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a b s t r a c t

In this paper, we establish a connection between the Hadamard product and the usual
matrixmultiplication. In addition, we study some newproperties of the Hadamard product
and explore the inverse problem associated with the established connection, which
facilitates diverse applications. Furthermore, we propose a matrix-variate generalized
Birnbaum–Saunders (GBS) distribution. Three representations of the matrix-variate GBS
density are provided, one of them by using the mentioned connection. The main
motivation of this article is based on the fact that the representation of the matrix-
variate GBS density based on element-by-element specification does not allow matrix
transformations. Consequently, some statistical procedures based on this representation,
such as multivariate data analysis and statistical shape theory, cannot be performed. For
this reason, the primary goal of this work is to obtain amatrix representation of thematrix-
variate GBS density that is useful for some statistical applications. When the GBS density
is expressed by means of a matrix representation based on the Hadamard product, such a
density is defined in terms of the original matrices, as is common for many matrix-variate
distributions, allowing matrix transformations to be handled in a natural way and then
suitable statistical procedures to be developed.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Hadamard product is a type of matrix multiplication that is commutative and simpler than the usual product;
see [23]. The first ingredient of the present work is the Hadamard product. Halmos [20] was the pioneer to give a name
to this product due to the early work of the French mathematician Jaques Hadamard (1865–1963); see [19]. The Hadamard
multiplication is also known as the entry-wise or Schur product due to an earlier work of the German mathematician Issai
Schur (1875–1941). However, the first known work dedicated to this topic was due to Sylvester who in 1867 proposed a
recurrent method to construct certain type of Hadamard matrices. For an elaborate historical review about this product,
interested readers may refer to Styan [33], Agaian [1, pp. 1–4], Beder [5], and the references therein. The importance and
applicability of the Hadamardmultiplication are well known. In mathematics, for example, this multiplication is used (i) for
constructing discrete equipments by means of integer orthogonal matrices that allow fast transformations, and (ii) for
finding the maximum of a determinant. This product has also been used in combinatorial analysis, finite geometry, group
theory, number theory, and regular graphs. Applications of the Hadamard product can also be found in other fields, for
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example, in (i) correcting codes in satellite transmissions and cryptography, (ii) communication and information theory,
(iii) signal processing and pattern recognition, (iv) neural behavior, and (v) lossy compression algorithms as images in
JPEG format. In statistics, some applications of the Hadamard product pertain to (i) interrelations between Hadamard
matrices and different combinatorial configurations such as block-designs, Latin square, and orthogonal F-square, (ii) linear
models, (iii)maximum likelihood estimation of the variances in amultivariate normal population, (iv)multivariate statistical
analysis, and (v) multivariate Tchebycheff equalities. For more details and applications of the Hadamard product, interested
readers may refer to Vijayan [35], Hedayat and Wallis [21], Styan [33], Agaian [1], Seberry and Yamada [32], and the
references therein. For an excellent review of Hadamard matrices and their statistical applications until 1978, see [21].
More recent references are [23,8,2,4].

The second ingredient of this work corresponds to the matrix-variate symmetric distributions. The normal (Gaussian)
model has dominated the landscape of distribution theory and statistical applications for over 100 years, with the univariate
case being themost treated, followedby themultivariate case and, to a lesser degree, thematrix-variate case. The remarkable
properties of this model have made it the most widely used one in theoretical as well as applied statistics; one may refer to
Johnson et al. [24, pp. 80–206], Kotz et al. [26, pp. 105–333], Tulino and Verdú [34], and Anderson et al. [3, pp. 19–20], for
more details about the normal distribution. However, the randommatrix theory based on elliptic distributions has emerged
as an alternative to the Gaussian theory providing families of symmetric distributions with different shapes yielding a
greater level of flexibility on the kurtosis, i.e., heavier-and-lighter tails than those of the normal distribution, thus enabling
to describe different types of multivariate data. For more details about elliptic distributions, see [14,15,18,12,9].

The third and final ingredient of the present work corresponds to the asymmetric (skewed) distributions. Recently, many
skewed distributions (as opposed to symmetric models such as the normal model) have been proposed and discussed in
the literature. One such asymmetric distribution, defined on the positive real line, with two parameters (shape and scale)
and positive skewness, is the Birnbaum–Saunders (BS) model. This model has received considerable attention in the past
four decades due mainly to its attractive properties and its simple relationship with the normal distribution; see [7,25,
pp. 651–663]. A univariate generalization of the BS distribution based on elliptic distributions, proposed by Díaz-García
and Leiva [13], is known as the generalized Birnbaum–Saunders (GBS) distribution, which includes the BS distribution as a
particular case; see also Sanhueza et al. [31]. An extension of the BS distribution to the bivariate case has been developed by
Kundu et al. [27], while Díaz-García and Domínguez-Molina [10,11] proposed multivariate versions of the GBS distribution.

Our main motivation here comes from the classical matrix-variate distribution theory; see, e.g., Anderson et al. [3]. In
general, a univariate distribution (as the normal model) or a family of univariate distributions (as the elliptic models) can
be easily extended to the multivariate and matrix-variate cases by representing the Jacobian and kernel (or generator of
the density) of the distribution in terms of the original matrices and of the usual matrix product. However, this is not
the case with the univariate BS distribution. Indeed, until now, the multivariate GBS density only has been represented
by means of the elements of the random vector (element-by-element representation); see [10,27]. In the matrix-variate
GBS case, the presence of the elements of the randommatrix and of their reciprocals in the corresponding density does not
allow simple matrix operations, such as the representation of the respective kernel of this density in terms of a suitable
quadratic form. Nevertheless, this GBS density can be easily represented in terms of the original matrices by using the
Hadamard product. This is because the inverse of the GBS random matrix with respect to this product contains precisely
those reciprocals. Thus, the Hadamard product arises naturally in the matrix-variate GBS density instead of forcing the use
of the usual matrix product. Indeed, by using the Hadamard representation, there are many advantages in computations
and algebraic manipulations such as (i) the products are entry-wise, (ii) the multiplication is commutative, (iii) the inverse
is very easy to obtain, and (iv) the computation of power matrices is straightforward. This is not the first time that a matrix-
variate density is expressed in terms of unusual products instead of the usual matrix product; see, e.g., Bentler and Lee [6].
The matrix representation of the matrix-variate GBS density based on the Hadamard product can be useful in several
important statistical procedures, such as multivariate data analytic methods and statistical shape theory, where matrix
transformations are required to facilitate affine, orthogonal matrix triangularization (QR), polar coordinate, and singular
value (SV) decompositions. These are some of the reasons as to why the primary goal of the present paper is to obtain
a matrix representation of the matrix-variate GBS density. Such a representation will specifically allow us to achieve the
following. First, to obtain the associated generalized Wishart distribution, which would enable us to develop statistical
procedures based on it, perform a QR decomposition and integrate over the Stiefel manifold, whose integration is feasible
due to the fact that zonal polynomials arise naturally in this density; see [30]. Second, to obtain the affine configuration
of the shape theory by transformations, since by the use of zonal polynomial theory, the integration over positive definite
spaces and Stiefel manifold yields the required affine shape; see [9]. Third, to obtain Euclidean transformations useful for
shape theory by QR shape coordinates constructed in several steps, requiring integration over the Stiefel manifold by using
once again zonal polynomial integrals; see [17]. Fourth and finally, to obtain logarithmic matrix transformations that would
be useful in fixed and mixed effect log-linear models; see [28], for the univariate case. Clearly, all these applications cannot
be achieved if we leave the matrix-variate GBS density in terms of the elements of the corresponding randommatrix.

The above mentioned motivation and goals pose several challenges since some problems relating to Hadamard matrices
are still unanswered. For example, to the best of our knowledge, there does not exist an explicit formula that connects
the Hadamard and matrix products, excepting a relationship with the Kronecker product that requires the introduction
of some permutation matrices; see [22]. Through this connection, some new properties and applications of the Hadamard
product can also be explored. Therefore, the aims of this study are as follows: (i) to provide a connection between the



128 F.J. Caro-Lopera et al. / Journal of Multivariate Analysis 104 (2012) 126–139

Hadamard and matrix products, (ii) to study new properties and applications of the Hadamard product that could be useful
for different problems concerning matrix-variate distributions, (iii) to propose a matrix-variate GBS distribution, and (iv) to
use the established connection between the Hadamard and usual products to obtain a matrix representation of the matrix-
variate GBS density based on the Hadamard product that would be useful for many multivariate statistical applications.

The rest of this paper is organized as follows. In Section 2, we provide the required background for the Hadamard product
and the univariate and multivariate GBS distributions. In Section 3, we establish a connection between the Hadamard and
matrix products. In Section 4, we study some new properties of the Hadamard product and explore the inverse problem
associated with the established connection, which leads to some further applications in multivariate analysis. In Section 5,
we introduce a matrix-variate GBS distribution and propose three representations for its density, one of them based on
the established connection between the Hadamard and matrix products. Finally, in Section 6, we make some concluding
remarks, point out some open problems, and also suggest some possible future work.

2. Background

In this section, we describe the basic notion of Hadamard products and then present univariate andmultivariate versions
of GBS distributions.

2.1. Hadamard product

Let A = (aij) and B = (bij) be m × n and n × p matrices (not necessarily square), respectively. Then, the usual matrix
product between these two matrices, denoted by A · B, is an m × p matrix given by

A · B =


m−

k=1

aik bkj


,

where aik bkj denotes the usual scalar product between the elements aij and bij of the corresponding matrices.
Let A = (aij) and B = (bij) be now two m × n matrices, i.e., of the same dimension but not necessarily square. Then, the

Hadamard product between these two matrices, denoted by A ⊙ B, is anm × nmatrix given by

A ⊙ B = (aij bij). (1)

Now, let A = (aij) and B = (bij) be m × n and p × q matrices (not necessarily square), respectively. Then, the Kronecker
product between these two matrices, denoted by A ⊗ B, is anm × n-by-p × q block matrix given by

A ⊗ B =

a11 B · · · a1n B
...

. . .
...

am1 B · · · amn B

 .

Notice that the Hadamard product is a submatrix of the Kronecker product, but the latter is not commutative.
Let us introduce the following notation that is used through out this paper. LetX = (Xij) be an n×kmatrix. Asmentioned

earlier, the real powers of a matrix with respect to the Hadamard product are simpler than the powers with respect to the
usual matrix product. These powers are denoted here by

XaH
= (Xa

ij ), a ∈ R. (2)

Thus, we have the following particular cases of interest:

(i) X
1
2H = (X1/2

ij ) denotes the positive square root of X with respect to the Hadamard product, such that X
1
2H ⊙ X

1
2H = X ;

and
(ii) X−H

= (1/Xij) denotes the inverse matrix of X with respect to the Hadamard product (that we call Hadamard inverse),
such that X ⊙ X−H

= J , where J is an n × k matrix consisting of ones.

2.2. A univariate GBS distribution

A random variable T with univariate BS distribution has shape and scale parameters to be α > 0 and β > 0, respectively.
In addition, β is the median of the distribution. We use the notation T ∼ BS(α, β) in this case. Random variables T and Z
with BS and standard normal distributions, respectively, satisfy the relationships

T = β

α Z
2

+


α Z
2

2

+ 1

2

∼ BS(α, β) (3)
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and

Z =
1
α


T
β

−


β

T


= a(T ) ∼ N(0, 1). (4)

Thus, a BS random variable T is simply a transformation of the standard normal random variable Z . If the normality
assumption in (4) is relaxed by allowing Z to follow any standard symmetric distribution in R, then we obtain the
class of univariate GBS distributions. In this case, we use the notation T ∼ GBS(α, β; g). The density of T is fT (t) =

c g

a(t)2


da(t)/dt , for t > 0, where g is the kernel of Z given by fZ (z) = c g(z2), with z ∈ R, and c is the normalizing

constant such that


+∞

−∞
g(z2) dz = 1/c. In addition, the derivative of a(t), given in (4), with respect to t is da(t)/dt =

t−3/2
[t + β]/[2α β1/2

].

2.3. A multivariate GBS distribution

The class of univariate GBS distributions can be extended to the multivariate (vector) case by using the family of elliptic
distributions.

Let x be an n × 1 random vector with elliptic distribution characterized by a location vector µ ∈ Rn, a scale matrix
Σ ∈ Rn×n, with rank(Σ) = n, and the corresponding kernel g . By denoting x ∼ ECn(µ, Σ; g), we have the density of x as

fx(x) = c |Σ|
−

1
2 g

[x − µ]

⊤
· Σ−1

· [x − µ]

, x ∈ Rn, (5)

where once again c is the normalizing constant. Let z = (Z1, . . . , Zn)⊤ ∼ ECn(0, In; g) and t = (T1, . . . , Tn)⊤, where

Ti = βi

αi Zi
2

+


αi Zi
2

2

+ 1

2

, αi > 0, βi > 0, i = 1, . . . , n.

Then, the random vector t generates the multivariate GBS distribution, denoted by t ∼ GBSn(α, β; g), where α =

(α1, . . . , αn)
⊤ and β = (β1, . . . , βn)

⊤.

3. Connection between Hadamard and matrix products

In this section, we point out a direct connection betweenHadamard andmatrixmultiplications, without the introduction
of permutation matrices or the over-dimension due to the Kronecker product.

Let A = (aij) be a k × k matrix, and consider the set P12···k of k cyclic permutations of 12 · · · k given by

P12···k = {123 · · · (k − 1)k, 23 · · · (k − 1)k1, . . . , k123 · · · (k − 2)(k − 1)}. (6)

If ai is the ith column of the k × kmatrix A, then for a particular element p = p1p2 · · · pk of P12···k in (6), let us define

A(p) = (ap1 |ap2 | · · · |apk), (7)

i.e., A(p) is the matrix A with permuted columns according to the permutation p = p1p2 · · · pk. For example, for the
permutation 34 · · · k12, we have

A(34···k12) =


a13 a14 · · · a1k a11 a12
a23 a24 · · · a2k a21 a22
...

...
. . .

...
...

...
a(k−1)3 a(k−1)4 · · · a(k−1)k a(k−1)1 a(k−1)2
ak3 ak4 · · · akk ak1 ak2

 .

A particular case of interest is obtained when A = Ik, in which case I(p) is the column-permutation of the identity matrix
under the permutation p ∈ P12···k. Then, it is easy to see that A(p) = A · I(p), for all p. Also, for a k × kmatrix B, let us define

B[p] =


bp11 bp22 · · · bpkk
bp11 bp22 · · · bpkk
...

...
. . .

...
bp11 bp22 · · · bpkk

 . (8)

With these notation, we have the following theorem.
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Theorem 1. Let A =

aij

and B =


bij

be k × k matrices. Then,

A · B =

−
p

A(p) ⊙ B[p] =

−
p

(A · I(p)) ⊙ B[p],

where A(p) and B[p] are as defined in (7) and (8), respectively, for a particular permutation p ∈ P12···k.

Proof. When A = (aij) and B = (bij) are k × kmatrices, we find

A · B =



k−
j=1

a1j bj1 · · ·

k−
j=1

a1j bjk

k−
j=1

a2j bj1 · · ·

k−
j=1

a2j bjk

...
. . .

...
k−

j=1

akj bj1 · · ·

k−
j=1

akj bjk


=


k−

j=1

aij bj1

 k−
j=1

aij bj2

 · · ·
 k−
j=1

aij bjk


.

Clearly, the usual product of matrices A · B decomposes uniquely as the sum of k matrices Cp, where, as before, p =

p1p2 · · · pk ∈ P12···k. Such a decomposition can be constructed as follows. The first matrix C12···k is obtained by taking the
first summand of the first column, the second summand of the second column, and so on, i.e.,

C12···k = (ai1 b11|ai2 b22| · · · |aik bkk) = A(12···k) ⊙ B[12···k].

In other words, C12···k is constructed by extracting the summands of each column according to the permutation 12 · · · k. The
second matrix is selected according to the permutation 23 · · · k1, i.e., by selecting the second summand of the first column,
the third summand of the second column, and so on until the first summand of the last column. The resultingmatrix is given
by

C23···k1 =

ai2 b21|ai3 b32| · · · |aik bk(k−1)|ai1 b1k


= A(23···k1) ⊙ B[23···k1].

Following this procedure and taking the matrices according to the complete set of k cyclic permutations of 12 · · · k in (6),
we obtain the (k − 1)th matrix as

C(k−1)k1···(k−3)(k−2) = A((k−1)k1···(k−3)(k−2)) ⊙ B[(k−1)k1···(k−3)(k−2)].

Finally, the matrix corresponding to the ultimate permutation k1 · · · (k − 2)(k − 1) is formed by the remaining summands
as

Ck1···(k−2)(k−1) =

aikbk1|ai1b12| · · · |ai(k−2)b(k−2)(k−1)|ai(k−1)b(k−1)k


= A(k1···(k−2)(k−1)) ⊙ B[k1···(k−2)(k−1)].

Thus, we have

A · B = A(12···k) ⊙ B[12···k] + A(23···k1) ⊙ B[23···k1] + A(34···k12) ⊙ B[34···k12] + · · ·

+A((k−1)k1···(k−3)(k−2)) ⊙ B[(k−1)k1···(k−3)(k−2)] + A(k1···(k−2)(k−1)) ⊙ B[k1···(k−2)(k−1)],

which is the required result. �

Let us now consider some examples to illustrate the result established in Theorem 1. When k = 1, the equivalence is trivial.
Now, when k = 2, we have

A · B =


a11 a12
a21 a22


·


b11 b12
b21 b22


=


a11 b11 + a12 b21 a11 b12 + a12 b22
a21 b11 + a22 b21 a21 b12 + a22 b22


=


a11 a12
a21 a22


⊙


b11 b22
b11 b22


+


a12 a11
a22 a21


⊙


b21 b12
b21 b12


= A(12) ⊙ B[12] + A(21) ⊙ B[21].

Then, when k = 3, we have

A · B =

a11 b11 + a12 b21 + a13 b31 a11 b12 + a12 b22 + a13 b32 a11 b13 + a12 b23 + a13 b33
a21 b11 + a22 b21 + a23 b31 a21 b12 + a22 b22 + a23 b32 a21 b13 + a22 b23 + a23 b33
a31 b11 + a32 b21 + a33 b31 a31 b12 + a32 b22 + a33 b32 a31 b13 + a32 b23 + a33 b33



=

a11 a12 a13
a21 a22 a23
a31 a32 a33


⊙

b11 b22 b33
b11 b22 b33
b11 b22 b33


+

a12 a13 a11
a22 a23 a21
a32 a33 a31


⊙

b21 b32 b13
b21 b32 b13
b21 b32 b13


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+

a13 a11 a12
a23 a21 a22
a33 a31 a32


⊙

b31 b12 b23
b31 b12 b23
b31 b12 b23


= A(123) ⊙ B[123] + A(231) ⊙ B[231] + A(312) ⊙ B[312].

A similar expansion of A · Bwhen the matrices A and B are not square is also of interest. In the case of non-singular matrix-
variate distributions (e.g., for Wishart distributions), we just need to study the case when n ≤ k, for an n × k matrix A and
a k × nmatrix B. This result follows from Theorem 1. Specifically, let A and B be n × k and k × nmatrices, respectively, and
define the set of cyclic permutations of 12 · · · n · · · k according to (6), with n ≤ k. Given that the number of rows of A is less
than (or equal to) its number of columns, then the permutations p ∈ P12···n···k involved in the proof of Theorem 1 just have
the first n indices, i.e., A · B =

∑
p A(p) ⊙ B[p], where the summation runs over the k permutations of P12···n···k for a particular

p, each one consisting of the first n indices. In other words, the n×nmatrix A(p) consists of the first n columns of A according
to the permutation p (with only the first n indices). The n × n matrix B[p] is as defined in (8), but with the restriction that
n ≤ k, i.e.,

B[p] =


bp11 bp22 · · · bpnn
bp11 bp22 · · · bpnn
...

...
. . .

...
bp11 bp22 · · · bpnn

 . (9)

Finally, notice again that A(p) can be simplified and expressed in terms of the original matrix A and of I(p). In this case, it is
easy to see that I(p) is the k × n matrix constituted by the first n columns of the k × k identity matrix (n ≤ k) permuted
according to the corresponding permutation p = p1p2 · · · pn ∈ P12···n. Thus, once again A(p) = A · I(p). This immediately
results in the following corollary.

Corollary 1. Let A =

aij

and B =


bij

be n × k and k × n matrices, respectively, with n ≤ k. Then,

A · B =

−
p

A(p) ⊙ B[p] =

−
p

(A · I(p)) ⊙ B[p],

where the summation runs over all cyclic permutations p = p1p2 · · · pn (consisting of the first n indices) of P12···n···k. For a
particular p = p1p2 · · · pn ∈ P12···n···k, A(p) is as given in (7) with k replaced by n and B[p] is as in (8).

As a simple example, let us take

A =


a11 a12 a13
a21 a22 a23


and B =

b11 b12
b21 b22
b31 b32


.

Here, P123 = {123, 231, 312} as usual, but the permutations that we consider have only the first two parts, viz., p = 12, 23,
or 31. Then,

A · B =


a11 b11 + a12 b21 + a13 b31 a11 b12 + a12 b22 + a13 b32
a21 b11 + a22 b21 + a23 b31 a21 b12 + a22 b22 + a23 b32


=


a11 a12
a21 a22


⊙


b11 b22
b11 b22


+


a12 a13
a22 a23


⊙


b21 b32
b21 b32


+


a13 a11
a23 a21


⊙


b31 b12
b31 b12


= A(12) ⊙ B[12] + A(23) ⊙ B[23] + A(31) ⊙ B[31]

= (A · I(12)) ⊙ B[12] + (A · I(23)) ⊙ B[23] + (A · I(31)) ⊙ B[31],

where

I(12) =

1 0
0 1
0 0


, I(23) =

0 0
1 0
0 1


and I(31) =

0 1
0 0
1 0


,

corresponding to the first two columns of I(123), I(231) and I(312), respectively.
The case n > k is not of interest for the main application of this paper, i.e., for the representation of the GBS density.

However, this case can also be handled by exploiting the cyclic permutations detailed above. But, in such a case, we need to
consider permutations with augmented indices instead of permutations with less indices.

4. Hadamard inverse and related problems

In this section, we focus our attention on the computation of the Hadamard inverse and on some related problems. For
this purpose,weneed an expression for theHadamard inversematrix in terms of the originalmatrix and of the usual product.
Then, for example, a QR decomposition of the original matrix can be obtained. However, a general formula for this issue is
not available in the literature, since, even for the 2 × 2 case, the required expression is quite difficult to obtain as is evident
from the following theorem which provides the inverse of a 2 × 2 matrix with respect to the Hadamard product.
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4.1. A 2 × 2 Hadamard inverse matrix

Theorem 2. Let Z = (Zij) be a 2 × 2 matrix and N = I(21). Then, the Hadamard inverse of Z is given by

Z−H
= 2


Z⊤

−
1
2
tr(N · Z · N · Z⊤)N · Z−1

· N
−1

.

Proof. Let Z = (Zij) be a 2 × 2 matrix, N = I(21), and ZI = Z−H
= (1/Zij) denote the Hadamard inverse of Z . Consider the

QR decompositions Z = Q⊤
· R and ZI = Q⊤

I · RI , where

Q =
1

Z2
11 + Z2

21


Z11 Z21
Z21 −Z11


, R =

1
Z2
11 + Z2

21


Z2
11 + Z2

21 Z11 Z12 + Z21 Z22
0 Z12 Z21 − Z11 Z22


,

QI =


1/Z11

1/Z2
11 + 1/Z2

21

1/Z21
1/Z2

11 + 1/Z2
21

−
Z11

Z2
11 + 1/Z2

21

Z21
Z2
11 + 1/Z2

21

 = Q · N, and

RI =




1
Z2
11

+
1
Z2
21

Z11 Z12 + Z21 Z22

Z11 Z12 Z21 Z22

1/Z2

11 + 1/Z2
21

0
Z12 Z21 − Z11 Z22

Z12 Z22

Z2
11 + Z2

21


are the corresponding orthogonal and triangular matrices. Thus, in terms of the permutation 21 of 12, we have QI = Q(21).
Now, using this fact and theQRdecompositions ofZ andZI , it is easy to show thatZI = N ·Z ·R−1

·RI . Notice that (R−1
·RI)

−1
=

Z−1
I ·N ·Z and, similarly, we obtain (Z⊤

I )−1
·N ·Z⊤. However, we have Z⊤

·N ·Z−Z ·N ·Z⊤
= 2 Z−1

I ·N ·Z−2 (Z⊤

I )−1
·N ·Z⊤,

which simplifies to the interesting relationship (Z⊤
− 2 Z−1

I ) · N · Z = (Z⊤
− 2 Z−1

I )⊤ · N · Z⊤. This allows us to obtain

R · (Z⊤
− 2 Z−1

I )−1
· R =

1
⟨Z⟩

Z,

where ⟨Z⟩ = Z11 Z22 + Z21 Z12 is the permanent of Z , i.e., the non-signed determinant of |Z |. Thus, given that

⟨Z⟩ =
1
2
tr(N · Z · N · Z⊤), (10)

the theorem is established. �

4.2. A k × k Hadamard inverse matrix

Based on Theorem 2, we can obtain the Hadamard inverse of any k × kmatrix as presented in the following theorem.

Theorem 3. Let Z = (Zij) be a k × k matrix such that Zij ≠ 0, for all i, j = 1, . . . , k. Hence,

(i) If k = 2n (even), N is as given in Theorem 2, and Z = (Zij) is partitioned in n2 2 × 2 blocks Zrs, for r, s = 1, . . . , n, where

Zrs =


Z(2r−1)(2s−1) Z(2r−1)2s
Z2r(2s−1) Z2r 2s


,

then the Hadamard inverse of Z , in terms of the matrix product, is given by Z−H
= (Z−H

rs ), with Z−H
rs = 2 (Z⊤

rs −
1
2 tr(N · Zrs ·

N · Z⊤
rs )N · Z−1

rs · N)−1, for r, s = 1, . . . , n; and
(ii) If k = 2n + 1 (odd) and Z = (Zij) is partitioned as

Z =


Z(k−1)(k−1) Z(k−1) 1
Z1 (k−1) Zkk


,

then the Hadamard inverse of Z is given by

Z−H
=

Z−H
(k−1) (k−1) Z−H

(k−1) 1

Z−H
1 (k−1)

1
Zkk

 ,



F.J. Caro-Lopera et al. / Journal of Multivariate Analysis 104 (2012) 126–139 133

where, for r, s = 1, . . . , (k − 1)/2,

Z−H
(k−1)(k−1) = Z−H

rs = 2

Z⊤

rs −
1
2
tr(N · Zrs · N · Z⊤

rs )N · Z−1
rs · N

−1

,

Z−H
(k−1)1 =


1
Z1k

· · ·
1

Z(k−1)k

⊤

and Z−H
1(k−1) =


1
Zk1

· · ·
1

Zk(k−1)


.

Proof. (i) Let k be an even number. Then, Z ⊙Z−H
= J , where J is a k× kmatrix consisting of ones. Partitioning Z into 2×2

blocks and then using Theorem 2, we obtain the required result. (ii) When k is an odd number, the required proof follows
by applying the result for the even case replacing k by k − 1. �

When the matrix Z in Theorem 3 is not a square matrix, we canmake use of the same partial (or complete) partition into
2 × 2 blocks and Theorem 2 for obtaining the Hadamard inverse.

4.3. Inverse problem in the connection of Hadamard and matrix products

We have already established in Theorem 1 an expression for the matrix product in terms of the Hadamard product.
Now, we consider the inverse problem, which is useful in the study of matrix-variate distributions; for example, to find an
expansion of theHadamardproduct in terms of thematrix product. This expansion is also of interest for the proposedmatrix-
variate GBS distribution, since it can simplify the form of its density in terms of the original matrices. This could facilitate the
computation of Euclidean matrix transformations and of marginal densities after integration over, for example, the Steifel
manifold. In general, the above mentioned expansion involves a function f that must relate the Hadamard product (⊙) only
with the original square matrices, say A and B, and with the usual matrix product (·), i.e.,

A ⊙ B = f (A, B, ·).

This is an elementary problem to state, but, apparently and even for the simplest case of dimension 2, it does not seem to
have been resolved in the literature. We have found even this simplest case to be quite complicated and feel strongly that a
general expression for any order would be very hard to obtain, if not impossible.We now discuss this problem by employing
the class of cyclic permutations used in Section 3.

First, instead of considering the entire matrix A⊙ B, in the context of Theorem 1, let us take C to be a k× kmatrix. Then,
it is easy to check that C decomposes uniquely as C =

∑
p C{p}, where C{p} = C ⊙ Ip, for p ∈ P12···k. Thus, we have

A ⊙ B =

−
p∈P12···k

A ⊙ B ⊙ Ip. (11)

Note that the columns of A ⊙ B ⊙ Ip can be permuted by a unique I(p′), with p′
∈ P12···k, in such a way that we obtain a

diagonal matrix (A ⊙ B ⊙ I(p)) · I(p′). We call p and p′ conjugate cyclic permutations due to an analogy with partition theory
relating to two partitions that hold some property involving diagonal symmetry. Thus, the considered problem reduces to
the task of finding a representation of a diagonal matrix as a function of A, B, I(p), I(p′) and of the usual matrix product.

As an example, let us take k = 3. In this case, we have P123 = {123, 231, 312},

I(123) =

1 0 0
0 1 0
0 0 1


, I(231) =

0 0 1
1 0 0
0 1 0


, I(312) =

0 1 0
0 0 1
1 0 0


, A =


aij


and B =

bij

.

Then,

A ⊙ B =

a11b11 0 0
0 a22b22 0
0 0 a33b23


+

 0 0 a13b13
a21b21 0 0

0 a32b32 0


+

 0 a12b12 0
0 0 a23b23

a31b31 0 0


= A ⊙ B ⊙ I(123) + A ⊙ B ⊙ I(231) + A ⊙ B ⊙ I(312). (12)

The matrices in each one of the summands of (12) can be trivially turned into diagonal matrices as A ⊙ B ⊙ I(123) by
(A ⊙ B ⊙ I(123)) · I(123), A ⊙ B ⊙ I(231) by (A ⊙ B ⊙ I(231)) · I(312), and A ⊙ B ⊙ I(312) by (A ⊙ B ⊙ I(312)) · I(231). Hence,
it is sufficient to study the representation of one of the above diagonal matrices in terms of the involved matrices.

Now, we focus on the inverse problem for 2 × 2 matrices. First, we need a preliminary result presented in the following
lemma.

Lemma 2. Let A = (aij) and B = (bij) be 2 × 2 non-singular matrices with non-null entries, and N = I(21). Then,

A ⊙ B =
1
|A|

1
|B|

A ·

[
|A ⊙ I | +

1
2

⟨A⟩


I −

1
2
N · A⊤

· N · A
]

· B ·

[
|B ⊙ I | +

1
2

⟨B⟩


I −

1
2
N · B⊤

· N · B
]
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+
1
|A|

1
|B|

A · N ·

[
|A · N ⊙ I | +

1
2

⟨A⟩


I −

1
2
A⊤

· N · A · N
]

· B · N ·

[
|B · N ⊙ I | +

1
2

⟨B⟩


I −

1
2
B⊤

· N · B · N
]

· N,

where ⟨A⟩ and ⟨B⟩ are as given in (10).

Proof. For the case k = 2, the set of cyclic permutations is just P12 = {12, 21}. Hence, for 2 × 2 matrices A = (aij) and
B = (bij) with non-null entries, we obtain from (11) that

A ⊙ B = (A ⊙ B) ⊙ I(12) + (A ⊙ B) ⊙ I(21)
= (A ⊙ B) ⊙ I + (A ⊙ B) ⊙ N
= (A ⊙ I) ⊙ (B ⊙ I) + (A · N ⊙ I) ⊙ (B · N ⊙ I)
= (A ⊙ I) · (B ⊙ I) + (A · N ⊙ I) · (B · N ⊙ I), (13)

where once again N = I(21). The expression in (13) reduces the problem of finding the representation of the diagonal
matrices

(A ⊙ B) ⊙ I =


a11 b11 0

0 a22 b22


and ((A ⊙ B) ⊙ N) · N =


a12 b12 0

0 a21 b21


in terms of the matrix product. Now, let Z = (Zij) be a 2 × 2 matrix. Then, by using Theorem 2, we have

Z11 0
0 Z22


=

1
|Z |

Z ·


Z11 Z22 −Z12 Z22

−Z11 Z21 Z11 Z22


=

1
|Z |

Z · [|Z ⊙ I | I − N · Z−1
I · N · Z]

=
1

|Z |
Z ·

[
|Z ⊙ I | +

1
4
⟨Z⟩


I −

1
2
N · Z⊤

· N · Z
]

. (14)

Finally, the representation of
0 Z12
Z21 0


is obtained replacing Z by Z · N in (14). Upon using these results in (13), we obtain the required result. �

The presence of the Hadamard product in the determinant of Lemma 2 suggests a further simplification. Then, how can we
express |Z ⊙ I | in terms of the 2 × 2 non-singular matrix Z avoiding the Hadamard multiplication? Once again, the answer
to this question does not seem to be available in the literature, and even the simplest case of dimension 2 requires some
tricky algebra, as seen in the following theorem.

Theorem 4. Let A = (aij) and B = (bij) be 2 × 2 non-singular matrices with non-null entries. Then, we have

A ⊙ B =
1
|A|

1
|B|

A ·

[
D1 +

1
2
⟨A⟩


I −

1
2
N · A⊤

· N · A
]

· B ·

[
D2 +

1
2
⟨B⟩


I −

1
2
N · B⊤

· N · B
]

+
1
|A|

1
|B|

A · N ·

[
D3 +

1
2
⟨A⟩


I −

1
2
A⊤

· N · A · N
]

· B · N ·

[
D4 +

1
2
⟨B⟩


I −

1
2
B⊤

· N · B · N
]

· N,

where D1 = |A ⊙ I |, D2 = |B ⊙ I |, D3 = |A · N ⊙ I | and D4 = |B · N ⊙ I |.

Proof. Consider the ordered partitions (2, 0) and (1, 1) of the integer number 2. Then, from [16], we have an unusual
representation of a determinant of second order in terms of powers of traces given by |A| =

1
2


(tr(A))2 − tr(A · A)


. From

Lemma 2, we know that

Z ⊙ I =
1

|Z |
Z ·

[
|Z ⊙ I | +

1
2
⟨Z⟩


I −

1
2
N · Z⊤

· N · Z
]

.

Then, since

|Z ⊙ I | =
1

|Z |

|Z ⊙ I | +
1
2
⟨Z⟩


I −

1
2
N · Z⊤

· N · Z
 ,
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by solving the quadratic equation for |Z ⊙ I |, we get that one root Z11 Z22 gives the required result, which is

|Z ⊙ I | =
1

2w


1 − r w − 2w y − (1 − 2 r w − r2 w2

− 4w y + 2w2 x)
1
2


, (15)

where

r = tr(M), M = −
1
2
N · Z⊤

· N · Z, w =
1

|Z |
, y =

1
2
⟨Z⟩, and x = tr(M · M).

The second root Z12 Z21 equals |Z · N ⊙ I |. Recall now that |Z | = |Z ⊙ I | − |Z · N ⊙ I |. We thus obtain the expansion free of
Hadamard products as required. �

As noted, the representation ofA⊙B in terms ofmatrix products is reduced to the study of diagonalmatrices of the type Z⊙I ,
which requires expressions of |Z ⊙ I | free of Hadamard products. At least, the solution for the simplest case of dimension 2
shows that the task is feasible, but may be tedious.

5. A matrix-variate generalized Birnbaum–Saunders distribution

It is useful to reiterate that the main motivation for proposing matrix representations of the density of matrix-variate
GBS distributions, instead of an element-by-element-representation of this density, comes from the use of transformations
of randommatrices. As mentioned earlier, the matrix representation is needed for some statistical procedures based on the
GBS distribution, such as hypothesis testing, linearmodels, multivariate analysis of variance, principal components analysis,
and statistical shape theory. In this section, we propose an extension of the vector GBS distribution to the matrix case.

5.1. A matrix-variate GBS distribution

The class of multivariate GBS distributions introduced in Section 2.3 can be extended to the matrix-variate case
through elliptic random matrices. Next, we present the matrix-variate elliptic distributions. Then, we define a matrix-
variate GBS distribution and propose three representations for the matrix-variate GBS density, viz., (i) element-by-element
representation, (ii) a first matrix representation via diagonal matrices, and (iii) a secondmatrix representation involving the
connection between the Hadamard and matrix products, which in fact forms the main result of this section.

Let X = (Xij) be an n × k random matrix with an elliptic distribution characterized by a location matrix M ∈ Rn×k,
scale matrices Ω ∈ Rk×k with rank(Ω) = k, and Σ ∈ Rn×n with rank(Σ) = n, and a kernel function g . By denoting
X ∼ ECn×k(M, Ω, Σ; g), we have the density of X to be

fX (X) = c |Ω|
−

n
2 |Σ|

−
k
2 g

tr

Ω−1

· [X − M]
⊤

· Σ−1
· [X − M]


, X ∈ Rn×k,

where c is the normalizing constant for the kernel g .

Definition 1. Let Z = (Zij) ∼ ECn×k(0, Ik, In; g) and T =

Tij

, where

Tij = βij

αij Zij
2

+


αij Zij
2

2

+ 1

2

, αij > 0, βij > 0, i = 1, . . . , j = 1, . . . , k.

Then, the randommatrix T generates thematrix-variate GBS distribution, denoted by T ∼ GBSn×k(A, B; g), where A = (αij)
and B = (βij).

5.1.1. An element-by-element representation of the matrix-variate GBS density
First, we propose a natural representation of the GBS density by adopting the vectorial approach, i.e., we start with a

representation involving the elements of a GBS randommatrix.

Lemma 3. Let T = (Tij) ∼ GBSn×k(A, B; g), with A = (αij) and B = (βij). Then, the density of T is given by

fT (T ) =
c

2n+k
g


n−

i=1

k−
j=1

1
α2
ij

[
Tij
βij

+
βij

Tij
− 2

] n∏
i=1

k∏
j=1

T−3/2
ij [Tij + βij]

αij


βij
, Tij > 0,

for i = 1, . . . , n and j = 1, . . . , k.

Proof. The result follows from a trivial extension of the proof given for themultivariate case in Díaz-García and Domínguez-
Molina [10, Theorem 3.1]. �
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We must stress here that the density given in Lemma 3 is not expressed either in terms of the GBS random matrix T or of
its parameter matrices A and B, as commonly done in the case of matrix-variate distributions; see, e.g., Muirhead [30], Fang
and Zhang [15] and Gupta and Varga [18]. Hence, the representation in Lemma 3 is not a proper matrix-variate version of
the GBS distribution in this sense. In fact, the density of the multivariate GBS distribution presented in Section 2.3 has the
same problem as well. Apparently, the matrix-variate GBS density so expressed seems to be easily computable (conditional
to parameter matrices), but it does not allow any matrix transformation based on affine, polar coordinates, and QR and
SV decompositions. For this reason, as mentioned, some statistical procedures based on matrix-variate GBS distributions
cannot be performed.

5.1.2. A first matrix representation of the GBS density
In the following lemma, we construct a matrix representation of the matrix-variate GBS density. For this construction,

we need an operation called diagonalization, denoted by ‘‘diag’’, which is very similar to the one known as vectorization,
denoted by ‘‘vec’’. The diag operation is defined as follows. Let X = (Xij) be an n × kmatrix and Xd be the (n + k) × (n + k)
diagonal matrix defined as

Xd = diag {X11, . . . , X1k, X21, . . . , X2k, . . . , Xn1, . . . , Xnk} . (16)

Lemma 4. Let T = (Tij) ∼ GBSn×k(A, B; g), with A = (αij) and B = (βij). Then, the density of T is given by

fT (T ) =
c

2n+k

T−3
d · A−2

d · B−1
d

 12 |Td + Bd| × g

tr(Td · A−2

d · B−1
d + T−1

d · A−2
d · Bd − 2Ad)


,

where Td, Ad and Bd are as defined in (16), with respect to T , A and B, respectively.

Proof. This result follows in a straightforward manner by applying the diagonalization operation in the representation in
Lemma 3.

Clearly, we can now perform matrix transformations over the GBS random matrix T given in Lemma 4. However, some
properties of the diagonalization operation under the Euclidean and affine transformations need to be studied first, and we
hope to consider this problem in our future work. �

Remark 1. Diagonal matrices of the type given in (16) correspond to matrices X̂ of Magnus and Neudecker [29]. As can be
checked there, the algebra associated with this type of matrices is completely unexplored. Only a simple relationship with
the vectorization is known in Magnus and Neudecker [29, Lemma 2, p. 487].

5.1.3. A second matrix representation of the GBS density
Instead of considering arrangements of the elements of the GBS random matrix for its density as given in Lemma 3 and

parameter matrices into augmented diagonal matrices as given in Lemma 4, we can express the kernel of thematrix-variate
GBS density in terms of the original matrices, as is the case with many matrix-variate distributions. Then, by using the
connection between Hadamard and matrix products established in Theorem 1, the GBS density given in Lemma 4 can be
expressed in terms of the original matrices, as presented in the following theorem.

Theorem 5. Let T = (Tij) ∼ GBSn×k(A, B; g), with A = (αij) and B = (βij). Then, the density of T is given by

fT (T ) =
c

2n+k

A−H
⊙ B−

H
2 ⊙ T−

H
2 + A−H

⊙ B
H
2 ⊙ T−

3H
2


d


× g

 −
p∈P1···k

tr


A−H
⊙ B−

H
2 ⊙ T

H
2


(p)

⊙


(A−H)⊤ ⊙ (B−

H
2 )⊤ ⊙ (T

H
2 )⊤


[p]

+


A−H

⊙ B
H
2 ⊙ T−

H
2


(p)

⊙


(A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤


[p]

−2

A−H

⊙ B−
H
2 ⊙ T

H
2


(p)

⊙


(A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤


[p]


.

Proof. Consider T = (Tij) ∼ GBSn×k(A, B; g), with A = (αij) and B = (βij). Then, if

Z =


1
αij


Tij
βij

−


βij

Tij


,

we have

g(tr(Z · Z⊤)) = g


n−

i=1

k−
j=1

1
α2
ij


Tij
βij

+
βij

Tij
− 2


. (17)



F.J. Caro-Lopera et al. / Journal of Multivariate Analysis 104 (2012) 126–139 137

However, we are now seeking an expression for g(tr(Z ·Z⊤)) in (17) in terms of thematrices T , A and B rather than in terms
of particular elements of the GBS randommatrix. Thus, starting with

Z =


1
αij


tij
βij

−


βij

tij


= A−H

⊙ (B−
H
2 ⊙ T

H
2 − B

H
2 ⊙ T−

H
2 ), (18)

we obtain

Z · Z⊤
= (A−H

⊙ B−
H
2 ⊙ T

H
2 − A−H

⊙ B
H
2 ⊙ T−

H
2 ) · (A−H

⊙ B−
H
2 ⊙ T

H
2 − A−H

⊙ B
H
2 ⊙ T−

H
2 )⊤

= (A−H
⊙ B−

H
2 ⊙ T

H
2 ) · ((A−H)⊤ ⊙ (B−

H
2 )⊤ ⊙ (T

H
2 )⊤)

+ (A−H
⊙ B

H
2 ⊙ T−

H
2 ) · ((A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤)

− (A−H
⊙ B−

H
2 ⊙ T

H
2 ) · ((A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤)

− (A−H
⊙ B

H
2 ⊙ T−

H
2 ) · ((A−H)⊤ ⊙ (B−

H
2 )⊤ ⊙ (T

H
2 )⊤).

Now, by using Theorem 1, we obtain for (17) the expression

g

tr(Z · Z⊤)


= g


tr((A−H

⊙ B−
H
2 ⊙ T

H
2 ) · ((A−H)⊤ ⊙ (B−

H
2 )⊤ ⊙ (T

H
2 )⊤)

+ (A−H
⊙ B

H
2 ⊙ T−

H
2 ) · ((A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤)

− 2(A−H
⊙ B−

H
2 ⊙ T

H
2 ) · ((A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤))


= g

 −
p∈P1···k

tr


A−H
⊙ B−

H
2 ⊙ T

H
2


(p)

⊙


(A−H)⊤ ⊙ (B−

H
2 )⊤ ⊙ (T

H
2 )⊤


[p]

+


A−H

⊙ B
H
2 ⊙ T−

H
2


(p)

⊙


(A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤


[p]

− 2

A−H

⊙ B−
H
2 ⊙ T

H
2


(p)

⊙


(A−H)⊤ ⊙ (B

H
2 )⊤ ⊙ (T−

H
2 )⊤


[p]


. (19)

The corresponding Jacobian of Lemma 3 can be written in terms of Hadamard products and diagonal matrices as

n∏
i=1

k∏
j=1

t−3/2
ij [tij + βij]

αij


βij
=

A−H
⊙ B−

H
2 ⊙ T−

H
2 + A−H

⊙ B
H
2 ⊙ T−

3H
2


d

 . (20)

The required result is then established by multiplying the constant c/2n+k with (19) and (20). �

Remark 2. Note that if the normalization constant and the kernel given in Theorem 5 are taken as

c =
2

n k
2

π
n k
2

and g(u) = exp

−

u
2


,

then a matrix-variate classical BS distribution is obtained. Thus, just as in the univariate and multivariate cases, the matrix-
variate BS distribution becomes a particular case of the matrix-variate GBS distribution.

6. Concluding remarks, future research and open problems

In this paper, we have established a connection between the Hadamard and matrix multiplications. We have also
studied some new properties of the Hadamard product and explored the inverse problem associated with the established
connection, which is useful in several statistical applications. In addition, we have proposed a matrix-variate GBS
distribution,which includes thematrix-variate classical Birnbaum–Saunders distribution as a special case.Wehaveprovided
three representations for the matrix-variate GBS density, one of them based on the established connection between the
Hadamard and matrix products. We have represented this density in terms of the original matrices by means of the
Hadamard product because this facilitates matrix transformations in a natural manner, which are useful for some statistical
procedures, such as multivariate data analysis and statistical shape theory.

This work has raised many challenging problems that we are currently working on. For example, based on the matrix
representation, we have found the following issues and questions to be of interest:

1. In the context of the first matrix representation of the GBS density presented in Section 5.1.2, we note the following:



138 F.J. Caro-Lopera et al. / Journal of Multivariate Analysis 104 (2012) 126–139

(a) This representation involves a special algebra that studies the diagonalization in (16) and its relationship with the
well-known matrix differential calculus; see [29]. This algebra is completely unexplored, and its study is of great
interest.

(b) Another problem we can explore is about the connections between the diagonalization operation and the classical
products, such as the usual, Hadamard and Kronecker multiplications.

2. In the context of the second matrix representation of the GBS density in Section 5.1.3, we note the following:
(a) Classical techniques of the matrix-variate theory applied to a Gaussian random matrix (see [30]) are a source of a

number of extensions to, for example, elliptic random matrices. Therefore, to transfer the matrix-variate theory to
GBS randommatrices poses an interesting problem.

(b) The above strongly depends on matrix transformations (Euclidean or affine, say) of the GBS random matrix and the
leading integration over the Stiefel manifold. Hence, another open problem is concerning the integration theory
associated with functions expressed in terms of Hadamard products.

(c) One of the key applications of the two issues mentioned above in (a) and (b) arises in the context of statistical theory
of shape based on asymmetric distributions, instead of the classical theory that, until now, is only based on symmetric
distributions. Thus, it is of great interest to derive the shape densities under GBS randommatrices.

(d) Perhaps, themost attractive openproblemarising from this study corresponds to expressing theHadamardproduct of
twomatrices as a function of the usual product of the involvedmatrices. As noted in Theorem4, the case of dimension
2 is extremely cumbersome and its solution requires some tricks including a new expansion of the determinant. In
fact, the case of dimension 3 seems difficult and a generalization to any order is indeed a very complicated and
challenging problem.

(e) A new matrix representation of the GBS density can be inferred from Section 4.3. In this case, the open problem
reduces to the task of finding a representation of a diagonal matrix in terms of the original and identity matrices and
of the usual matrix product. This representation involving conjugate cyclic permutations can generate a new study
of the GBS density by noting that, for a k × kmatrix X = (Xij) and a function g ,

g


k−

i=1

k−
j=1

Xij


= g

−
p, p′

tr((X ⊙ Ip) · Ip′)


,

where the summation is over all the pairs of conjugate cyclic permutations p and p′ of P12···k.

Some of these problems are currently under investigation, and we hope to report these findings in the future.
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