of Γ^{\prime} needs not to be an isometric embedding. We refer [6] for the general theory of isometric embeddings of graphs.

2.2. Hypercube graphs

$$
\begin{aligned}
& \text { Let } \\
& \qquad J:=\{1, \ldots, n,-1, \ldots,-n\} .
\end{aligned}
$$

A subset $X \subset J$ is said to be singular if

$$
i \in X \quad \Rightarrow \quad-i \notin X
$$

for all $i \in I$. Every maximal singular subset consists of n elements and for every $i \in\{1, \ldots, n\}$ it contains i or $-i$. The n-dimensional hypercube graph H_{n} can be defined as the graph whose vertices are maximal singular subsets of J and two such subsets are adjacent (connected by an edge) if their intersection consists of $n-1$ elements. This graph is connected and for every maximal singular subsets $X, Y \subset J$ the distance $d(X, Y)$ in the graph H_{n} is equal to

$$
n-|X \cap Y| .
$$

The diameter of H_{n} is equal to n and X, Y are opposite vertices of H_{n} if and only if $X \cap Y=\emptyset$.

2.3. Partial linear spaces

Let P be a non-empty set and let \mathcal{L} be a family of proper subsets of P. Elements of P and \mathcal{L} will be called points and lines, respectively. Two or more points are said to be collinear if there is a line containing all of them. Suppose that the pair $\Pi=(P, \mathcal{L})$ is a partial linear space, i.e. the following axioms hold:

- each line contains at least two points,
- every point belongs to a line,
- for any distinct collinear points $p, q \in P$ there is precisely one line containing them, this line is denoted by $p q$.

We say that $S \subset P$ is a subspace of Π if for any distinct collinear points $p, q \in S$ the line $p q$ is contained in S. A singular subspace is a subspace where any two points are collinear (the empty set and a single point are singular subspaces).

For every subset $X \subset P$ the minimal subspace containing X (the intersection of all subspaces containing X) is called spanned by X and denoted by $\langle X\rangle$. We say that X is independent if $\langle X\rangle$ is not spanned by a proper subset of X.

Let S be a subspace of Π (possible $S=P$). An independent subset $X \subset S$ is called a base of S if $\langle X\rangle=S$. The dimension of S is the smallest cardinality α such that S has a base of cardinality $\alpha+1$. The dimension of the empty set and a single point is equal to -1 and 0 (respectively), lines are 1 -dimensional subspaces.

Two partial linear spaces $\Pi=(P, \mathcal{L})$ and $\Pi^{\prime}=\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ are isomorphic if there exists a bijection $f: P \rightarrow P^{\prime}$ such that $f(\mathcal{L})=\mathcal{L}^{\prime}$; this bijection is called a collineation of Π to Π^{\prime}. We say that an injection of P to P^{\prime} is an embedding of Π in Π^{\prime} if it sends lines to subsets of lines such that distinct lines go to subsets of distinct lines.

2.4. Polar spaces

Following [1], we define a polar space as a partial linear space $\Pi=(P, \mathcal{L})$ satisfying the following axioms:

- each line contains at least three points,
- there is no point collinear with all points,
- if $p \in P$ and $L \in \mathcal{L}$ then p is collinear with one or all points of the line L,
- any flag formed by singular subspaces is finite.

If there exists a maximal singular subspace of Π containing more than one line then all maximal singular subspaces of Π are projective spaces of the same dimension $n \geqslant 2$; the number $n+1$ is called the rank of Π.

The collinearity relation on Π will be denoted by \perp : we write $p \perp q$ if $p, q \in P$ are collinear and $p \not \perp q$ otherwise. If $X, Y \subset P$ then $X \perp Y$ means that every point of X is collinear with all points of Y.

Lemma 1. The following assertions are fulfilled:
(1) If $X \subset P$ and $X \perp X$ then the subspace $\langle X\rangle$ is singular and $p \perp X$ implies that $p \perp\langle X\rangle$.
(2) If S is a maximal singular subspace of Π then $p \perp S$ implies that $p \in S$.

Proof. See, for example, Subsection 4.1.1 in [11].

2.5. Dual polar spaces

Let $\Pi=(P, \mathcal{L})$ be a polar space of rank $n \geqslant 3$. For every $k \in\{0,1, \ldots, n-1\}$ we denote by $\mathcal{G}_{k}(\Pi)$ the Grassmannian consisting of all k-dimensional singular subspaces of Π. Then $\mathcal{G}_{n-1}(\Pi)$ is formed by maximal singular subspaces of Π. Recall that two elements of $\mathcal{G}_{n-1}(\Pi)$ are adjacent if their intersection is ($n-2$)-dimensional and the associated Grassmann graph is denoted by $\Gamma_{n-1}(\Pi)$.

Let M be an m-dimensional singular subspace of Π. If $m<k$ then we write $[M\rangle_{k}$ for the set of all elements of $\mathcal{G}_{k}(\Pi)$ containing M. In the case when $m=n-2$, the subset [$\left.M\right\rangle_{n-1}$ is called a line of $\mathcal{G}_{n-1}(\Pi)$. The Grassmannian $\mathcal{G}_{n-1}(\Pi)$ together with the set of all such lines is a partial linear space; it is called the dual polar space of $П$. Two distinct points of the dual polar space are collinear if and only if they are adjacent elements of $\mathcal{G}_{n-1}(\Pi)$. Note that every maximal singular subspace of the dual polar space is a line.

Let M be as above. If $m<n-2$ then $[M\rangle_{n-1}$ is a non-singular subspace of the dual polar space. Subspaces of such type are called parabolic [5]. We will use the following fact: the parabolic subspace $[M\rangle_{n-1}$ is isomorphic to the dual polar space of a rank $n-m-1$ polar space.

Consider $[M\rangle_{m+1}$. A subset $\mathcal{X} \subset[M\rangle_{m+1}$ is called a line if there exists $N \in[M\rangle_{m+2}$ such that \mathcal{X} consists of all elements of [$M\rangle_{m+1}$ contained in N. Then, by Lemma 4.4 in [11], [$\left.M\right\rangle_{m+1}$ together with the set of all such lines is a polar space of rank $n-m-1$. If $\mathcal{Y} \subset[M\rangle_{m+1}$ is a maximal singular subspace of this polar space then there exists $S \in[M\rangle_{n-1}$ such that \mathcal{Y} consists of all elements of $[M\rangle_{m+1}$ contained in S. So, we can identify maximal singular subspaces of $[M\rangle_{m+1}$ with elements of $[M\rangle_{n-1}$. This correspondence is a collineation between $[M\rangle_{n-1}$ and the dual polar space of $[M\rangle_{m+1}$. For every $S, U \in \mathcal{G}_{n-1}(\Pi)$ the distance $d(S, U)$ in the graph $\Gamma_{n-1}(\Pi)$ is equal to

$$
n-1-\operatorname{dim}(S \cap U) .
$$

The diameter of $\Gamma_{n-1}(\Pi)$ is equal to n and two vertices of $\Gamma_{n-1}(\Pi)$ are opposite if and only if they are disjoint elements of $\mathcal{G}_{n-1}(\Pi)$.

3. Apartments of dual polar spaces

3.1. Main result

Let $\Pi=(P, \mathcal{L})$ be a polar space of rank n. Apartments of $\mathcal{G}_{k}(\Pi)$ are defined by frames of Π. A subset $\left\{p_{1}, \ldots, p_{2 n}\right\} \subset P$ is called a frame if for every $i \in\{1, \ldots, 2 n\}$ there exists unique $\sigma(i) \in$ $\{1, \ldots, 2 n\}$ such that $p_{i} \not \not \subset p_{\sigma(i)}$. Frames are independent subsets of Π. This guarantees that any k mutually collinear points in a frame span a $(k-1)$-dimensional singular subspace.

Let $B=\left\{p_{1}, \ldots, p_{2 n}\right\}$ be a frame of Π. The associated apartment $\mathcal{A} \subset \mathcal{G}_{n-1}(\Pi)$ is formed by all maximal singular subspaces spanned by subsets of B - the subspaces of type $\left\langle p_{i_{1}}, \ldots, p_{i_{n}}\right\rangle$ such that

$$
\left\{i_{1}, \ldots, i_{n}\right\} \cap\left\{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{n}\right)\right\}=\emptyset
$$

Thus every element of \mathcal{A} contains precisely one of the points p_{i} or $p_{\sigma(i)}$ for each i. By Subsection 2.2, \mathcal{A} is the image of an isometric embedding of H_{n} in $\Gamma_{n-1}(\Pi)$.

Let M be an $(n-m-1)$-dimensional singular subspace of Π and let B be a frame of Π such that M is spanned by a subset of B. The intersection of the associated apartment of $\mathcal{G}_{n-1}(\Pi)$ with the parabolic subspace $[M\rangle_{n-1}$ is called an apartment of $[M\rangle_{n-1}$. This parabolic subspace can be identified with the dual polar space of the rank m polar space $[M\rangle_{n-m}$, see Subsection 2.5 ; and every apartment of $[M\rangle_{n-1}$ is defined by a frame of this polar space, see [11, p. 180]. All apartments of [$\left.M\right\rangle_{n-1}$ are the images of isometric embeddings of H_{m} in $\Gamma_{n-1}(\Pi)$.

Theorem 2. The image of every isometric embedding of $H_{m}, m \leqslant n$ in $\Gamma_{n-1}(\Pi)$ is an apartment in a parabolic subspace $[M\rangle_{n-1}$, where M is an $(n-m-1)$-dimensional singular subspace of Π. In particular, the image of every isometric embedding of H_{n} in $\Gamma_{n-1}(\Pi)$ is an apartment of $\mathcal{G}_{n-1}(\Pi)$.

Remark 1. There are no isometric embeddings of H_{m} in $\Gamma_{n-1}(\Pi)$ if $m>n$ (in this case, the diameter of H_{m} is greater than the diameter of $\left.\Gamma_{n-1}(\Pi)\right)$. However, there exists a subset $\mathcal{X} \subset \mathcal{G}_{n-1}(\Pi)$ such that the restriction of the graph $\Gamma_{n-1}(\Pi)$ to \mathcal{X} is isomorphic to H_{n+1}, see Example 2 in [4].

3.2. Lemmas

To prove Theorem 2 we will use the following lemmas.
Lemma 2. If $X_{0}, X_{1}, \ldots, X_{m}$ is a geodesic in $\Gamma_{n-1}(\Pi)$ then

$$
\begin{gathered}
X_{0} \cap X_{m} \subset X_{i} \\
\text { for every } i \in\{1, \ldots, m-1\} .
\end{gathered}
$$

Proof. We prove induction by i that $M:=X_{0} \cap X_{m}$ is contained in every X_{i}. The statement is trivial if $i=0$. Suppose that $i \geqslant 1$ and $M \subset X_{i-1}$.

Since $X_{0}, X_{1}, \ldots, X_{m}$ is a geodesic, we have

$$
d\left(X_{i}, X_{m}\right)<d\left(X_{i-1}, X_{m}\right)
$$

and, by the distance formula given in Subsection 2.5,

$$
\operatorname{dim}\left(X_{i} \cap X_{m}\right)>\operatorname{dim}\left(X_{i-1} \cap X_{m}\right)
$$

The latter implies the existence of a point

$$
p \in\left(X_{i} \cap X_{m}\right) \backslash X_{i-1}
$$

Then X_{i} is spanned by the ($n-2$)-dimensional singular subspace $X_{i-1} \cap X_{i}$ and the point p. On the other hand,

$$
\left(X_{i-1} \cap X_{i}\right) \perp M
$$

(M is contained in X_{i-1} by inductive hypothesis) and $p \perp M$ (p and M both are contained in X_{m}). By the first part of Lemma $1, X_{i} \perp M$. Since X_{i} is a maximal singular subspace, the second part of Lemma 1 guarantees that $M \subset X_{i}$.

Lemma 3. In the hypercube graph H_{m} for every vertex v there is a unique vertex opposite to v. If vertices $v, w \in H_{m}$ are opposite then for every vertex $u \in H_{m}$ there is a geodesic connecting v with w and passing through u.

Proof. An easy verification.
Lemma 4. The image of every isometric embedding of $H_{m}, m \leqslant n$ in $\Gamma_{n-1}(\Pi)$ is contained in a parabolic subspace $[M\rangle_{n-1}$, where M is an $(n-m-1)$-dimensional singular subspace of Π.

Proof. Let f be an isometric embedding of H_{m} in $\Gamma_{n-1}(\Pi)$. We take any opposite vertices $v, w \in H_{m}$. Then

$$
d(f(v), f(w))=m
$$

and, by the distance formula,

$$
M:=f(v) \cap f(w)
$$

is an $(n-m-1)$-dimensional singular subspace of Π. Lemmas 2 and 3 show that M is contained in $f(u)$ for every $u \in H_{m}$.

3.3. Proof of Theorem 2

If M is an ($n-m-1$)-dimensional singular subspace of Π then $[M\rangle_{n-m}$ is a polar space of rank m and $[M\rangle_{n-1}$ can be identified with the associated dual polar space, see Subsection 2.5; moreover, every apartment of $[M\rangle_{n-1}$ is defined by a frame of the polar space $[M\rangle_{n-m}$. Therefore, by Lemma 4, it is sufficient to prove Theorem 2 only in the case when $m=n$.

Let $\left\{p_{1}, \ldots, p_{2 n}\right\}$ be a frame of Π. Denote by \mathcal{A} the associated apartment of $\mathcal{G}_{n-1}(\Pi)$. The restriction of $\Gamma_{n-1}(\Pi)$ to \mathcal{A} is isomorphic to H_{n}. Suppose that $f: \mathcal{A} \rightarrow \mathcal{G}_{n-1}(\Pi)$ is an injection which induces an isometric embedding of H_{n} in $\Gamma_{n-1}(\Pi)$. Let \mathcal{X} be the image of f.

Each $\mathcal{A} \cap\left[p_{i}\right\rangle_{n-1}$ is an apartment in the parabolic subspace $\left[p_{i}\right\rangle_{n-1}$. Since [$\left.p_{i}\right\rangle_{n-1}$ is the dual polar space of the rank $n-1$ polar space $\left[p_{i}\right\rangle_{1}$, see Subsection 2.5 , the restriction of $\Gamma_{n-1}(\Pi)$ to $\mathcal{A} \cap\left[p_{i}\right\rangle_{n-1}$ is isomorphic to H_{n-1}. Lemma 4 implies the existence of points $q_{1}, \ldots, q_{2 n}$ such that

$$
f\left(\mathcal{A} \cap\left[p_{i}\right\rangle_{n-1}\right) \subset \mathcal{X} \cap\left[q_{i}\right\rangle_{n-1}
$$

for every i.
For every $X \in \mathcal{A} \backslash\left[p_{i}\right\rangle_{n-1}$ there exists $Y \in \mathcal{A} \cap\left[p_{i}\right\rangle_{n-1}$ disjoint from X. We have

$$
d(X, Y)=d(f(X), f(Y))=n .
$$

Then $f(X)$ and $f(Y)$ are disjoint and $q_{i} \in f(Y)$. This means that $q_{i} \notin f(X)$ and $f(X)$ does not belong to $\mathcal{X} \cap\left[q_{i}\right\rangle_{n-1}$. Since $f(\mathcal{A})=\mathcal{X}$, we get the equality

$$
f\left(\mathcal{A} \cap\left[p_{i}\right\rangle_{n-1}\right)=\mathcal{X} \cap\left[q_{i}\right\rangle_{n-1} .
$$

If $i \neq j$ then $\mathcal{A} \cap\left[p_{i}\right\rangle_{n-1}$ and $\mathcal{A} \cap\left[p_{j}\right\rangle_{n-1}$ are distinct subsets of \mathcal{A} and their images $\mathcal{X} \cap\left[q_{i}\right\rangle_{n-1}$ and $\mathcal{X} \cap\left[q_{j}\right\rangle_{n-1}$ are distinct.

Therefore, $q_{i} \neq q_{j}$ if $i \neq j$. For every $X \in \mathcal{A}$ we have

$$
p_{i} \in X \quad \Leftrightarrow \quad q_{i} \in f(X) .
$$

Also, $q_{i} \perp q_{j}$ if $j \neq \sigma(i)$ (we take any $X \in \mathcal{A}$ which contains p_{i} and p_{j}, then q_{i} and q_{j} both belong to $f(X)$).

Lemma 5. For any $\left\{i_{1}, \ldots, i_{n}\right\} \subset\{1, \ldots, 2 n\}$ satisfying

$$
\left\{i_{1}, \ldots, i_{n}\right\} \cap\left\{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{n}\right)\right\}=\emptyset,
$$

$\left\langle q_{i_{1}}, \ldots, q_{i_{n}}\right\rangle$ is a maximal singular subspace of Π and

$$
f\left(\left\langle p_{i_{1}}, \ldots, p_{i_{n}}\right\rangle\right)=\left\langle q_{i_{1}}, \ldots, q_{i_{n}}\right\rangle .
$$

Proof. Suppose that $q_{i_{n}}$ belongs to the singular subspace $\left\langle q_{i_{1}}, \ldots, q_{i_{n-1}}\right\rangle$. Let X and Y be the elements of \mathcal{A} spanned by

$$
p_{i_{1}}, \ldots, p_{i_{n-1}}, p_{\sigma\left(i_{n}\right)} \text { and } p_{\sigma\left(i_{1}\right)}, \ldots, p_{\sigma\left(i_{n-1}\right)}, p_{i_{n}},
$$

respectively. These subspaces are disjoint and the same holds for $f(X)$ and $f(Y)$. We have

$$
\left\langle q_{i_{1}}, \ldots, q_{i_{n-1}}\right\rangle \subset f(X) \text { and } q_{i_{n}} \in f(Y)
$$

which contradicts $q_{i_{n}} \in\left\langle q_{i_{1}}, \ldots, q_{i_{n-1}}\right\rangle$.
Therefore, $q_{i_{1}}, \ldots, q_{i_{n}}$ form an independent subset of Π and $\left\langle q_{i_{1}}, \ldots, q_{i_{n}}\right\rangle$ is an element of $\mathcal{G}_{n-1}(\Pi)$. Since $f\left(\left\langle p_{i_{1}}, \ldots, p_{i_{n}}\right\rangle\right)$ contains $q_{i_{1}}, \ldots, q_{i_{n}}$, this subspace coincides with $\left\langle q_{i_{1}}, \ldots, q_{i_{n}}\right\rangle$.

By Lemma 5 , every element of \mathcal{X} is spanned by some $q_{i_{1}}, \ldots, q_{i_{n}}$. We need to show that the points $q_{1}, \ldots, q_{2 n}$ form a frame of Π. Since $q_{i} \perp q_{j}$ if $j \neq \sigma(i)$, it is sufficient to establish that $q_{i} \not \perp q_{\sigma(i)}$ for all i.

Suppose that $q_{i} \perp q_{\sigma(i)}$ for a certain i. Then $q_{i} \perp q_{j}$ for every $j \in\{1, \ldots, 2 n\}$ and $q_{i} \perp X$ for all $X \in \mathcal{X}$. Since \mathcal{X} is formed by maximal singular subspaces of Π, the second part of Lemma 1 implies that q_{i} belongs to every element of \mathcal{X}. Then the distance between any two elements of \mathcal{X} is not greater than $n-1$ which is impossible.

4. Application of Theorem 2

4.1. Let $\Pi=(P, \mathcal{L})$ and $\Pi^{\prime}=\left(P^{\prime}, \mathcal{L}^{\prime}\right)$ be polar spaces of rank n and n^{\prime}, respectively. In this section Theorem 2 will be exploited to study isometric embeddings of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$. The existence of such embeddings implies that n (the diameter of $\Gamma_{n-1}(\Pi)$) is not greater than n^{\prime} (the diameter of $\Gamma_{n-1}\left(\Pi^{\prime}\right)$). So, we assume that $n \leqslant n^{\prime}$.

Suppose that $n=n^{\prime}$. Every mapping $f: P \rightarrow P^{\prime}$ sending frames of Π to frames of Π^{\prime} is an embedding of Π in Π^{\prime}, see Subsection 4.9 .6 in [11]; moreover, for every singular subspace S of Π the subset $f(S)$ spans a singular subspace whose dimension is equal to the dimension of S. The mapping of $\mathcal{G}_{n-1}(\Pi)$ to $\mathcal{G}_{n-1}\left(\Pi^{\prime}\right)$ transferring every S to $\langle f(S)\rangle$ is an isometric embedding of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n-1}\left(\Pi^{\prime}\right)$.

Now consider the general case. Let M be an ($n^{\prime}-n-1$)-dimensional singular subspace of Π^{\prime}. By Subsection 2.5, $[M\rangle_{n^{\prime}-n}$ is a polar space of rank n and $[M\rangle_{n^{\prime}-1}$ can be identified with the associated dual polar space (if $n=n^{\prime}$ then $M=\emptyset$ and $[M\rangle_{n^{\prime}-n}$ coincides with P^{\prime}). As above, every frames preserving mapping of Π to $[M\rangle_{n^{\prime}-n}$ (a mapping which sends frames to frames) induces an isometric embedding of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$.

Theorem 3. Let $f: \mathcal{G}_{n-1}(\Pi) \rightarrow \mathcal{G}_{n^{\prime}-1}\left(\Pi^{\prime}\right)$ be an isometric embedding of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$. There exists an ($n^{\prime}-n-1$)-dimensional singular subspace M of Π^{\prime} such that the image of f is contained in $[M\rangle_{n^{\prime}-1}$ and f is induced by a frames preserving mapping of Π to $[M\rangle_{n^{\prime}-n}$.

Remark 2. Theorem 3 generalizes classical Chow's theorem [3]: if $n=n^{\prime}$ then every isomorphism of $\Gamma_{n-1}(\Pi)$ to $\Gamma_{n-1}\left(\Pi^{\prime}\right)$ is induced by a collineation of Π to Π^{\prime}. In [3] this theorem was proved for the
dual polar spaces of non-degenerate reflexive forms; but Chow's method works in the general case, see Subsection 4.6 .4 in [11]. Some interesting results concerning adjacency preserving transformations of symplectic dual polar spaces were established in $[7,8]$.

4.2. Proof of Theorem 3

We will use the following.
Theorem 4. Let M be an ($n^{\prime}-n-1$)-dimensional singular subspace of Π^{\prime}. Every mapping $f: \mathcal{G}_{n-1}(\Pi) \rightarrow$ $[M\rangle_{n^{\prime}-1}$ sending apartments of $\mathcal{G}_{n-1}(\Pi)$ to apartments of $[M\rangle_{n^{\prime}-1}$ is induced by a frames preserving mapping of Π to $[M\rangle_{n^{\prime}-n}$.

Proof. This follows from Theorem 4.17 in [11].
Theorem 3 will be a consequence of Theorems 2, 4 and the following lemma.
Lemma 6. Let $f: \mathcal{G}_{n-1}(\Pi) \rightarrow \mathcal{G}_{n^{\prime}-1}\left(\Pi^{\prime}\right)$ be an isometric embedding of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$. There exists an ($n^{\prime}-n-1$)-dimensional singular subspace M of Π^{\prime} such that the image of f is contained in $[M\rangle_{n^{\prime}-1}$.

Proof. Let X_{0} and Y_{0} be opposite vertices of $\Gamma_{n-1}(\Pi)$. Then

$$
d\left(f\left(X_{0}\right), f\left(Y_{0}\right)\right)=n
$$

and, by the distance formula given in Subsection 2.5,

$$
M:=f\left(X_{0}\right) \cap f\left(Y_{0}\right)
$$

is an ($n^{\prime}-n-1$)-dimensional singular subspace of Π^{\prime}. Let $X \in \mathcal{G}_{n-1}(\Pi)$ and let

$$
X_{0}, X_{1}, \ldots, X_{m}=X
$$

be a path in $\Gamma_{n-1}(\Pi)$ connecting X_{0} with X. We show that every $f\left(X_{i}\right)$ belongs to $[M\rangle_{n^{\prime}-1}$.
It is clear that X_{1} is opposite to Y_{0} or $d\left(X_{1}, Y_{0}\right)=n-1$. In the second case, we take a geodesic of $\Gamma_{n-1}(\Pi)$ containing X_{0}, X_{1}, Y_{0}. The mapping f transfers it to a geodesic of $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$ containing $f\left(X_{0}\right), f\left(X_{1}\right), f\left(Y_{0}\right)$. Lemma 2 guarantees that $f\left(X_{1}\right) \in[M\rangle_{n^{\prime}-1}$.

In the case when X_{1} is opposite to Y_{0}, we have

$$
\operatorname{dim}\left(f\left(X_{1}\right) \cap f\left(Y_{0}\right)\right)=n^{\prime}-n-1
$$

If the subspace $f\left(X_{1}\right) \cap f\left(Y_{0}\right)$ coincides with M then $M \subset f\left(X_{1}\right)$. If these subspaces are distinct then there exists a point

$$
p \in\left(f\left(X_{1}\right) \cap f\left(Y_{0}\right)\right) \backslash M .
$$

This point does not belong to $f\left(X_{0}\right) \cap f\left(X_{1}\right)$ (otherwise $p \in f\left(X_{0}\right) \cap f\left(Y_{0}\right)=M$ which is impossible). Thus $f\left(X_{1}\right)$ is spanned by the ($n^{\prime}-2$)-dimensional singular subspace $f\left(X_{0}\right) \cap f\left(X_{1}\right)$ and the point p. As in the proof of Lemma 2 ,

$$
\left[f\left(X_{0}\right) \cap f\left(X_{1}\right)\right] \perp M \quad \text { and } \quad p \perp M
$$

Hence $M \perp f\left(X_{1}\right)$ and $M \subset f\left(X_{1}\right)$.
So, for every $X \in \mathcal{G}_{n-1}(\Pi)$ adjacent to X_{0} we have $f(X) \in[M\rangle_{n^{\prime}-1}$. The same holds for every $X \in \mathcal{G}_{n-1}(\Pi)$ adjacent to Y_{0} (the proof is similar).

Now we establish the existence of $Y_{1} \in \mathcal{G}_{n-1}(\Pi)$ opposite to X_{1} and satisfying $f\left(Y_{1}\right) \in[M\rangle_{n^{\prime}-1}$.
It was noted above that X_{1} is opposite to Y_{0} or $d\left(X_{1}, Y_{0}\right)=n-1$. If X_{1} and Y_{0} are opposite then $Y_{1}=Y_{0}$ is as required. In the case when $d\left(X_{1}, Y_{0}\right)=n-1$, the intersection of X_{1} and Y_{0} is a single
point. We take any ($n-2$)-dimensional singular subspace $U \subset Y_{0}$ which does not contain this point. There exists a frame of Π whose subsets span X_{1} and U, see Proposition 4.7 in [11]. The associated apartment of $\mathcal{G}_{n-1}(\Pi)$ contains an element Y_{1} such that $U \subset Y_{1}$ and $X_{1} \cap Y_{1}=\emptyset$. It is clear that Y_{0} and Y_{1} are adjacent; hence $f\left(Y_{1}\right) \in[M\rangle_{n^{\prime}-1}$.

Since

$$
d\left(f\left(X_{1}\right), f\left(Y_{1}\right)\right)=n
$$

the subspace $f\left(X_{1}\right) \cap f\left(Y_{1}\right)$ is ($n^{\prime}-n-1$)-dimensional. On the other hand, $f\left(X_{1}\right)$ and $f\left(Y_{1}\right)$ both belong to $[M\rangle_{n^{\prime}-1}$ and we get

$$
f\left(X_{1}\right) \cap f\left(Y_{1}\right)=M .
$$

We apply the arguments given above to X_{1}, Y_{1}, X_{2} instead of X_{0}, Y_{0}, X_{1} and establish that $f\left(X_{2}\right) \in[M\rangle_{n^{\prime}-1}$. Step by step, we show that each $f\left(X_{i}\right)$ belongs to $[M\rangle_{n^{\prime}-1}$.

Let f be, as above, an isometric embedding of $\Gamma_{n-1}(\Pi)$ in $\Gamma_{n^{\prime}-1}\left(\Pi^{\prime}\right)$. Lemma 6 implies the existence of an ($n^{\prime}-n-1$)-dimensional singular subspace M of Π^{\prime} such that the image of f is contained in $[M\rangle_{n^{\prime}-1}$. By Theorem 2, f transfers apartments of $\mathcal{G}_{n-1}(\Pi)$ to apartments of $[M\rangle_{n^{\prime}-1}$. Theorem 4 gives the claim.

References

[1] F. Buekenhout, E.E. Shult, On the foundations of polar geometry, Geom. Dedicata 3 (1974) 155-170.
[2] K. Brown, Buildings, Springer-Verlag, New York, 1989.
[3] W.L. Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. 50 (1949) 32-67.
[4] B.N. Cooperstein, E.E. Shult, Frames and bases of Lie incidence geometries, J. Geom. 60 (1997) 17-46.
[5] B.N. Cooperstein, A. Kasikova, E.E. Shult, Witt-type theorems for Grassmannians and lie incidence geometries, Adv. Geom. 5 (2005) 15-36.
[6] M. Deza, M. Laurent, Geometry of Cuts and Metrics, Algorithms Combin., vol. 15, Springer-Verlag, Berlin, 1997.
[7] W.-l. Huang, Adjacency preserving mappings of invariant subspaces of a null system, Proc. Amer. Math. Soc. 128 (2000) 2451-2455.
[8] W.-l. Huang, Characterization of the transformation group of the space of a null system, Results Math. 40 (2001) 226-232.
[9] A. Kasikova, Characterization of some subgraphs of point-collinearity graphs of building geometries, European J. Combin. 28 (2007) 1493-1529.
[10] A. Kasikova, Characterization of some subgraphs of point-collinearity graphs of building geometries II, Adv. Geom. 9 (2009) 45-84.
[11] M. Pankov, Grassmannians of Classical Buildings, Algebra Discrete Math., vol. 2, World Scientific, Singapore, 2010.
[12] M. Pankov, Isometric embeddings of Johnson graphs in Grassmann graphs, J. Algebraic Combin., doi:10.1007/s10801-010-0258-0, in press.
[13] A. Pasini, Diagram Geometries, Clarendon Press, Oxford, 1994.
[14] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Math., vol. 386, Springer-Verlag, Berlin/New York, 1974.

[^0]: E-mail addresses: pankov@matman.uwm.edu.pl, markpankov@gmail.com.

