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Abstract

It is shown that if the parameters of an Eisenstein series on GLð2kÞ are chosen so that its

(integrated) L-function is the 2kth moment of the Riemann zeta function, then the 2k
k

� �
terms

in its constant term agree with 2k
k

� �
factors appearing in a conjectural formula for the 2kth

moment of zeta by Conrey, Farmer, Keating, Rubinstein and Snaith. When k ¼ 1; an

explanation for this phenomenon is found by deducing Oppenheim’s generalization of the

Voronoı̈ summation formula from the Eisenstein series and representation theoretic

considerations. The possibility of eliminating the problematical ‘‘arithmetic factor’’ is

discussed.

r 2003 Elsevier Inc. All rights reserved.
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Introduction

There is reason to expect that the 2kth moment of the Riemann zeta function can
be related to the spectral theory of GLðkÞ or GLð2kÞ: The work of Motohashi [27]
supports the idea of seeking such an approach, by finding an explicit formula for the
fourth moment of z involving special values of L-functions of Maass cusp forms for
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SLð2;ZÞ: Still an automorphic attack on the higher moments of the zeta function has
proved an elusive goal.
Recently Conrey, Farmer, Keating, Rubinstein, and Snaith [9] gave conjectural

asymptotics for the higher moments. These conjectures are supported by heuristics
from Random Matrix Theory and Analytic Number Theory and by numerical
computation. They are also implied by an independent conjecture of Diaconu,
Goldfeld, and Hoffstein [11]. We will argue that these recent conjectures provide
clues as to how such an automorphic attack might be formulated. In fact, we will
argue for a close connection between the 2kth moment of zeta and an Eisenstein
series on GLð2kÞ:
Once it is understood that such a connection may exist, even for the second

moment, it is not immediately clear how the classical results can be related to the
Eisenstein series on GLð2Þ: The purpose of this paper is to present the evidence for a
link between the 2kth moment and the Eisenstein series on GLð2kÞ; and to establish
a solid basis for this connection when k ¼ 1:
The second and fourth moments of z are well understood. Beyond the fourth

moment, there are recent conjectures, beginning with that of Conrey and Ghosh [10].
Although the moment of greatest interest isZ T

0

z 1
2
þ it

� ��� ��2k
dt; ð1Þ

recent authors, including Motohashi [27] and Conrey et al. [9] have emphasized that
it is better to consider an integral such asZ T

0

zðs1 þ itÞ?zðsk þ itÞzðskþ1 � itÞ?zðs2k � itÞ dt; ð2Þ

since the asymptotics of such a moment reveal a structure not apparent in (1). If the
asymptotics of (2) are known, then the asymptotics of (1) can be deduced as a
limiting case.

The authors of [9] found that the dominant terms in (2) are 2k
k

� �
in number, and

each involves a product of k2 zeta functions. We will show that this identical
structure is exhibited in the constant term of a certain Eisenstein series on GLð2kÞ:
Beginning with the second moment, Ingham [16] proved that if 0oso1 and sa1

2

then

Z T

0

jzðsþ itÞj2 dt ¼ zð2sÞT þ ð2pÞ2s�1

2� 2s
zð2� 2sÞT2�2s þ OðT1�s logðTÞÞ: ð3Þ

We may compare this with the constant term of the classical Eisenstein series on
SLð2;ZÞ;

EsðzÞ ¼
1

2
zð2sÞ

X
ðc;dÞ¼1

y

jcz þ dj2

 !s

; z ¼ x þ iy; y40:
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The series is convergent if reðsÞ41 but has meromorphic continuation to all s: This
Eisenstein series is relevant to (3) because its L-function is

Lðs;EsÞ ¼ z s þ s� 1
2

� �
z s � sþ 1

2

� �
;

so

L 1
2
þ it;Es

� �
¼ zðsþ itÞzð1� sþ itÞ ¼ wð1� sþ itÞjzðsþ itÞj2;

where wðsÞ ¼ ps�1=2G 1�s
2

� �
G s

2

� ��1
: On the other hand, the constant term

Z 1

0

Esðx þ iyÞ dx ¼ zð2sÞys þ p2s�1
Gð1� sÞ
GðsÞ zð2� 2sÞy1�s: ð4Þ

We find that if the Eisenstein series is selected so that its L-function matches the
integrand on the left-hand side in (3), then the zeta functions in the two components
of its constant term match the two terms on the right-hand side of (3).
Assuming the conjectural asymptotics in [9], we will show in Section 1 that this

phenomenon extends to the 2kth moment. For example in the fourth moment of z
the largest terms are six in number, each a product of four zeta functions. These may
be seen in the analysis in Section 1.7 of [9] of the results of Motohashi [27]. We will
show that there exists an Eisenstein series on GLð4Þ whose L-function matches the
fourth moment, and whose constant term

Z 1

0

Z 1

0

Z 1

0

Z 1

0

E

1 0 x y

0 1 z w

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA; s

0
BBB@

1
CCCAdx dy dz dw

consists of six terms, each involving a product of four zeta functions, which match
the six terms on the right-hand side of (1.7.6) in [9]. And we will check that this same
precise correspondence works for all k by exhibiting an Eisenstein series on GLð2kÞ
whose L-function and constant term, a sum of 2k

k

� �
products of k2 zeta functions,

both match perfectly the 2kth moment and its conjectured asymptotics.
There is one aspect to this correspondence which remains problematical. This is

the arithmetic factor which occurs in the conjectural asymptotics of [9]. We will
discuss the arithmetic factor below in Section 2.
So far the connection that we have described between moments and Eisenstein

series appears as a simple coincidence between data associated with the Eisenstein
series and data associated with the moments. The complexity of this data is sufficient
that we do not believe it possible that it is coincidental. However our case will be
strengthened by exhibiting a direct connection between the second moment and the
Eisenstein series Es:
This connection comes about through a generalization, due to Oppenheim [28], of

the famous Voronoı̈ [31] summation formula. Let us state Oppenheim’s formula in a
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smoothed version. If aAC let saðnÞ be the classical divisor function, and let

taðnÞ ¼
X
djn

d

n=d

� �a

¼ s2aðnÞn�a

be the symmetrical divisor function, so ta ¼ t�a: Let f be a continuous function with
compact support in ð0;NÞ: In terms of standard Bessel functions [32] let

csðyÞ ¼
Z

N

0

fðxÞ½�2p cosðspÞJ1�2sð4p
ffiffiffiffiffiffi
yx

p Þ � 2p sinðspÞY1�2sð4p
ffiffiffiffiffiffi
yx

p Þ

þ 4 sinðspÞK1�2sð4p
ffiffiffiffiffiffi
yx

p Þ
 dx: ð5Þ

We will show in Proposition 7 that csðyÞ-0 rapidly as y-N; and we will prove the
following theorem.

Theorem 1. If f is smooth with compact support in ð0;NÞ and cs is given by (5), then

for all s we have

XN
n¼1

ts�1=2ðnÞfðnÞ

¼ zð2sÞ
Z

N

0

fðxÞxs�1=2 dx þ zð2� 2sÞ
Z

N

0

fðxÞx1=2�s dx

þ
XN
n¼1

ts�1=2ðnÞcsðnÞ: ð6Þ

We will prove Theorem 1 by associating with f a smooth vector in a principal
series representation of SLð2;RÞ: We will then consider an Eisenstein series on
SLð2;ZÞ: Since the Eisenstein series is automorphic, its value at the identity equals its
value at a Weyl group element, and this relationship implies (6).
Although Oppenheim’s generalization of the Voronoı̈ summation formula is most

relevant for our investigation, another generalization of Voronoı̈’s formula, due to
Wilton [34] deserves mention in this context. Wilton’s formula involves the Fourier
coefficients of Ramanujan’s t function, and as such is essentially a summation
formula for the Fourier coefficients of an automorphic form. This, of course is how
we view the coefficients ts�1=2: they are Fourier coefficients of Eisenstein series.

Wilton’s summation formula for Ramanujan’s tðnÞ was not unprecedented, since
Voronoı̈ himself stated (and Hardy and Landau proved) a summation formula for
rðnÞ; the number of representations of n as a sum of two squares. These coefficients
are, like tðnÞ; the Fourier coefficients of a modular form. See Berndt [4], Miller and
Schmid [26], and Wilton [33], for references to the literature of this problem.
A clear statement of the nature of the connection between Voronoı̈ summation

with the ‘‘Bessel distribution’’ in the representation theory of GLð2;RÞmay be found
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in Cogdell [7]. This essential insight explains exactly the reason for the appearance
of (6). Another representation-theoretic approach, including a Voronoı̈ summation
formula for GLð3Þ is taken by Miller and Schmid [25,26].
It is our hope that the (thus far accidental) coincidence between Eisenstein series

on GLð2kÞ and the 2kth moment of zeta can be explained along these lines for
general k: Such a goal would obviously be highly desirable, and it seems to us that
the evidence in Section 1 suggests a particular construction. In view of that evidence,
we seek a representation of the standard L-function of an automorphic form on
GLð2kÞ in which the parabolic subgroup with Levi factor GLðkÞ �GLðkÞ plays a
distinguished role. Such a construction was given by Friedberg and Jacquet [13].
Their representation of the standard L-function unfolds to the so-called Shalika

model, a unique model which only exists for self-dual automorphic forms.
Fortuitously, the Eisenstein series of Section 1 is self-dual for

jzðs1 þ itÞj2?jzðsk þ itÞj2 ¼ zðs1 þ itÞ?zðsk þ itÞzðs1 � itÞ?zðsk � itÞ:

We hope therefore that a generalization of the summation formula (6) involving
‘‘divisor sums’’ associated with Shalika models can be found, and that such a
hypothetical summation formula will play a role in the theory of the higher moments
of z:
We have not yet described how the Oppenheim summation formula explains

Ingham’s estimate (3). For 1
2oso1 we have

Z T

0

jzðsþ itÞj2 dtB2p
X

noT=2p

ts�1=2ðnÞn1=2�s: ð7Þ

Application of the Oppenheim summation formula to the right-hand side
immediately gives the two main terms on the right-hand side of (3).

When s ¼ 1
2
; relationship (7) appeared in Atkinson [1] and is discussed, for

example, in Ivić [17], Jutila [18], and Matsumoto [22]. When 1
2
oso3

4
; this same

connection was used by Atkinson [2] and Matsumoto [21] to improve the error term
in (3). As these references show, this parallel runs deeper than this simple asymptotic
relation, but for our purposes, (7) is sufficient to explain (3).
At first sight (7) seems very mysterious. By the functional equation

jzðsþ itÞj2 ¼ wðs� itÞzðsþ itÞzð1� sþ itÞ:

And, with reðsÞ sufficiently large,

wðs� sÞzðsþ sÞzð1� sþ sÞ ¼ wðs� sÞ
XN
n¼1

ts�1=2ðnÞn�1=2�s: ð8Þ

So taking s ¼ it (even though (8) is then divergent) we may regard jzðsþ itÞj2 as a
sort of generating function for the terms on the right-hand side of (7). But why the
cut-off after n ¼ T=2p? Very roughly, the reason is as follows. By Stirling’s formula,
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for fixed cAR we have

n�1=2�c�itwðs� c � itÞDn�1=2�c t

2p

��� ���1=2�sþc

exp i t log
t

2pn

��� ���� p
4
� t

� �� �
: ð9Þ

Taking c ¼ 0; and substituting series (8), ignoring the fact that it is divergent, we
obtain a series of oscillatory terms. According to the principle of stationary phase,
the biggest contribution to an oscillatory integral will be where the oscillations cease.
We have

d

dt
t log

t

2pn

� �
� p
4
� t

� �
¼ log

t

2pn

� �
:

This means that the point t ¼ 2pn where the oscillations cease is outside the range of
integration if n4T=2p; so these terms are negligibly small and can be discarded. This
outline as we have explained it is of course not rigorous but it is the essential idea of
Atkinson [1]. In Section 7 we will translate this intuitive explanation into a rigorous
proof following Atkinson.
Although we are optimistic that a generalization of the Oppenheim summation

formula to ‘‘divisor sums’’ based on Shalika models may be possible and will reflect
the common structure between the 2kth moment of z and the constant term of the
Eisenstein series on GLð2kÞ; the method by which such a formula will be applied is
less clear. We have explained this when k ¼ 1 by means of (7). However, we do not
expect to find a straightforward generalization of Atkinson [1] or of (7) to higher
moments. It is worth noting that the method of Atkinson [2] and Matsumoto [21] is
very different from that of Atkinson [1], and it uses the Oppenheim summation
formula. Our view is that the Oppenheim summation formula is central to the second
moment of z but there is not a unique way of applying it.
In Section 1 we will discuss the similarity between the conjectural asymptotics of

the 2kth moment of zeta and the constant term of an Eisenstein series on GLð2kÞ: In
Section 2 we consider the so-called ‘‘arithmetic factor’’ which seems missing in this
parallel, and which is also problematical because it is not a global meromorphic
function when k42: We will propose a possible method of avoiding it when k ¼ 3:
In Section 3 we confirm that Theorem 1 is a smoothed version of Oppenheim’s
generalization of the Voronoı̈ summation formula. Section 4 contains generalities on
principal series representations of GLð2;RÞ in the particular form in which we need
them, including the Bessel distribution giving a formula for the Whittaker function
at a Weyl group element. Section 5 discusses the Eisenstein series associated with a
certain smooth vector attached to f in Theorem 1, and Section 6 deduces Theorem 1.
Finally Section 7 discusses (7) by extending Atkinson [1].

1. Eisenstein series on GLð2kÞ and moments of f

Let G ¼ GLð2kÞ; let P be the standard parabolic with Levi factor M ¼ GLðkÞ �
GLðkÞ and let U be its unipotent radical. Let B be the standard Borel subgroup of
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upper triangular matrices, and let V be the unipotent radical of B-M; so that UV is
the unipotent radical of B: Let A be the adele ring of Q: Let

s ¼
s1

^

s2k

0
B@

1
CA

be complex parameters. Let ws and d be the quasicharacters of BA defined by

wsðbÞ ¼
Y2k

i¼1
jyijsi ; dðbÞ ¼

Y2k

i¼1
jyijkþ1�2n

when

b ¼

y1 � ? �
y2 ? �

& ^

yn

0
BBB@

1
CCCA:

Let IðsÞ be the space of smooth functions f on GA such that

f ðbgÞ ¼ ðd1=2wsÞðbÞf ðgÞ:

The group GA acts by right translation on IðsÞ affording a spherical principal series
representation.
Let W ¼ S2k be the Weyl group of G and let WP ¼ Sk � Sk be the Weyl group of

M: Let F be the root system of G: If 1pi; jp2k; iaj let aði; jÞ denote the root
corresponding to the one-parameter subgroup Xi;j of G consisting of unipotent

matrices whose only off-diagonal entries are in the i; j position. Let

Fþ ¼faði; jÞ j 1piojp2kg;

FU ¼faði; jÞ j 1pipk; k þ 1pjp2kg;

FM ¼faði; jÞAF j 1pi; jpk or k þ ipi; jp2kg; Fþ
M ¼ FM-Fþ:

Thus Fþ ¼ FU-Fþ
M : Every coset in W=WP has a unique representative w such that

wFþ
MCFþ: Let X be the set of these coset representatives. Thus jXj ¼ 2k

k

� �
: This is the

same set X defined in [9, Section 3.1].
Let K ¼

Q
v Kv be the standard maximal compact subgroup of G where v runs

through the places ofQ; and Kv ¼ GLð2k;ZpÞ if v ¼ p is a finite prime, Kv ¼ Oð2kÞ if
v ¼ N: Let f �

s be the standard spherical vector in IðsÞ; defined by f �
s ðbkÞ ¼ d1=2wsðbÞ

for bABA; kAK :
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If gAG let U g ¼ U-gBg�1: If fAIðsÞ then for wAW the intertwining integral

ðMðwÞf ÞðgÞ ¼
Z

Uw
A
\UA

fsðw�1ugÞ du

is in IðwsÞ: The integral is convergent if sAO; the domain defined by the inequalities

reðsi � siþ1Þ41
2
: As in [6] it has meromorphic continuation to all s: We have

MðsÞ f �
s ¼ cðwÞ f �

wu; ð10Þ

where

cðwÞ ¼
Y
a40

wao0

caðsÞ:

Here the product is over positive roots a such that wa is negative, and caðsÞ is as
follows. We represent the root a by a vector ði; jÞ with 1piojpk; and then

caðsÞ ¼
z�ðsi � sjÞ

z�ðsi � sj þ 1Þ;

where z�ðsÞ ¼ p�s=2Gðs=2ÞzðsÞ: The action of W on the parameter s is by matrix
multiplication. Indeed, the integral in (10) decomposes as a product of local
integrals, each of which is evaluated by the formula of Gindikin and Karpelevich
[14], or its nonarchimedean analog (see [6,19]).
We consider the Eisenstein series

E�ðg; sÞ ¼
Y

1piojp2k

z�ðsi � sj þ 1Þ
( )

Eðg; sÞ; Eðg; sÞ ¼
X

BQ\GQ

f �
s ðggÞ:

Also, let

E�
Mðg; sÞ ¼

Y
ai;jAFþ

M

z�ðsi � sj þ 1Þ

8<
:

9=
;EMðg; sÞ;

EMðg; sÞ ¼
X

gAðB-MÞQ\MQ

f �
s ðggÞ:

This function is essentially a pair of GLðkÞ Eisenstein series on the Levi subgroup
M ¼ GLðkÞ �GLðkÞ: Let

ZðsÞ ¼
Y

1pipk
kþ1pjp2k

z�ðsi � sj þ 1Þ:
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Proposition 1. (i) The constant termZ
UQ\UA

Eðug; sÞ du ¼
X

w�1AX

cðwÞEMðg;wsÞ:

(ii) The constant termZ
UQ\UA

E�ðug; sÞ du ¼
X

w�1AX

ZðwsÞEMðg;wsÞ: ð11Þ

Proof. The integral in (i) equals

X
gAUQ\GQ=BQ

Z
UQ\UA

X
dAU

g
Q
\UQ

f ðg�1dugÞ du

¼
X

gAUQ\GQ=BQ

Z
U

g
Q
\UA

f ðg�1ugÞ du:

The integrand is invariant when u is changed on the left by an element of U
g
A: Hence

this equals

X
gAUQ\GQ=BQ

Z
U

g
A
\UA

f ðg�1ugÞ du:

We factor g ¼ g�11 w; where wAPQ\GQ=BQ and g1AðPQ-wBQw�1Þ\PQ=UQ:

According to the Bruhat decomposition, w can be chosen so that w�1AX: For these
values of w; we have M-BCwBw�1: Hence g1 can be chosen from ðB-MÞQ\MQ:

Now replacing u by g�11 ug1 and noting that g1 normalizes U ; while g1U
g�1
1

wg�11 ¼ Uw;
we get

X
w

Z
Uw

A
\UA

X
g1AðB-MÞQ\BQ

f ðw�1ug1gÞ du:

This proves (i).
To prove (ii), note that by (i) and (10) the left-hand side of (11) is

X
w�1AX

Y
a¼aði;jÞ40

wa40

z�ðsi � sj þ 1Þ

8><
>:

9>=
>;

Y
a¼aði;jÞ40

wao0

z�ðsi � sjÞ

8><
>:

9>=
>;EMðg;wsÞ:

In the second product, replace a by �a; thus switching i and j; and use the functional
equation. The two products may thus be combined giving

X
w�1AX

Y
aAw�1Fþ

z�ðsi � sj þ 1Þ
( )

EMðg;wsÞ:
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Absorbing the kðk � 1Þ zeta functions in the normalizing factor of E�
Mðg;wsÞ; what

remains is ZðwsÞ: &

To make the comparison with Conrey et al. [9], first let k ¼ 2 and choose s1 ¼ u1;

s2 ¼ u2; s3 ¼ �v1 and s4 ¼ �v2: The L-function LðE; 1
2
þ itÞ of Eðg; sÞ is

z 1
2
þ it þ u1

� �
z 1

2
þ it þ u2

� �
z 1

2
þ it � v1

� �
z 1

2
þ it � v2

� �
;

and applying the functional equation of z in the last two factors we get the argument
of [9] (1.7.1). On the other hand, the factors Z in Proposition 1(ii) are the same as
their six factors Z; except for the missing zeta function in the denominator, which is
the ‘‘arithmetic factor’’ that we will discuss in the next section. If k is general, taking

si to be ai in the notation of [9], our ZðwsÞ are exactly the 2k
k

� �
products of k2 zeta

functions that occur in the right-hand side of their (3.1.14). Our w is their s�1:
(Applying w to s is the same as applying its inverse to the indices.)

2. The arithmetic factor

In addition to the k2 zeta functions, each of the 2k
k

� �
terms in the asymptotics

conjectured by Conrey et al. [9] also involves a certain Euler product, which is only
an L-function when 2kp4: This is the ‘‘arithmetic factor’’ Ak defined in their (3.1.8).

This factor does not appear with the 2k
k

� �
terms in our (11), which otherwise perfectly

match their terms.
Moreover the arithmetic factor is problematical for another reason. As a function

of their parameters a; the arithmetic factor does not have analytic continuation
everywhere but has a natural boundary if kX3: This may already be seen in a
classical result. If reðsÞ41� 1=k then Carlson proved (see [30, Section 7.9])

Z T

0

jzðsþ itÞj2k
dtB

XN
n¼1

dkðnÞ2n�2s

" #
T ;

where dkðnÞ is the number of ways of expressing n as a product of k factors.
Moreover

XN
n¼1

dkðnÞ2n�s ¼ zðsÞk2
Y

p

Pkðp�sÞ;

where Pk is a Dirichlet polynomial. We have

P1ðxÞ ¼ 1; P2ðxÞ ¼ 1� x2; P3ðxÞ ¼ 1� 9x2 þ 16x3 � 9x4 þ x6;
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and in general

PkðxÞ ¼ ð1� xÞ2k�1 Xk�1
n¼0

k � 1

n

� �2

xk:

Estermann [12] considered a class of Dirichlet series including the Euler productQ
p Pkðp�sÞ: He proved that it is absolutely convergent for reðsÞ41

2
and has

meromorphic continuation to reðsÞ40 but if kX3 it has a natural boundary on the
line reðsÞ ¼ 0: In the notation of [9],

Y
p

Pkðp�sÞ ¼ Akð0; s;y; s;�s;y;�sÞ:

This natural boundary is somewhat disturbing, so let us consider how, at least for the
sixth moment, it may be possible to eliminate the arithmetic factor. Estermann’s
discovery that the arithmetic factor does not have analytic continuation may not be
an insurmountable difficulty, but it raises the question whether (1) is really the most
natural object to consider. We suggest a possible alternative.

Proposition 2. Suppose a ¼ ða1; a2; a3Þ and b ¼ ðb1; b2; b3Þ are given. Assume that

sþ ai and sþ bi have real parts X1: Then

lim
T1;T2-N

1

T1

1

T2

Z T1

0

Z T2

0

zð3sþ a1 þ a2 þ a3 þ it1 þ it2Þ�1

� zð3sþ b1 þ b2 þ b3 � it1 � it2Þ�1zðsþ a1 þ it1Þzðsþ a2 þ it1Þzðsþ a3 þ it1Þ

� zðsþ b1 � it1Þzðsþ b2 � it1Þzðsþ b3 � it1Þ

� zð2sþ a1 þ a2 þ it2Þzð2sþ a1 þ a3 þ it2Þzð2sþ a2 þ a3 þ it2Þ

� zð2sþ b1 þ b2 � it2Þzð2sþ b1 þ b3 � it2Þzð2sþ b2 þ b3 � it2Þ dt2 dt1

¼
Q3

i¼1
Q3

j¼1 zð2sþ ai þ bjÞ
zð6sþ a1 þ a2 þ a3 þ b1 þ b2 þ b3Þ

:

We conjecture that if we take s around 1
2
and the ai; bi small, the term on the right-

hand side will be one of 2k
k

� �
in the asymptotics of the left-hand side, paralleling those

found for the sixth moment by Conrey et al. [9]. Note that since 2s and 3s are farther
to the right this is something like the sixth moment. If this conjecture is true, this
variant may be a more natural object to consider than the sixth moment itself, since
it eliminates the arithmetic factor, replacing it with a factor having meromorphic
continuation.
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Proof. For p a fixed prime let

saðpk1 ; pk2Þ ¼

ak1þk2þ2
1 ak1þk2þ2

2 ak1þk2þ2
3

ak2þ1
1 ak2þ1

2 ak2þ1
3

1 1 1

�������
�������

a21 a22 a23
a1 a2 a3
1 1 1

�������
�������

; ai ¼ p�ai :

This is a Schur polynomial in a1; a2 and a3: Extend saðn1; n2Þ to all n1 and n2 by
multiplicativity. We haveX

saðn1; n2Þn�s1
1 n�s2

2

¼ zðs1 þ a1Þzðs1 þ a2Þzðs1 þ a3Þzðs2 þ a2 þ a3Þzðs2 þ a3 þ a1Þzðs2 þ a1 þ a2Þ
zðs1 þ s2 þ a1 þ a2 þ a3Þ

:

ð12Þ

Indeed, both sides are Eulerian, and locally this is (9.17) on Bump [5, p. 155]. See [29,
Exercise 7.28, pp. 458, 503]; [20, Example 7, p. 78] for a more general statement. Also

zð3s þ a1 þ a2 þ a3 þ b1 þ b2 þ b3Þ
X
n1;n2

saðn1; n2Þsbðn1; n2Þðn1n22Þ
�s

¼
Y3
i¼1

Y3
j¼1

zðs þ ai þ bjÞ: ð13Þ

This follows from the Cauchy identity. See [29, p. 322].
By (12) the integrand on the left-hand side of the formula in the proposition is

X
n1;n2

saðn1; n2Þn�s�it1
1 n�2s�it2

2

" # X
n1;n2

sbðm1;m2Þm�sþit1
1 m�2sþit2

2

" #
:

Proceeding as in [30, Theorem 7.1], it is elementary that the diagonal terms ni ¼ mi

give the asymptotic value, which is evaluated by (13). &

3. The Oppenheim summation formula

In [28] is proved a generalization of the Voronoı̈ summation formula, which we
now review. We will confirm that it is consistent with our Theorem 1.
Let

D1�2sðxÞ ¼
X
npx

s1�2sðnÞ:
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As usual, the last term is only counted half if x is an integer. In its original form the

formula asserted, provided that s is real and sA 1
2
; 3
4

� �
D1�2sðxÞ ¼ zð2sÞxþ zð2� 2sÞ

2� 2s
x2�2s � 1

2
zð2s � 1Þ þ D1�2sðxÞ; ð14Þ

where

D1�2sðxÞ ¼ � x1�s
XN
n¼1

s1�2sðnÞns�1fcosðspÞJ2�2sð4p
ffiffiffiffiffi
nx

p
Þ

þ sinðspÞ½Y2�2sð4p
ffiffiffiffiffi
nx

p
Þ þ ð2=pÞK2�2sð4p

ffiffiffiffiffi
nx

p
Þ
g:

We will show in this section that Oppenheim’s summation formula implies the

smoothed version in our Theorem 1, when 1
4
oso3

4
: However in Oppenheim’s

formula the assumption that reðsÞo3
4
is essential, because the series D1�2s will not be

convergent otherwise. The smoothed version does not have this limitation and we
will give a proof of it for all s in Section 6.

Note that ts�1=2ðnÞ ¼ s1�2sðnÞjnjs�1=2: Write

fðxÞ ¼ jxj1=2�s

Z
N

x

FðxÞ dx; FðxÞ ¼ �jxjs�1=2f0ðxÞ � s � 1

2

� �
jxjs�3=2fðxÞ:

Both f and F have compact support in ð0;NÞ: Integrating by parts,Z
N

0

FðxÞ zð2sÞx þ zð2� 2sÞ
2� 2s

x2�2s � 1

2
zð2s � 1Þ

! "
dx

¼ zð2sÞ
Z

N

0

fðxÞxs�1=2 dx þ zð2� 2sÞ
Z

N

0

fðxÞx1=2�s dx:

We consider now Z
N

0

FðxÞD1�2sðxÞ dx:

First the K-Bessel contribution is �2p�1 sinðspÞts�1=2ðnÞn�1=2 times

�
Z

N

0

K2�2sð4p
ffiffiffiffiffiffi
nx

p
Þ x1=2f0ðxÞ þ s � 1

2

� �
x�1=2fðxÞ

! "
dx:

Integrating by parts, this is

1

2

Z
N

0

½4p
ffiffiffiffiffiffi
nx

p
K 0
2�2sð4p

ffiffiffiffiffiffi
nx

p
Þ þ ð2� 2sÞK2�2sð4p

ffiffiffiffiffiffi
nx

p
Þ
x�1=2fðxÞ dx: ð15Þ

Using the formulas [32, p. 79]

zK 0
nðzÞ � nKnðzÞ ¼ �zKnþ1ðzÞ; zK 0

nðzÞ þ nKnðzÞ ¼ �zKn�1ðzÞ;
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contribution (15) equals

4 sinðspÞts�1=2ðnÞ
Z

N

0

K1�2sð4p
ffiffiffiffiffiffi
nx

p
ÞfðxÞ dx:

The J and Y contributions are handled similarly using [32, pp. 45, 66]:

zJ 0
nðzÞ � nJnðzÞ ¼ � zJnþ1ðzÞ; zJ 0

nðzÞ þ nJnðzÞ ¼ zJn�1ðzÞ;

zY 0
nðzÞ þ nYnðzÞ ¼ zYn�1ðzÞ;

and the summation formula follows.

4. Principal series representations

Let sAC; and let Vs be the space of functions f : GLð2;RÞ-C which satisfy

f
y1 �

y2

� �
g

� �
¼ y1

y2

����
����
s

f ðgÞ; ð16Þ

and such that the restriction of f to K ¼ SOð2Þ is a smooth function. We do not
assume that f is K-finite. The group GLð2;RÞ acts on Vs by right translation. Thus if
gAGLð2;RÞ let ðpsðgÞf ÞðxÞ ¼ f ðxgÞ: The space Vs is the space of smooth vectors in
an even principal series representation of ps : GLð2;RÞ-EndðVsÞ:
Let

w0 ¼
�1

1

� �
:

It follows from the theorem of Shalika [29] that there exists a unique linear
functional L : Vs-C such that for fAVs

L ps

1 x

1

� �
f

� �
¼ e2pixLð f Þ:

For reðsÞ41
2
we may define such a functional by

Lð f Þ ¼
Z

N

�N

f w0

1 x

1

� �� �
e�2pix dx:

The Whittaker function associated with a fixed fAVs is

Wf ðgÞ ¼ LðpsðgÞf Þ ¼
Z

N

�N

f w0

1 x

1

� �
g

� �
e�2pix dx: ð17Þ

ARTICLE IN PRESS
J. Beineke, D. Bump / Journal of Number Theory 105 (2004) 150–174 163



We will denote byWs the space of all functions Wf : It is the space of smooth vectors

in the Whittaker model of ps: We have

Wf

y

1

� �
¼ jyj1�s

Z
N

�N

f w0

1 x

1

� �� �
e�2pixy dx; ð18Þ

which follows by a change of variables from

Wf

y

1

� �
¼ jyj�s

Z
N

�N

f w0

1 y�1x

1

� �� �
e�2pix dx:

If fsAVs let

f̃1�sðgÞ ¼
Z

N

�N

fs w0

1 x

1

� �
g

� �
dx: ð19Þ

Again this integral is convergent if reðsÞ41
2; and we have f̃1�sAV1�s: Thus Ms :

Vs-V1�s is an intertwining operator. It is known that both the Whittaker integral
and the intertwining integral (19) have meromorphic continuation to the entire s

plane. That is, one may fix a smooth function on SOð2Þ=f7Ig; which then extends
uniquely to a function satisfying (16) for any s: Then both (17) and (19) are
meromorphic functions of s: However we will not need this fact. For our purposes

we only need integrals (17) and (19) in the case reðsÞ41
2
; where both are absolutely

convergent.

Now we wish to choose the function f so that y�1=2Wf
y

1

� �
¼ fðyÞ where f is a

prescribed function. We assume that f is smooth and compactly supported in

ð0;NÞ: For this particular f the values of Wf
y

1

� �
will be zero when yo0:We define

a smooth function fs;fAVs by

fs;fðgÞ ¼

y1

y2

����
����
sR

N

0 fðuÞ us�1=2e2pixu du if g ¼
y1 �

y2

� �
w0

1 x

1

� �
;

0 if g ¼
y1 �

y2

� �
:

8>>><
>>>:

ð20Þ

According to the Bruhat decomposition, every element of GLð2;RÞ is expressible
uniquely in one of these forms.

Proposition 3. The function fs;f is smooth and satisfies (16).

Proof. It is clear that fs;f satisfies (16). It follows from this that smoothness is

equivalent to the smoothness of its restriction to SOð2Þ: We have (assuming
sinðyÞa0)

cosðyÞ �sinðyÞ
sinðyÞ cosðyÞ

� �
¼

y1 �
y2

� �
w0

1 x

1

� �
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with y1 ¼ sinðyÞ�1; y2 ¼ sinðyÞ; � ¼ cosðyÞ and x ¼ cotðyÞ: So

fs;f
cosðyÞ sinðyÞ
�sinðyÞ cosðyÞ

� �
¼ sinðyÞ�2s

Z
N

0

fðuÞus�1=2e2piu cotðyÞ du:

The issue is smoothness where sinðyÞ ¼ 0; but the Fourier transform here is a rapidly
decreasing function of cotðyÞ; so fs;f is smooth at these points. &

Let Ws;f ¼ Wf with f ¼ fs;f:

Proposition 4. We have

Ws;f
y

1

� �
¼

ffiffiffi
y

p
fðyÞ if y40;

0 if yo0:

$

Proof. Since f is compactly supported in ð0;NÞ both cases are contained in

Ws;f
y

1

� �
¼

ffiffiffiffiffiffi
jyj

p
fðyÞ

which we prove. Using (18) and the definition of fs;f the left-hand side equals

jyj1�s

Z
N

�N

Z
N

0

fðuÞ us�1=2e2pixudu e�2pix dx ¼
ffiffiffiffiffiffi
jyj

p
fðyÞ

by Fourier inversion. &

If fs ¼ fs;f we will denote the function f̃1�s defined by (19) as f̃1�s;f:

Proposition 5. We have fs;fðIÞ ¼ f̃1�s;fðIÞ ¼ 0: Moreover

fs;fðw0Þ ¼
Z

N

0

fðxÞxs�1=2 dx ð21Þ

and

zð2s � 1Þf̃1�s;fðw0Þ ¼ zð2� 2sÞ
Z

N

0

fðxÞx�sþ1=2 dx: ð22Þ

Proof. We have fs;fðIÞ ¼ 0 by definition. On the other hand,

f̃1�s;fðIÞ ¼
Z

N

�N

Z
N

�N

fðuÞus�1=2e2pixu du dx:
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By the Fourier inversion formula, this is the value of fðuÞus�1=2 at u ¼ 0: However

this smooth function has compact support strictly to the right of 0 so f̃1�s;fðIÞ ¼ 0:

The first formula (21) follows immediately from (20). As for (22),

f̃1�s;fðw0Þ ¼
Z

N

�N

fs;f w0

1 x

1

� �
w0

� �
dx

¼
Z

N

�N

fs;f
x�1 �1
0 x

� �
w0

1 �x�1

1

� �� �
dx

¼
Z

N

�N

jxj�2s
fs;f w0

1 �x�1

1

� �� �
dx:

Replace x by �x�1 in this identity to obtain

f̃1�s;fðw0Þ ¼
Z

N

�N

jxj2ðs�1Þfs;f w0

1 x

1

� �� �
dx

¼
Z

N

�N

jxj2ðs�1Þ
Z

N

0

fðuÞus�1=2e2pixu du dx:

Although we began by assuming that reðsÞ41; this integral is convergent for all

values of s: Indeed, fðuÞus�1=2 is compactly supported and smooth, so its Fourier
transform is Schwartz class. To evaluate this integral, we may therefore assume that
1
2
oso1: In this case,

Z
N

�N

jxj2ðs�1Þe2pixu dx ¼ 22�2sðpuÞ1�2s sinðpsÞGð2s � 1Þ:

Proceeding formally at first if we interchange the order of integration and obtain

f̃1�s;fðw0Þ ¼ 22�2sp1�2s sinðpsÞGð2s � 1Þ
Z

N

0

fðuÞu1=2�s du:

Now using the functional equation of z in the form

21�sp�s cos
ps

2

� �
GðsÞzðsÞ ¼ zð1� sÞ;

we obtain (22). The interchange of the order of integration may be justified by tilting
the line of integration with respect to x off the real axis into the upper half-plane at a
positive angle in both the positive and negative directions. &

We now recall a formula of Cogdell and Piatetski-Shapiro [8] for the action of
the Weyl group element w0 on the Whittaker model. If WAWs then this
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formula asserts that for p ¼ ps we have

W
y

1

� �
w0

� �
¼
Z
R�

JpðuyÞW
u

1

� �
d�u; ð23Þ

where the ‘‘Bessel Function’’ (introduced by Gelfand and Kazhdan)

JpðuÞ ¼
� p

ffiffiffiffiffiffi
juj

p
sinðpðs � 1

2
ÞÞ
½J2s�1ð4p

ffiffiffi
u

p
Þ � J1�2sð4p

ffiffiffi
u

p
Þ
 if u40;

� p
ffiffiffiffiffiffi
juj

p
sinðpðs � 1

2
ÞÞ
½I2s�1ð4p

ffiffiffiffiffiffi
juj

p
Þ � I1�2sð4p

ffiffiffiffiffiffi
juj

p
Þ
 if uo0:

8>>>><
>>>>:

This formula was stated in [8, p. 57] when p is unitary, so that either s ¼ 1
2
þ it with t

real, or s is real in ð0; 1Þ: In their notation, ir ¼ s � 1=2: A proof may be found in [3,
Theorem 4.4 and Appendix 1].
We will prove (23) without assuming unitaricity for the particular Whittaker

function Ws;f: The proof is close to that of Baruch and Mao (which was explained to

us by Moshe Baruch) except that the compact support of f allows us to dispense
with their convergence factor.
We have [32, pp. 64, 78]

YnðzÞ ¼
cosðpnÞJnðzÞ � J�nðzÞ

sinðpnÞ ;

KnðzÞ ¼ � p
2

InðzÞ � I�nðzÞ
sinðpnÞ

� �
:

Using these relations and standard trigonometric identities,

JpðuÞ ¼
�2p

ffiffiffi
u

p
½cosðpsÞJ1�2sð4p

ffiffiffi
u

p
Þ þ sinðpsÞY1�2sð4p

ffiffiffi
u

p
Þ
 if u40;

4
ffiffiffiffiffiffi
juj

p
sinðpsÞK1�2sð4p

ffiffiffiffiffiffi
juj

p
Þ if uo0:

(
ð24Þ

Theorem 2. Assume that reðsÞ41
2
: If W ¼ Ws;f then (23) is valid.

Proof. We apply (18) to the function psðw0Þfs;f; then use the definition of fs;f

obtain

W
y

1

� �
w0

� �

¼ jyj1�s

Z
N

�N

fs;f w0

1 x

1

� �
w0

� �
e�2pixy dx

¼ jyj1�s

Z
N

�N

fs;f
1 �x�1

1

� �
x�1

x

� �
w0

1 �x�1

1

� �� �
e�2pixy dx

¼ jyj1�s

Z
N

�N

Z
N

0

jxj�2sfðuÞus�1=2e�2piðxyþx�1uÞ du dx:
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Since f is compactly supported, it is not hard to justify interchanging the order of
integration. We then combine the positive and negative contributions of x to write
the inner integral as

2

Z
N

0

x�2s cosð2pðxy þ x�1uÞÞ dx:

Then using (24) and Gradshteyn and Ryzhik [15, 3.871, p. 470], which is applicable

when reðsÞAð1
2
; 1Þ; we obtain (23). For reðsÞ41

2
; the result follows by analytic

continuation. Note that Yn is denoted as Nn in [15]. &

5. Eisenstein series

Let f be as in Theorem 1 and let fs;f be as in Section 4. Assuming reðsÞ41; we

consider the Fourier expansion of the Eisenstein series

Efðg; sÞ ¼ 1

2
zð2sÞ

X
GN \G

fs;fðggÞ:

Proposition 6. If reðsÞ41 we haveZ 1

0

Ef
1 x

1

� �
g; s

� �
e�2pinx dx ¼ ts�1=2ðnÞn�1=2Ws;f

n

1

� �
g

� �
ð25Þ

if na0; whileZ 1

0

Ef
1 x

1

� �
g; s

� �
dx ¼ zð2sÞfs;fðgÞ þ zð2s � 1Þf̃1�s;fðgÞ: ð26Þ

Proof. Assuming na0 we haveZ 1

0

Ef
1 x

1

� �
g; s

� �
e�2pinx dx

¼ 1

2
zð2sÞ

Z 1

0

X
GN\G

fs;f g
1 x

1

� �
g

� �
e�2pinx dx:

Let cAZ and let Gc ¼ a
c

b
d

� �
AG

% &
be the subset of G with prescribed c: If na0 then

the contribution of Gc vanishes when c ¼ 0 so we may write this as

1

2
zð2sÞ

X
ca0

Z
N

�N

X
GN\Gc=GN

fs;f g
1 x

1

� �
g

� �
e�2pinx dx

¼ zð2sÞ
X
c40

X
d mod c
a mod c

ad�1ðmod cÞ
ðd;cÞ¼1
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�
Z

N

�N

fs;f
1 a=c

1

� � �c�1

c

� �
1 d=c

1

� �
1 x

1

� �
g

� �
e�2pinx dx:

To evaluate this we may use (16), and also make a variable change x-x � d=c to
obtain

zð2sÞ
X
c40

X
d mod c
ðd;cÞ¼1

e2pind=cc�2s

Z
N

�N

fs;f
�1

1

� �
1 x

1

� �
g

� �
e�2pinx dx:

According to Ramanujan’s identity

zð2sÞ
X
c40

X
d mod c
ðd;cÞ¼1

e2pind=cc�2s ¼ s1�2sðnÞ:

Also the variable change x-n�1x shows thatZ
N

�N

fs;f
�1

1

� �
1 x

1

� �
g

� �
e�2pinx dx ¼ ns�1Ws;f

n

1

� �
g

� �
:

Since s1�2sðnÞns�1 ¼ ts�1=2ðnÞn�1=2; we have proved (25).

Next we prove (26). The contribution of c ¼ 0 is zð2sÞfs;fðgÞ: The contribution of

ca0 is evaluated like (25) and we obtain

zð2sÞ
X
c40

X
d mod c
ðd;cÞ¼1

c�2s

Z
N

�N

fs;f
�1

1

� �
1 x

1

� �
g

� �
dx

¼ zð2sÞ
X
c40

jðcÞc�2sf̃1�s;fðgÞ;

where j is Euler’s phi function. We have

zð2sÞ
X
c40

jðcÞc�2s ¼ zð2s � 1Þ:

This proves (26). &

6. Proof of Theorem 1

Let f have compact support in ð0;NÞ and define cs : R-C as in (5).

Proposition 7. For any s then csðyÞ ¼ Oðy�NÞ as y-N; for all N:

Proof. We make use of the asymptotic expansions (Watson [32, p. 199])

JnðzÞ ¼
ffiffi
2
p

q
cos z � 1

2
np� 1

4
p

� �
z�1=2
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þ
ffiffiffi
2

p

r
ðnþ 1

2
Þðnþ 3

2
Þ

2
sin z � 1

2
np� 1

4
p

� �
z�3=2 þ Oðz�5=2Þ;

YnðzÞ ¼
ffiffiffi
2

p

r
sin z � 1

2
np� 1

4
p

� �
z�1=2

þ
ffiffiffi
2

p

r
ðnþ 1

2
Þðnþ 3

2
Þ

2
cos z � 1

2
np� 1

4
p

� �
z�3=2 þ Oðz�5=2Þ;

and KnðzÞB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpzÞ

p
e�z: The term in brackets in (5) is thereforeffiffiffi

2

p

r
�cosð ffiffiffiffiffiffi

xy
p þ 2sp� 3p=4Þx�1=4y�1=4

!

þ
ð3
2
� 2sÞð5

2
� 2sÞ

2
sinð ffiffiffiffiffiffi

xy
p � 3p=4Þ x�3=4y�3=4 þ OððxyÞ�5=4Þ

"
:

Now let us considerZ
N

0

fðxÞ cosð ffiffiffiffiffiffi
xy

p þ 2sp� 3p=4Þx�1=4 dx:

The variable change x ¼ u2 makes this

2

Z
N

0

fðu2Þ cosðu ffiffiffi
y

p þ 2sp� 3p=4Þu1=2 du:

This is the Fourier transform of a smooth function, evaluated at
ffiffiffi
y

p
; hence is of

rapid decay as y-N: The second term is similarly of rapid decay. This leaves us

with the error term which is dominated by the convergent integral
R
fðxÞx�5=4 dx

times y�5=4: This proves that the integral is Oðy�5=4Þ: Taking more terms of the
asymptotic expansion gives better error terms. &

We may now prove Theorem 1. We have the Fourier expansion of the Eisenstein
series

Efðg; sÞ ¼
X
nAZ

Z 1

0

Ef
1 x

1

� �
g; s

� �
e�2pinx dx:

This is clear if reðsÞ41 and we at first assume that s is in this region. By
Propositions 4–6, it follows that EfðI ; sÞ is the left-hand side of (6). On the other

hand by Propositions 5 and 6 and Theorem 2, Efðw0; sÞ equals the right-hand side of
(6). Of course they are equal since Efðw0; sÞ is automorphic, and the theorem is

proved when reðsÞ41: The general case follows by analytic continuation, since using
Proposition 7 it is not hard to see that both sides of (6) are entire functions of s:
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7. The second moment and the divisor problem

We will use the method of Atkinson [1] to explain relationship (7).

Matsumoto [21] obtains a better error term than Ingham [16], at least when so3
4
;

and Ingham’s error term is better than the term we obtain by the method that we will
use. Matsumoto’s result can be written

Z T

0

jzðsþ itÞj2 dt ¼ zð2sÞT þ ð2pÞ2s�1

2� 2s
zð2� 2sÞT2�2s þ OðT1=ð1þ4sÞ logðTÞ2Þ:

His method, adapted from Atkinson [2] is based on a more subtle application of the
Oppenheim summation formula. This work is continued in [23,24].
We think the original approach of Atkinson [2] is still useful in giving the crucial

relationship (7) quite simply. Atkinson’s proof is repeated in [30].

Theorem 3. If 1
2
oso1 we have

Z T

0

jzðsþ itÞj2 dt � 2p
X

noT=2p

ts�1=2 ðnÞn1=2�s

������
������ ¼ OðT2s�1=2Þ:

Proof. First we note that

Z T

0

jzðsþ itÞj2 dt � 1

2i

Z sþeþiT

sþe�iT

zðsþ sÞzðs� sÞ ds

����
���� ¼ OðT1=2þeÞ:

Indeed, rewriting
R T

0 jzðsþ itÞj2 dt ¼ 1
2

R T

�T
jzðsþ itÞj2 dt; this difference consists of

the constant residue pzð2s� 1Þ plus the contributions of two short integrals

1

2i

Z sþe7iT

7iT

zðsþ sÞzðs� sÞ ds ¼ OðT1=2þeÞ:

We have

1

2i

Z sþeþiT

sþe�iT

zðsþ sÞzðs� sÞ ds ¼ 1

2i

XN
n¼1

ts�1=2ðnÞ
Z sþeþiT

sþe�iT

n�1=2�swðs� sÞ ds:

If n4T=2p; using (9) and Lemma 4.3 of Titchmarsh [30, p. 61], the nth term
here is

O
n�1=2�s�eT1=2þe

logj T
2pn

j

 !
:
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Since
P

ts�1=2ðnÞn�1=2�s�eoN we may discard these terms. We are left with the

problem of estimating

1

2i

X
noT=2p

ts�1=2ðnÞ
Z sþeþiT

sþe�iT

n�1=2�swðs� sÞ ds:

Using (9) we have Z sþe7iT

7iT

n�1=2�swðs� sÞ ds ¼ Oðn�1=2T1=2þeÞ:

Now by Theorem 1 or a Tauberian theoremX
npx

ts�1=2ðnÞn1=2�sBzð2sÞx;

and by partial summation it follows thatX
npx

ts�1=2ðnÞn�1=2 ¼ OðxsÞ: ð27Þ

Therefore

1

2i

X
noT=2p

ts�1=2ðnÞ
Z sþe7iT

7iT

n�1=2�swðs� sÞ ds ¼ OðTsÞ:

Thus we may move the path of integration back into the critical strip and

approximate
R T

0 jzðsþ itÞj2 dt by

1

2i

X
noT=2p

ts�1=2ðnÞ
Z iT

�iT

n�1=2�swðs� sÞ ds:

We would like to change the limits to �iN and iN: By Titchmarsh’s Lemma 4.3,Z iN

iT

n�1=2�swðs� sÞ ds ¼ O
Ts�1=2ffiffiffi

n
p

logðT=2pnÞ

� �
:

applying (27) again, the error in changing the limits is OðT2s�1=2Þ: We consider
therefore

1

2i

X
noT=2p

ts�1=2 ðnÞ
Z iN

�iN

n�1=2�swðs� sÞ ds:

Since

1

2

Z
N

�N

x�1=2�itwðs� itÞ dt ¼ 2px1=2�s cosð2pxÞ;
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and since cosð2pnÞ ¼ 1 when n is an integer, we get

2p
X

noT=2p

ts�1=2ðnÞn1=2�s: &
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