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Abstract

We consider the ABF background underlying the n-deformed AdSs5 x §3 sigma model. This back-
ground fails to satisfy the standard IIB supergravity equations which indicates that the corresponding
sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue
that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the
n-deformed model is scale invariant. This property follows from the formal relation via T-duality between
the n-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries
albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale in-
variance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly,
we also find that the ABF background obeys an interesting modification of the standard IIB supergravity
equations that are first order in derivatives of R—R fields. These modified equations explicitly depend on
Killing vectors of the ABF background and, although not universal, they imply the universal scale invari-
ance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that
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leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the
modified equations should follow from «-symmetry of the n-deformed model. All our observations apply
also to n-deformations of AdS3 x $3 x T%and AdSy x 52 x T%models.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of integrable deformations of the AdSs x S° superstring sigma model is an im-
portant direction in the search for new solvable examples of AdS/CFT duality. An interesting
one-parameter integrable generalisation of the classical AdSs x S° Green-Schwarz action re-
lated to the quantum deformation of the underlying supergroup symmetry was found in [1]. Just
from the construction of this “n-model” (based on a particular current—current deformation of
the supercoset action [2] generalising the bosonic model of [3]) there is no a priori reason why it
should define a scale invariant (UV finite) 2d theory and, moreover, why it should preserve the
conformal (Weyl) invariance and hence still correspond to a consistent superstring theory as the
undeformed AdSs x S° model does.?

The only indication in this direction is that the n-model action, like the original AdSs x §°
action, is invariant under a version of fermionic x-symmetry [1], which reduces the number of
fermions by half. However, the usual claim that k-symmetry implies the corresponding action
can be interpreted as that of a GS superstring propagating in a background that is a consistent
type II supergravity solution (and hence defines a consistent critical superstring theory) assumes
that the x-symmetry is of the standard GS “projector” form [5]. This is most probably not the
case for the n-model at higher orders in fermions. Indeed, it was found in [6,7] that the target
space background corresponding to the n-model action [ 1], interpreted as a GS action, does not
represent a type IIB supergravity solution.

Starting with the GS Lagrangian written in superspace form (ZM = (x, 0%))

L = (Vhh* EY E3nys — € Byun) 3, ZM 0,27 (1.1)

one can solve the standard type II superspace constraints and Bianchi identities for E(Z), B(Z)
(which imply the supergravity equations) in order to express the GS action in terms of component
fields. One then observes that the dilaton ¢ (which is part of the dilaton superfield ®(Z) that
is introduced in the process of solving the constraints) enters the world-sheet action (i) in the
combination F = ¢? F with the R-R field strengths starting at order #2 and (ii) via derivatives
¢ starting at order 6% (see [8] and the references therein). This action has classical Weyl
invariance and k-symmetry, which will be broken, in general, by quantum corrections. As for
the bosonic string [9], to cancel the 2d stress tensor trace anomaly requires adding the familiar
1-loop dilaton counterterm ~ f d*zv/h R(Z)CD(Z ) (see [10,11] and the references therein).*

The case relevant to our discussion below is a special isometric type II solution for which the
metric G, B-field By, and R-R fields F,,, ., are invariant while ¢ is linear in the isometric

3 This is in contrast, e.g., to the integrable deformation [4] based on TsT duality transformations, which preserve
conformality. In particular, the TsT deformed background is a solution of type IIB supergravity.

4 This additional term is certainly required to reproduce the standard 1-loop Weyl-invariance conditions for the G and
B-field couplings or supergravity equations in NS—NS sector. This term should also be required to cancel the quantum
anomaly of k-symmetry.


http://creativecommons.org/licenses/by/4.0/

264 G. Arutyunov et al. / Nuclear Physics B 903 (2016) 262-303

directions. In this case the GS action will depend on the isometric coordinates only through their
2d derivatives and can thus be T-dualised. As we shall see, in this case the T-dual model will be
scale invariant but may not be Weyl invariant (one may not be able to cancel the Weyl anomaly
by a local counterterm), i.e. may not correspond to a type II supergravity solution.

The ABF background [6,7] includes the 10d metric G, the B-field and the R-R fields F,
(n =1, 3,5) that are extracted from the quadratic fermionic part of the action of [1] put into the
usual GS form,

1
A=—T / d%[ E("abG’"" — €’ Bpun)dax" 0px"

40T, DO 9x™ + 6T, F-T T,,0 meax”—i—...]. (1.2)

For the standard GS action in a type IIB supergravity background J, are interpreted as the
products of the dilaton and the R-R field strengths F,, = ¢? F,, but in the n-model case there is
no independent information about the dilaton, and there exists no dilaton field that completes
G, B, F, of the ABF background to a type IIB solution [7].

While not solving the standard type IIB equations directly this ABF background still turns
out to be very special: it is related by T-duality to an exact type IIB supergravity solution [12,
13]. The latter HT background involves a non-diagonal metric G, an imaginary 5-form Fs and
the dilaton ¢), and the T-duality applied in all 6 isometric directions acts only on the fields G

and F5 = ¢? Fs entering the corresponding GS action (1.2) on a flat 2d background. The GS
action for any type II solution (and thus for the HT background) should be Weyl invariant and, in
particular, scale invariant. As the T-duality applied to the GS action [14] is a simple path integral
transformation, the T-duality relation between the ABF and HT backgrounds implies [12] that
the n-model action should define a scale invariant 2d theory at least to 1-loop order.

However, there may be a problem with Weyl invariance for the n-model action on a curved
2d background. The HT dilaton  has a term linearly depending on the isometric directions of
G and Fs and thus one cannot directly apply the standard T-duality transformation rules [15] to
the full HT background to get a full T-dual supergravity solution, and thus the Weyl invariance
of the T-dual sigma model requires further investigation.” This is of course consistent with the
observation [7] that the ABF background does not satisfy the full set of type IIB supergravity
equations.

The aim of the present paper is to further clarify and extend these observations. We shall
demonstrate that the relation by formal T-duality between the ABF and HT backgrounds implies
that the former, while not a supergravity solution, should satisfy the following two generalisations
or “modifications” of the type II supergravity equations:

(i) the scale invariance conditions for the type II superstring sigma model (with equations on
the R-R fields F being of 2nd order in derivatives)

5 The 1-loop Weyl invariance conditions of the NSR or GS type II superstring sigma model are believed to be equivalent
to the field equations of type II supergravity. While this is a well-established fact in the NS—NS sector [9,16] this was
never demonstrated directly with the R-R couplings included (for some related work, mostly for the heterotic string, see
[10,11,18]). Given that the linearised equations for all the supergravity fields follow from the condition of marginality
of the corresponding NSR vertex operators and that the type II action is a leading term in the string effective action
reconstructed from the superstring S-matrix on flat space, it is usually assumed that the superstring sigma model defining
consistent critical string theories should correspond (to leading order in a’) to backgrounds that solve the 10d supergravity
equations.
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(i1) a set of equations that are structurally similar to those of type II supergravity (with Ist-
order equations for the R-R fields ) but involving, instead of derivatives of the dilaton, a certain
co-vector Z,, playing now the role of the dilaton one-form and a Killing vector /" responsible
for the “modification” of the equations from their standard form.®

While the scale invariance conditions are universal, the second set of equations (which we
shall refer to as “I-modified” type II equations) only apply to particular backgrounds with iso-
metric G, B and F-fields, which are related by formal T-duality to a type II solution (é, é, F , 43)
with the dilaton ¢ containing a term linear in the isometric coordinates. Such a dilaton back-
ground, breaking isometries by a linear term only, is special. As the type Il supergravity equations
written in terms of the F-fields only depend on the dilaton through its derivatives, they remain
independent of the isometric directions. As a result, the standard type II supergravity equations
for the T-dual solution (G, B, F, ¢3) can be re-interpreted as certain modified type II equations
for the original fields (G, B, F), also depending on the vectors Z and /. The Killing vector /™
dependence is fixed by the term linear in isometric coordinates in the dilaton, while the vector
Z,, is determined by applying the standard T-duality rules to the part of the dilaton independent
of the isometric coordinates.’

It is possible to express the modified equations for the NS—NS fields in terms of just one single
vector X,, = Z,, + I, which is the vector that appears in the scale invariance conditions. The su-
perstring scale invariance conditions generalise the familiar one-loop scale invariance conditions
for the bosonic sigma model with couplings G, and B,,,, (cf. (1.2))

BG, = Run — SHuia HX = =Dy Xy, — Dy X, (1.3)
ﬂnlfn = %Dkamn = X Himn + 0¥y — 9 Y - (1.4)

Here the terms involving X,, [17] and Y, do not contribute to on-shell UV divergences or,
equivalently, reflect the freedom of renormalisation by reparametrisations and B-field gauge
transformations. The X,, terms drop out of the action if the sigma model field x™ is subject
to the classical equations, or, equivalently, they can be absorbed in a field renormalisation,
x™ — x™ 4 X" loge. The origin of the X* Hj,,,, term can be understood either by starting with
a counterterm proportional to (D, X, + D, X;,)9,x"9px™ 4 ..., integrating by parts and using
the equations of motion for x™, or by observing that B,,,, transforms under a combination of
reparametrisations and gauge transformations as X*d By + 9 X* Bin — 9, X By + 8 Y, —
Y, = X*Hypn + 0mYy — 0,Y,, where Y, or Y, drop out of the sigma model action upon
integration by parts.

The Weyl invariance conditions are equivalent to the vanishing of the trace of the 2d stress
tensor operator on a curved 2d background. For the NSR type II superstring sigma model they can
be satisfied provided one adds the dilaton term ~ R ¢ (x) [9,19-21,16]: they are a stronger form
of the scale invariance conditions (1.3), (1.4) with X,,, and Y}, no longer arbitrary, but given by

X =0, Y =0. (1.5)
The Weyl invariance equations (1.3), (1.4), (1.5) imply the “central charge” identity [9,22]
mB?=0,  BP=R-—LH2 , +4D%)p —40"Pdu¢ . (1.6)

6 In what follows we shall not distinguish between co-vectors and vectors, referring to both X" and X, as vectors.
7 Let us stress that F and ¢ explicitly depend on the isometric coordinates. It is G, B, F,d¢, and G, B, F, Z that are

invariant under the isometries generated by the Killing vectors ™ and ™ respectively. That is, Lie derivatives of the
fields along the corresponding Killing vector are zero.
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i.e. that the effective dilaton “gB-function” is a constant (which should be zero in critical string
theory). The full set of Weyl invariance equations for G, B and ¢ follows from the effective
action with the same form as the NS—NS sector of the type II supergravity action (F = ¢? F)

S:/ddx\/ﬁ(e*2¢6¢+ZFF+...)

:/ddx Ge ™ (B + Y FF+...). (1.7)

where we have indicated the presence of the R-R field strength terms for future reference.

The generalisation of the scale invariance conditions to the presence of R-R fields is given
by (1.3), (1.4) with extra FF terms, together with a set of second-derivative equations for the
R-R fields F that directly enter the GS action (1.2), %DZ}“ +...= X0F + FoX. Here the
r.h.s. stands for reparametrisation (Lie derivative) terms with the same X-vector as in (1.3), (1.4)
and dots indicate non-linear terms. In the special case when X, = 9,,¢ these equations are the
consequence of the type IIB equations or Weyl invariance conditions, which are 1st order in
F=e¢%F, ie.d«F+...=0and dF + ... = 0.8 These universal scale invariance conditions
will be satisfied by the ABF background for a particular choice of the vectors X, and Y,,,.

To explain the origin of the second “I-modified” set of equations let us first ignore the R—-R
fields and assume that there exists the following metric-dilaton background that solves the Weyl
invariance equations (i.e. Ry, + 2Dy, Dy =0, B¢’ = const)

ds” = XOdH + A, (0)dx P + g (dxtdx’ . d=—ci+ f(x) . (1.8)

Here the metric has an isometry which is broken by the linear term in the dilaton (¢ = const).
Examples of such non-trivial solutions’ can be found by taking special limits of gauged WZW
backgrounds [13]. T-dualising this metric, we find a diagonal metric G and B-field, i.e.

ds? = e*Wgy? 4 guv(x)dxtdx" B= Au(x) dy ANdx" a=-—a. (1.9)

Forc=0 (i e. when qg is isometric) these fields together with the T-duality transformed dilaton
¢ q’) — a would solve the standard Weyl 1nvar1ance equations (1.3), (1.4) with X;, = 9, ¢,

Y;m = 0. For non-zero ¢ the equation Rmn + 2D D ¢ 0 (for the original background (1.8))
expressed in terms of the dual fields G, B will contain additional c-dependent terms obstructing
(for non-constant a(x)) the introduction of a new dilaton scalar. Still, they can be put in a more
general form R,,, + Dy X, + D, X,, = 0 with a special vector X given by'’

Xpdx™ = Lydx™ + Zdx™ =ce 2 dy +[8,(¢ — @) + c A, ] dxt . (1.10)

The dilaton equation 8% = 0 for the original background (1.8) also can be rewritten as the fol-
lowing generalised equation (cf. (1.6))"!

8 The relation between the Ist-order and 2nd-order equations on JF has the same spirit as the relation between the Dirac
and the Klein—Gordon (squared Dirac) equations for spinor fields.

9 Itis important that dilaton has a linear term in a “warped” isometric direction of the metric, i.e. a(x), Ay, (x) are
non-constant, otherwise the effect of adding the linear dilaton would be trivial.

10° The need to introduce the vector X, which is not simply a gradient of a scalar, is therefore directly related to the
feature 8;42) =—c#0.

1 Note that this equation is not present in the list of scale invariance conditions, and Weyl invariance conditions require
this relation to hold with X, = 9;,,¢ for some ¢.
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B¥=R— 5H2, +4D"X, —4X" X, =0, (1.11)

that is satisfied for the T-dual background.

The T-dual background (G, B) defines a sigma model that is scale invariant on a flat 2d back-
ground (satisfying equations (1.3), (1.4) with Y, = X,;) but which is not Weyl invariant. The
trace of stress tensor T = BG, 3,x™3x" + BE € 9,x™dpx" is a total derivative T = V4N,
Ng = 2(X,0,x™ + eab Y, 0px™) (up to terms proportional to the x™ equations of motion). This
cannot be cancelled by a local counterterm (the classical dilaton term) unless X, = 9,,¢, ¥ =0
[19,20], which is not the case for the ABF background. The sigma models based on (1.9) (with
explicit backgrounds given below) thus represent particular examples of 2d scale invariant theo-
ries that avoid the Zamolodchikov—Polchinski theorem [23] due to their non-compactness (and/or
non-unitarity related to the presence of time-like directions). It thus remains unclear if such
backgrounds related by formal T-duality to Weyl invariant models (1.8) can also be associated
somehow with a consistent critical string theory.

As we shall see below, a similar generalisation of the full set of the bosonic type I supergravity
equations also exists in the presence of R-R fields F;, that have the same isometries as the metric
(i.e. when (1.8) is extended to an analog of the HT solution [12]). Thus in general, given a type 11
solution with non-isometric linear dilaton there will be an associated (“T-dual” or ABF-like)
background solving such a modified set of type II equations.

The rest of this paper is organised as follows. In section 2 we shall present the general scale
invariance conditions for the couplings G, B of the sigma model (1.2) that generalise (1.3), (1.4)
to the presence of the R-R fields F and show that there exist such vectors X = Z + I and Y that
these equations are satisfied by the ABF background. In section 3 we shall derive a modification
of the standard Ist-order IIB supergravity equations of the R—R fluxes that is “driven” by the
special isometry vector I and which are satisfied by the ABF background. In section 4 we shall
show that combining these 1st-order equations one can find 2nd-order equations for F that have
the right structure (when generalised to arbitrary vector X) to be interpreted as scale invariance
conditions on the R-R couplings. In section 5 we explain how the standard type II supergravity
equations for a solution with the dilaton linear along the isometric directions is mapped to the
modified equations for T-dual solution.

Our notation and some useful relations are summarised in Appendix A. In Appendix B we
present the explicit form of the ABF background and the T-dual type IIB HT solution. Ap-
pendix C contains the derivation of the identity 3,,% = 0 from the modified type II equations
which is closely related to the on-shell conservation of R-R stress tensor. In Appendix D, starting
with the modified type II equations, we derive the 2nd-order equations for the R—R fields that are
candidates for the corresponding scale invariance conditions. In Appendix E we remark on an
alternative derivation of the relation (2.13) for the vector Z, which plays the role of the dilaton
one-form in the modified equations. In Appendix F we summarise the analogs of the ABF and
HT backgrounds in the AdS> x S x T®and AdS; x S x T*cases and give the corresponding
expressions for the vectors X, Y and I that solve the scale invariance and modified type II equa-
tions. In Appendix G we explain how the 2nd-order equations for the R-R couplings F emerge
as the one-loop conditions of scale invariance for the GS sigma model (1.2).

2. Scale invariance conditions and modified type II equations: NS-NS sector

The scale invariance conditions for the bosonic sigma model (1.3), (1.4) have a straightfor-
ward generalisation to the GS superstring case with non-zero R—R couplings F = ¢? F (see
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Appendix G). The § FAdxdx terms in the GS action (1.2) should lead to one-loop diagrams (with
one bosonic and one fermionic line) contributing logarithmic UV divergences ~ F Fdxdx. These
terms will produce extra FF terms in the B-functions in (1.3) and (1.4). In particular, the analog
of the Einstein equation (1.3) should pick up the R—R stress tensor term and the B-field equa-
tion (1.4), the FF term as in the II supergravity equations.'” This is expected as for X,, = 9,6,
Y,, = 0 the resulting equations are the Weyl invariance equations that should be equivalent to the
type II supergravity equations.

The scale invariance equations for the F-fields (to be discussed in section 4) will not, however,
have the familiar supergravity form of 1st-order equations for F (these should follow from the
Weyl invariance conditions). Instead they will be of 2nd order, D>F + ... = X-dependent terms,
and for X, = 9,,¢ will be a consequence of the 1st-order supergravity equations.

Explicitly, the scale invariance conditions (1.3) and (1.4) generalise to

BG, = Run — 3 Hukt Hy'*' = Tyn = =Dy Xy — Dy X .1)
BE. = L D* Hipy + Konn = X* Hi + 0 Y — 0 Yo . 2.2)
Ton = 3FmFn + 1FmpgFaP? + g1 Frupgrs FaP4™ — 3 Gmn (3 FiF®

+ 15 Fipg FP9) 2.3)
Konn = 3 F* Fromn + 15 Fonnkip FEP (2.4)

Here Fy., Fiunk, Fmnkip are R-R fields of type IIB supergravity (for notation see Appendix A).
For X, = 0,,¢, Y, = 0 these equations follow from type IIB supergravity action (1.7). Ty, is
the familiar stress tensor that follows from the type IIB action (1.7) upon variation over G,,.">
As was noted in [12], the existence of the HT solution related to the ABF background by
T-duality, suggests that the GS sigma model for the latter defined on a flat 2d background should
be scale invariant (at least to leading, 1-loop, order). Our key observation is that indeed there
exist vectors X,, and Y, such that eqs. (2.1) and (2.2) are satisfied for the ABF background
(B.1). The vector X, required to satisfy (2.1) turns out to be (see Appendix B for notation)

1+/O2 2 .0 p20052§
— m __
X =X,,dx" =cp 122 _xzpzdt+clp sin“ ¢ dyry + ¢ " +x2p4sin2§d1//1
1—r2 rzcoszf
— 4 24in2ed -
+c3]+%2r2 @+ cqr=sin”Edgy + c5 T2 sin e
2 4.
x sin?2 1 3 2
g -Cz +—(1- 75+ ——)dp
2(1 + »%2p*sin” ¢) P 1—p 14 x2p*sin®¢
2.4
x“r”sin2& 1 3 2
-1 - + dr. (2.5
2(1 4 x2r4sin® €) r( 1+ x2r2 1+x2r4sin2“§) 23)
X, can be split in the following way
X =1In~+2Zn, Dyly + Dyl =0, Dm]m:()s (2.6)

12 For an argument supporting this in the NSR formalism see [18].
13 Note that in the first (NS-NS) term of (1.7) one does not need to vary the +/G factor as its contribution vanishes after
use of the dilaton equation B% =0in (1.6). This equation is not required for scale invariance.
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where 1" = Z?:l ¢; (1'Dy" The index i labels the 6 isometric directions yi = (t, Y2, V1, @,
¢2, ¢1) of the 10d ABF metric and ¢; are arbitrary constant coefficients. (/ @ym are the 6 in-
dependent commuting Killing vectors of the ABF background: the Lie derivatives of the G,
B and F-fields in [6] along I™ all vanish. If we split the coordinates as x™ = (y’, x*) where
w=1,2,3, 4 labels the non-isometric directions x* = (¢, p, &, r), then

6
In=Y 8,ciGii(x") , I" =5 ¢; = const Zn =812, (x") . 2.7

i=1

The vector Y,, required to satisfy (2.2) on the ABF background is found to be'*

1 2 2 12
Y = Ypdx™ = 4x %d: 42 Ls_gzdwl
1—x2p 14 x2p*sin®¢
44 1—r2 J ) rzcoszs "
H———m—de — 26 —————
14 2272 ¢ 14 22r4sin® & :
1% ptsin2¢ N 1(1 3 200 er — 1)
2(1 + »2p*sin ¢) P 1—32p% 1+ x2p4sin®¢
2.4 -1
2 1 3 2 1
x°r sm?2 _( _ I (2 CSTZ))dr. 2.8)
2(1 + »2r4sin” £) r 14 %r 1 4+ x2r4sin” &
We observe that if we fix ¢; in (2.5) to the following specific values
co=c3=4x, ci1=c4=0, c)=—c5=2x, 2.9)
then Y,, and X,, coincide
Yin=Xnm . (2.10)

The next surprising observation is that for these specially chosen values of ¢; in (2.9) the vector
X, satisfies also a direct generalisation (1.11) of the dilaton equation (1.6) (3,,¢p — X,)b:

BX=R - LH?  +4DX* —4x, Xk =0. (2.11)

As we shall show in Appendix C this 8% satisfies the generalisation of the dilaton identity (1.6)
amBX=0. (2.12)

The reason for this particular choice of ¢; in (2.9) can be traced to the form of the linear terms
in the dilaton ¢3 of the T-dual HT solution (B.3). That is the presence of the /-term in X,, in
(2.6) reflects the presence of the non-isometric linear terms in 43 Therefore, these terms drive
the modification of the equations satisfied by the ABF background from their standard type II
form. In this sense the Z,, part of X, may be interpreted as the analog of 9,,¢ in the modified
equations. Indeed, one can check that for I in (2.7) with ¢; chosen as in (2.9) the following
relation is satisfied

OmZn _aizzm+Ikamn =0. (2.13)

14y is of course defined modulo a total derivative.
15 Since D, X" = Dzt X" Xy =GYcic; +GHYZ, Z, this equation does not depend on signs of c;.
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This may be interpreted as a modified “dilaton Bianchi identity”: if I, is formally set to zero then
Z,, becomes a derivative of a scalar, d,,¢. In general, assuming that [,,, represents an isometry of
the B-field, i.e. the Lie derivative (L;B) ., = 150k Binn + BicnOm I* — By 0, I* vanishes (modulo
a gauge transformation term 9,,U,, — 9,U,,), we can solve (2.13) as!o

Zm = Om¢ + BimI* (2.14)

where 0,,¢ term represents the trivial “zero-mode” solution. In the particular case of the ABF
background with Z,, and I, given by (2.5), (2.6), (2.7) and ¢; fixed as in (2.9) we find

Xpm=Yu=In+2Z,= 8m¢ + (ka + Bkm)lk P (215)
= K2,02)3(1 +K2r2)3

. 2.16
(14 k2p*sin? £)(1 + «2r#sin’ &) (2-16)

¢=%lo

The scalar ¢ in (2.10) is precisely the one that is found [12] by applying the standard T-duality
transformation rule to the isometric part of the dilaton ¢ of the HT solution in (B.3) (cf. (1.10)).

3. Modified type II equations: first-order equations for R-R couplings

Let us now explore what modification of the type IIB equations for the R—R couplings is
satisfied by the ABF background.

The standard equations of type IIB supergravity [28] in the R—R sector written in terms of the
rescaled F = e? F field strengths are pairs of dynamical equations and Bianchi identities (see
Appendix A for notation)'’

D" Fy — Z" Fop — CH™P Frpp =0, dF) —ZAF1 =0, 3.1)

DP Fpmn — ZP Fpmn — ¢ HP4" Fopnpgr =0, dFs —ZAF3s+H3AF =0,
(3.2)

D" Frmnpg — Z" Funpq + 35Emnpqrstuvw H™' F¥ =0, dFs —Z A Fs+ Hy AF3=0.
(3.3)

Here Z = Z,,dx™ = d¢ is the dilaton one-form. The five-form F5 is also required to satisfy the
self-duality equation xF5 = F5 which implies the equivalence of the first and second equation
in (3.3).

An a priori surprising observation is that there exist direct generalisations of the 1st-order
equations (3.1)—(3.3) involving Z = Z,,,dx™ and I = I,,dx™ in (2.5), (2.6), with fixed values of
the coefficients ¢; as given in (2.9), which are solved by the ABF background (B.1). Explicitly,
the equations for the one-form Fi in (B.1) are

D" Fo — Z" Foy — $ H™P Fopp =0, I"Fn=0, (3.4)
(d]:l_Z/\]:l)mn_Ip]:mnp:O~ 3.5)

16 1y general, we find Z;;, = ¢ + By [ k_ Uy, . Under gauge transformations of B the vector Uy, transforms so that
¢ may be assumed to be invariant. In the particular case of the ABF background (B.1) with the B-field chosen in the
manifestly symmetric form we have Uy, = 0.

17 Note that all equations including (2.2) are invariant under the simultaneous change of sign of H3 and F3, or of H3,
Fy and F5. The choice of sign of H3 or B can be changed by parity.
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We have added the condition 1" F;, = 0 as an independent equation on F;.'®
Similarly, the equations that generalise (3.2) and are satisfied for the three-form 3 in (B.1)
are found to be

D? Fomn — ZP Fpmn — £ HP" Fopnpgr — (LA FD)mn =0, (3.6)

(dF3—ZANF3+ Hs AF)mnpg — 1" Finnpgr =0 3.7
The equations satisfied by F5 of the ABF background are found to be

D" Frmnpg — Z" Frmnpq + 35€mnpgrstuve H™' FVY — (I A F3)mnpg =0, (3.8)

(dFs — Z AFs+ Hs AF3)mnpgrs + cemnpgrstuvw ] TV =0 (3.9)

These two are equivalent in view of the self-duality of Fs.
These modified equations (3.4)—(3.9) reduce back to (3.1), (3.2), (3.3) if we drop all terms
with I, and assume that dZ = 0, i.e. if we set

Zy = O , Iy — 0. (3.10)

The structure of (3.4)—(3.9) supports the interpretation of Z as a generalised “dilaton one-form”,
while the isometry vector I effectively drives the deformation of the standard type IIB equations.

An interesting observation is that there exist certain combinations of the equations (3.4)—(3.9)
that depend on Z and [ only through the combination X = Z + I, which entered the NS-NS
equations of the previous section. These are found by adding together equations of equal form
degree, for example, the equation of motion for the R-R three-form and the Bianchi identity for
the R—R one-form. The resulting X-dependent equations are given by

D" Fy — X" Fy — £ H"P Fppp =0, (3.11)

D? Fpmn = XP Fpmn —  HP" Founpgr + dFi = X A F1)mn =0, (3.12)

Dr]:rmnpq - Xr]:rmnpq + 3]_68mnpqrsluvar”]:uuw +dF—XANF3+H3A ]:l)mnpq
=0. (3.13)

Using the self-duality of Fs the last equation can be also written as

(d]:S -X /\]:5 + H3 N ]:3)pqumn - %8pqumnvxtu(DU]:sm - Xv]:stu - ]:UHsm) =0.
(3.14)

As will be discussed below, these three equations are already sufficient for deriving candidates
for the scale invariance equations for the F-fields, which are 2nd order in derivatives.

It is useful to rewrite (3.1)—(3.3) in the notation of forms (see Appendix A for conventions).
To do so we introduce the dual forms defined by

F1=xF9, F3=—xF7, Fs=x*Fs, Fr=—xF3, Fo=xF1. (3.15)

Then the complete set of the type II supergravity equations for R—R strengths and Bianchi iden-
tities (3.1)—(3.3) is given by'”

18 Alternatively, one can derive this equation from the Bianchi equation (3.5), the invariance of F| under the isometry,
the orthogonality of I and Z, and the condition that Z is not an exact one-form. Indeed, multiplying (3.5) by 1™ one
finds 8, (" Fip) — Zp 1™ Fpy = 0. Thus, if 1™ F,;, # 0 then Z = d In(I™ F,;,). We find, however, it more convenient to
add I F,;, =0 as an independent equation, and infer from it the orthogonality of 7 and Z.

19 We assume that Fn=0forn <0andn > 10.
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dFou+1 —ZANFoyp1 +H3 AN Fo—1 =0, n=0,1,...,
d*xFony1 — Z ANxFops1 — H3 AxFopn3 =0, n=0,1,..., (3.16)
where Z =d¢.
The “I-modified” equations (3.4)—(3.9) are given byzo
dFons1 — Z AN Fopg1 + H3 AN Fop—1 — *x(I AxFpp43) =0, n=-1,0,...,
dxFoup+1 — Z AN*Fopp1 — H3 AxFopiz +*x(I A Fop—1) =0, n=0,1,....

(3.17)

Due to (3.15) the two equations in (3.16) are equivalent and the same is true for (3.17).
Let us note that the deformed R-R equations (3.17) together with the relation (2.13) or dZ +
17 Hz = 0 imply the following relation

LiFompr=U-Z)Fouy . (3.18)

Thus the condition that the F-fields are invariant under the isometry [ is equivalent to the con-
dition 7/ - Z = 0, which is clearly satisfied for the ABF background as is evident from (2.5),
Q2.7.

4. Second-order equations for R-R couplings as scale invariance conditions

Let us return to the discussion of the scale invariance conditions for the couplings of the GS
sigma model (1.2) in section 2 and consider the equations for the R-R couplings F that should
follow from the requirement of (1-loop) UV finiteness of the 2d model. One can argue that the
conditions analogous to egs. (2.1), (2.2) for the G and B-field couplings should have the form

1
Birky = 5D Fia by oo = X" O Fla k3 Firm kO X .1

1

where we have omitted possible non-linear terms such as RF + DHJF + ... on the Lh.s. The
X-dependent Lie derivative term on the r.h.s. reflects, as in (2.1), (2.2), the reparametrisation (or
off-shell x"-renormalisation) freedom. For example, starting with the linearised RG equation
% = ,Bn]: = %82]-',1 (x), t =loge and doing the coordinate redefinition x™ — x™ +t X", one
ends up with % = %82]—"”()5) — X0 Fn — Fmon X™.

We shall discuss the computation of 1-loop logarithmic UV divergences for the GS action
(1.2) in Appendix G clarifying the structure of 87 .

For X, = 0,,¢ the equations (4.1) should be a consequence of stronger Weyl invariance con-
ditions,”' which should be equivalent to the type II supergravity equations (3.1)—~(3.3) or (3.16)
where Z = X = d¢. Indeed, combining (“squaring”) the familiardF 4 ...=0,dx F+4...=0

20 Note that here we include n = —1 as in the deformed theory it is no longer trivial: it gives the second equation in
(3.4),1e. x(I AxF)=I1"F =0.

21 For example, using the NSR approach on a flat background we may consider the R-R vertex operators built out of
spin operators and consider the linearised conditions for conformal invariance (marginality). Then d F =0, dx F = 0 will
follow (see, e.g., [29]) just like the usual transversality conditions on the graviton operator follow from the marginality
conditions of the /iy (p)e'P*dx™dx" vertex. On a curved 2d background these are equivalent to the decoupling of
derivatives d, p of the conformal factor of the 2d metric (see, e.g., [30,31]). These conditions are stronger than just scale
invariance which requires only “masslessness” p2 F(p)=0or 82F =0.
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equations leads to d xd « F +*d xdF +...=0or D*F +... =0, where the leading term is the
Hodge—de Rham operator.

Moreover, the same equations should follow also from the modified type II equations
(3.4)-(3.9) or (3.17) (as, e.g., the ABF background that solves the modified equations should
also be a solution of the scale invariance conditions). This should provide a non-trivial consis-
tency check: after properly “squaring” (3.4)—(3.9) the dependence on the Z and I vectors in any
candidate scale invariance equations should appear only through their sum X = Z+ [ asin (2.1),
(2.2).

Starting from the modified type II equations (3.4)—(3.9) (which include the standard type I1IB
supergravity equations as a special case (3.10), I,, = 0), let us outline the derivation of the 2nd
order equations for the R—R couplings that should be equivalent to the scale invariance conditions
for F,, of the GS sigma model (1.2). To be a candidate for the scale invariance conditions these
equations should have the following properties:

(1) vanish on the supergravity equations (2.1), (2.2), (2.11), (3.1)-(3.3) with X =d¢, Y =0

(ii) depend on Z and I through X =Z + 1

(iii) depend on X through Lie derivatives.””

Starting with the modified equations (3.17) and acting with *d* on the first equation and d*
on the second and then using the modified equations (as described in Appendix D) we arrive at
the following equation, which satisfies the above properties

dwdx Fong1 +*d *dFoni1 + SR A Fopy1 — § % (Hy AxH3) A Fapyg
— Hy Ax(H3 A *Fopt1) — *(H3 Ax(H3 A Fopy1))
—d* (H3 AxFopy3) — *(H3 A xd Fopg3) +xd x (H3 A Fop—1) + H3 Axd x Fop—)
= LxFons1 +*Lx * Fang1 — (xd % X) A Fangt + BE A Foumy = *(BP AxFons3) .

“4.2)

Here ﬂB is the 2-form analog of (2.2), i.e.

BE=1xdx Hy + K =»(X AxH3) +dY . 4.3)
This is then a candidate for the scale invariance equation for the R—R form 7,4 1.

Using the identity
*Lx * Font1 = LxFans1 +*(d x X) A Fons1 + B Fontr
,BG cFontl = Zﬁginfml--~mi—1nmi+1---m2n+l ’ (4.4)
i

where ﬂmGn is defined in (2.1), we find that (4.2) becomes

dxd*x Fopt1 +*d *dFopy1 + %R A Font1 — % * (H3 A *H3) A Foptt
— Hy Ax(H3 A *Fopt1) — *(H3 Ax(H3 A Fopy1))
—d* (H3 AxFopy3) — *(H3 A xd Fopg3) +xd x (H3 A Fop—1) + H3 Axd x Fop—)
=2LxFons1 + B - Fonst + BP A Fonot = #(B% AxFons3) . 4.5)

22 Moreover, since the R-R fields F are invariant under the isometries generated by /, their Lie derivatives along /
vanish, and therefore the scale invariance equations in fact depend only on Z.
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The dependence of these equations on X rather than separately on Z and I can be related to their
close connection to the particular X-dependent combinations of the modified equations in (3.11),
(3.12), (3.13), 1.e. to (here n € Z as in (3.17))

Bom=dFo—1— X ANFou—1 +H3 AN F2p—3
+ (D" % (dFo20 — X NFoop +H3 AN F7-2,) =0. (4.6)
We also define as in (1.11), (2.2)
BE=%xdxHs+K—»(X AxH3) —dX =0,
BY¥=R— 3 x(H3 AxH3) +4xd* X —4x (X A%xX) =0. 4.7)

Deconstructing the derivation in Appendix D, we find that the 2nd-order equation for the R-R
fluxes (4.2) can also be written as

dE2y — X A B + Hy A Eopz = Fan—t A B°
+ (=1)" % (dEg_2y — X A B2y + H3 A Bg_on — Fr—on A BB) + L Fonii A B*
=0. 4.8)
Finally, let us present the explicit form of eq. (4.5) in components. For F; we find
D*Fp — Run " + (R = 3H*) Fp
+ SHP"" Hyp Fie — Dy HP™ F i — AHP™ Dy Frotn
= 2(XP Dy F + D XPFp) + B, F" — L BB F™,, . 4.9)
Using the identity Dy, Hypr) = O the term %DmH””k}‘pnk in (4.9) can be replaced by
%D o Hpnik F Pk The equation for F3 may be written as
D Fokm = RainFiom) + Rapik F %0y + §(R — 3 H) Fotom
+ %HabCHab[nfkm]c - %H“bcHa[nkfm]bc
+ D Hupui Fin) + Hapnk D Fin) — Fa D Hyim
— Dy H Frmyave — 5 H Dy Foenkm
= 2(X* DaFnkm + Din X Fimia) + BT km) + Bigx Fmt — 3By T niem (4.10)
while the equation for Fs can be put into the form
D Fijim — Rati F* jkim) + Raviij F o + (R — 3 H*) Fijkim
+ %HabCHab[i}_jklm]c - %HabcHa[ij]'—klm]bc
+ D Hypjj Fim) + Hapij D Fiam) — Faij D Hxim
+ fy8ijuimbaes (Da H FU + H* Do F* — F* D, HI) =
=2(X“ Do Fijkim + Dii X Fkimia) + Beii F jkimy + B3 Fim)
+ Ta€ijkimabede (B°) P FI (4.11)

This expression is consistent with the self-duality of F5 (in particular, the third and forth lines
are manifestly dual to each other).
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These 2nd-order equations for i, F3 and Fs exhibit obvious structural similarities. In par-
ticular, they contain the expected Hodge—de Rham operator terms and the vector X only enters
through the reparametrisation terms as in (4.1). The B¢ and B terms in these equations are
defined as in (2.1), (2.2) but can also be replaced by expressions on the r.h.s. of (2.1), (2.2).

As we shall discuss in Appendix G, similar equations come out of the computation of the
one-loop beta-functions for the R—R couplings in the GS sigma model (1.2).

5. Origin of modified equations: T-duality relation to type II equations for backgrounds
with non-isometric linear dilaton

Given a scale invariant sigma model in flat 2d space T-duality in an isometric direction should
also produce a scale invariant sigma model. Similarly, given a Weyl invariant sigma model on
curved 2d space with all couplings including the dilaton being isometric the T-dual background
should also be Weyl invariant (provided the dilaton transforms in the usual way [32,33]). As
discussed in the introduction, in general this is not so if the dilaton is not isometric: T-duality
will still preserve scale invariance but not Weyl invariance. Thus given a solution of type II
supergravity equations which has linear non-isometric term in the dilaton its T-duality image
will no longer solve the standard type II equations but will satisfy instead a modified set of
type II equations as discussed above.

5.1. Simple examples

Here we shall make the origin of the modified equations explicit by showing that they repre-
sent the original type II equations for a solution with non-isometric linear dilaton, rewritten in
terms of the fields of the T-dual background. To explain how this happens in simple terms let us
first start with a bosonic background (1.8) with A, =0, i.e.

A2 R A N

ds =e_2a(x)dy2+gw(x)dx“dx” , ¢p=—cy+ox)— %a(x) ) (5.1)
Then the corresponding Weyl anomaly coefficients

BS, = Run + 2D D0 , B®=R+4D’¢p — 4G 0,0, , (5.2)

have the following components under the £ = (3, x*) splitting of coordinates

BS, =Ry, — duadya +2D, Dy . B, = ¢ (D" Dya — 20" adugp) | (5.3)
B, =—2c dua, B? =R — 8"ada +4D*p — 43" 9, — 4c*e® . (5.4)
We see that if ¢ = 0, i.e. the dilaton is isometric, then the Weyl invariance conditions Bﬁv =0,
B¢ = 0 are invariant under T-duality in y, i.e. under @ = —a — a, (]3 — (;3 4+ a or ¢ — ¢. The
¢ = —05¢ dependent terms in (5.4) thus represent obstructions to mapping one Weyl invariant

model to another. The T-dual metric then solves weaker, modified, equations
Rin + D Xp + DpX;m =0, BX=R+4D"X,, —4X"X,, =0, (5.5)
with X, being (cf. (1.10))

23 Here R,y is the Ricci tensor of gy (x), see Appendix A.
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Xy=Z,=00=0d(p+%a), Xy =1y =—G,,dsp =ce™. (5.6)
Similar conclusions are reached in the case we have a non-diagonal metric in (1.8) (see the
general discussion below). The presence of non-zero A « 1s in fact necessary to have a solution
of the Weyl invariance conditions when ¢ # 0 (cf. (5.4)) and the target space should thus be at
least 3-dimensional. An example of such a solution was found in [13]. It represents a limit of
the background associated with the SO(4)/SO(3) gWZW model, which has the following metric
and dilaton [34]

tan? ¢ dp® + cot’t dgq?

ds? =di* +
1_p2_q2

n?¢

2 2 2 2
=dt” +cott (df +tany cotfdy)” + —— 20d1ﬂ , 5.7
sin

¢ =—1In(y/b% — p? —g%sin2t) = —In(sin6 cosy sin2t), (5.8)

where p =sinyr, g = cosf cosy and ¢, ¥, 6 are angles of the coset parametrisation of the SO(4)
group element. This background (which solves the Weyl invariance condition 8¢ = 0 with ¢ =
const) has no isometries. One option to generate an isometry is to set # = iz and then shift z
by an infinite constant. Doing so we get linear dilaton in z, but the z direction decouples in the
metric. A non-trivial alternative is to set ¥ =iy and to shift y by an infinite constant (which
corresponds to infinite rescaling of p, g generating a scaling isometry in the metric (5.7)). The
resulting background (we drop an infinite constant in the dilaton)

tan2 t

tan? ¢ dp® + cot’t dgq? .
7,45 59

r+q’

¢=—1In (v P? +¢?sin2t) = —9 — In(sin® sin2¢), (5.10)

is therefore of the same type as in (1.8) and defines a conformal sigma model.”* Similar higher
dimensional backgrounds can be constructed starting from SO(n)/SO(n — 1) gWZW models
withn >4 [13].

T-dualising the metric (5.9) along y we get a (G, B) background that will solve the modified
(G, B) equations (2.1), (2.2) with non-trivial X, = I,,, + Z,,, where 1”7 = —89(2) and Z,, is given
by (2.14), with ¢ = é— % log G 55. These modified equations will be the original Weyl invariance
conditions rewritten in terms of the dual G and B-fields.

Given the 2d CFT in (5.9) with 2d stress-tensor defined taking into account the dilaton in
(5.10), one may formally compactify y and ask if this CFT has T-duality as a symmetry of its
spectrum. The answer appears to be no as the 2d stress-tensor will not be invariant under T-duality
(i.e. mapping momentum into winding modes).”> This is compatible with our expectation that
formally T-dualising the metric (5.9) will not lead to a consistent CFT.

ds? =di* —

=d1* + cot’ 1 (dO + cotd dF)? —

24 The central charge for this d = 3 conformal model is given by ¢ = d — %(X/(R - % H? +4D2¢ — 4Dy D" ) +... =
3— %a/ x 12+. ... Here the scale of the space was set to one, so that o’ is then the inverse of the WZW level k. This is in
agreement with the usual count of the central charge for the SO(4)/SO(3) gWZW model ¢ = 6k/(k+4) —3k/(k+2) =
3 —18/k + ..., which should be unchanged in the coordinate limit leading from (5.7) to (5.9).

25 Given a free compact scalar CFT L = r2(0¢)? with ¢ = ¢ + 2 the spectrum of dimensions of primary operators
(like "PHim® et ) is T-duality symmetric. If one formally adds a linear dilaton term g [ d?zvh R(2)¢, or equivalently
modifies the 2d stress tensor by q82¢ terms (which are invariant under shifts of ¢ and thus defined for a compact
boson) then the T-duality symmetry of the spectrum is broken by extra terms ~ gn. The formal symmetry would be
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The same conclusions are reached for type II solutions with a linear dilaton and non-zero R—-R
fluxes (with isometric G, B and F,, = e? F,), such as the HT solution dual to ABF background in
the AdS5 x S° case and its counterparts in the AdS; x $2 x T%and AdS3 x S3 x T*cases discussed
in Appendix F. Explicitly, in the case of a solution (G, E‘ ]:"n, (;3) with several isometries broken
only by the linear dilaton term

b=¢o—cid + f(x1), (5.11)

we will get a generalisation of the type II supergravity equations, depending on the following
two vectors Z and I (cf. (2.6), (2.7), (2.14))

. 1 ~
I =ciGy,ydy', Z=do+1B, ¢=f—§ZlogG5,i5,i. (5.12)
i

Here G and B are the background fields of the T-dual background.
Below we shall illustrate these relations in the general case with one isometry.

5.2. NS—NS sector

We consider the following two d-dimensional backgrounds (here we use K, instead of A p in

(1.8))
ds®> =e*(dy + A,Ld)c”)2 + guvdxtdx" |
B=K,(dy+ %Audx“) Adx" + %b,wdx“ Adx'
p=—cy+o+ia, I’=¢, "=0, (5.13)

) R
ds = e_2a(dy + K,de“)2 + guvdxtdx”

B =A,(d+ SK,dx"y Adx” + Lbdx™ Adx

p=—C5+9—1ta, "=c, "*=0. (5.14)

Here y and y are the directions that are assumed to be (shift) isometries of their respective
metrics and B-fields. We use the indices w,v,...=1,...,d — 1 and m,n,...=1,...,d. For
¢=¢=0(5.13) and (5.14) are related by standard T-duality, such that ¢ is the analog of the
duality-invariant dilaton field. Let us also define

Z=d¢+B=—cdy+de+sda+¢K,dx",

X=Z+1=(—c+ée*)dy+dp+tda+ (K, +ee*Aydxt

2:d<}3+ti1§ =—cdy+deo— %da—i—cAde“ ,

X=Z+1=(=¢+ce)dy+do—Lda+ (cA,+ce ™K )dx" (5.15)
where

Z-1=27-1=—cé. (5.16)

~

restored in the “doubled” formulation if the linear dilaton term were given by g¢ + ¢ where @ is the dual field (with

1 s “duali
ﬁq <~ \/;q under T-duality).
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The two (G, B) backgrounds in (5.13) and (5.14) are T-dual to each other and thus for c = ¢ =0
solve the equivalent Weyl invariance equations (see, e.g., [37] and the references therein). We
will now show how this relation also extends to the more general case with linear dilatons.

Let us first consider the generalised dilaton equation

R— 5H*+4D"X,, —4X" X, =0. (5.17)

The question we want to address is: if the background (5.13) satisfies (5.17) does that imply
that (5.14) satisfies (5.17). As the two backgrounds (5.13) and (5.14) are related by the obvious
symmetry

a— —a, A, <K, , c<C, Yy, (5.18)

it is sufficient to compute the left-hand side of (5.17) for (5.13) and check that it is invariant (or
at least covariant) under (5.18).
For (5.13) we have
Xy=—c+ée™, X, =00+ 30a+ 0K, +Ee*A, . (5.19)

It will also be useful to define the following objects

Fuo=0,A,—0,A,, H, =0,K,—0,K,,
huvp = @b+ YANAK + 5K AdA) (5.20)
where we observe that /4 is invariant under (5.18). Now using the dimensional reduction formulae
in Appendix A we find
R— 5H?+4D" X, — 4X" X,
=R —d"adya — 5h* — L F'F,, — e ™ H" Hy\y +4VF9,0 — 48" 00,0
+4cVHA, +4EVHK, —8(c A +¢ KMo
— 4P (AP A, +e72) — 4P (KM Ky + ) 4+ 8cé (1 — AMK,) (5.21)
which is indeed invariant under (5.18). Therefore, if (5.17) is satisfied for background (5.13) it is
satisfied for background (5.14) and vice versa.2®
Let us now turn to the modified metric and B-field equations to show that the two combina-
tions appearing in (1.3) and (1.4)
Rmn - %Hmqunpq + Dan + DnXm ’ (522)
%DpHmnp - XpHmnp - Dan + DnXm ) (523)
are covariant under the symmetry (5.18).”’ Then if they vanish for the background (5.13) this

implies that they vanish for (5.14) and vice versa. As (5.22) is symmetric and (5.23) is antisym-
metric, we may just consider their difference

26 This generalises the usual (¢ = ¢ = 0) discussion of the T-duality invariance of the string effective action (1.7) with
VGe 2 = ﬁe_zw.

27 Here we assume Y in (1.4), (2.2) is equal to X, in (1.3), (2.1) as is the case for the /-modified equations sat-
isfied by the ABF background. More generally, given a scale invariant sigma model with an isometry and the G and
B-field couplings satisfying (1.3), (1.4), its T-dual counterpart will also satisfy (1.3), (1.4) with the roles of X, and Yy,
interchanged.



G. Arutyunov et al. / Nuclear Physics B 903 (2016) 262-303 279

Con = Run — 5 Hupg Hy"? — A DP Hypp + 2Dy X + XP Hyp (5.24)

which we can decompose into a part independent of ¢ and ¢ (C,(,?,g) and a part linear in ¢ and ¢
(1
(Cun) as

Con =CQ 20 (5.25)
Cr(y?y), = mn - ZHmqunpq - %DpHmnp + 2Dmx,(10) + X(O)pHmnp s (526)
C)=DuxV +1xVrH,,, . (5.27)

Here we have used the fact that all the ¢ and ¢ dependence is contained in X = X @ + X1 where
X s the c- and é-independent and X (U is the c- and é-dependent part. Using the specific form
of X for the background (5.13), as given in (5.19), we have

XV =0, XV=0u0+30ua. XP=-ct+ée™, XPD=0K,+ce™A,.
(5.28)

Using the formulae in Appendix A we find the following relations for C,(,?,z and C,(nl,z evaluated
on the background (5.13)

C) =2e*0"pdya — 'V ya + je* Fuy F' — {Hy H'

G
c - —G”‘ CO) = AV +0"a—0"9) Fuy + JhyupH"
yy

+(AVY —98"a—9"9)Hyy + 56> hyu, F*
0) GIW 0) 2a /1 v v v 1 Vo
Ciol = 5 C) =GV +0"a = 0"9) Fu + ghunp H
yy
— (V" —8%a— 3" Hyyy — Le™ P

c® _ Sw -0 _ GwC(O) Gy Gy -0

e Gy} w G)y ny G}y
=Ry — dpadya + 2V, 0,9 — 2> Fy P — Se ™ H,pH,”
— 3V huup = 3hupo s + hyupd’ e (5.29)

cl) = (At +EKM)dua ,

G \ .
Chil = GO = =€ Fuy + Hu) (A" +EK") + (c = ée*)da
yy

G
) - %c;ly) = — 2™ Fuy — Hu)(cA"¢KY) + (c +¢e*)dya,
yy

GM) C)(}l) GyV C/(J.ly) + Gﬂy @
Gyy Gyy Gyy Gyy

=1e(VuAy + VA + 56e* (V, Ay — V,A)Y)
+ 16V Ky + VoK) + Sce (VK — VoK) + Shyup (AP +EKP) . (5.30)

1) 1)
C;w Cy
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Then using the map (5.18) between the backgrounds (5.13) and (5.14), we find the following
relations for C,,;,

Cy Gy 1 C Gy C _ 1 é S é
G,y Gos r;yy[ YT Gy w] @yy[ T 5 53]
1 _Guw _ 1 2 Guﬁ AL
/Gy [Cuy Gy Cyy] = e [Cus Gis Cs5]
yy
A G Gy A Gy Gyy A A G5 A Gy A G Gy A
C _ “,VC _JC ) ny le =C _ AM’VCA _ .‘VC N A/J'Y A}vC"A’
my G}'}' v G,V,V ny ny ny Yy my Gﬁ. yv GyAyA Hy + GQ.{, G_W Yy

(5.31)

where the left-hand side is evaluated on (5.13) and the right-hand side on (5.14). From these
equalities it follows that the vanishing of the tensors (5.22), (5.23) on the background (5.13)
implies their vanishing also on the background (5.14), and in this sense are covariant under
T-duality.

Let us briefly comment on the generalisation when /# = Iz # 0 in the backgrounds (5.13)
and (5.14) (i.e., when there are extra isometries in x* directions). Running through the same
analysis we find that the result still holds only if 7/ satisfies certain properties. In particular, the
T-duality relation between the equations for (5.13) and (5.14) still holds if

I"A, =1"K, =0. (5.32)

This requirement is also sufficient for the T-duality of the modified equations of motion for the
R-R fields discussed in the following section to continue when /#* = 1" 0.

One can check that these relations are valid at each stage in the sequence of T-dualities re-
quired to transform from the supergravity HT solutions of [12] to the ABF background (B.1) and
its AdS3 x S3 and AdS, x §2 counterparts (F.4), (F.13).

5.3. R-R sector

Let us now consider the case of non-zero isometric R-R fields F,,. The contribution of the
R-R fields to the metric and B-field equations appears in the usual unmodified form and hence
we can focus our attention on the modified equations of motion for the R—R fields (3.17). Written
in terms of the forms f; = e~%/>F} these take the following form (dropping the distinction
between y and y)

E=dfx —Z' A fx + H3 A fr—a — Cty frg2 =0, (5.33)
ékEdfk_2//\fk+l:13/\fk—Z_CLyfk—i-ZZO, (5.34)
where we have introduced (K = K, dx", A=A, dx")
1 N A~ 1
7' =7Z— Eda: —cdy+do+¢K , Z'=7- Ed&:—édy—i—dgo—i—cA , (5.35)
which are related to each other under T-duality as
72'=7Z'4cdy+A) —édy+K)=Z +5Z. (5.36)

Recall that the invariance of the R-R forms under the isometry along y requires

cé=0. (5.37)
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This follows from the condition [ - Z = 0, which is implied by the invariance of R-R fields as
LiFr=U"-2Z)Fk. A .
We want to show that if f; satisfies the equation & = 0, then f satisfies & = 0. Taking into
account the T-duality relations in Appendix A one finds
—2/ A fk
=—dy+K)ANZ'A fim1 + @y + K) Ay + A Ay(Z' A fie1) = (20 A fier1)
+cldy+K)AN(dy+A) A fiet — cfip1 —8Z A (—(dy + K) A fr—1 — ty frt1)
Hy A fra
=dy+K)ANH3A fr-3—(dy+ K)A(dy+ A) Aiy(H3 A fi—3) + Ly (H3 A fr—1)
+dy+K)ANdy+A)ANiyH3 A fr—3 —tyH3 A fr—1
+(dy+A) ANHy—(dy+K)NF) AN(—=(dy + K) A fie3 =ty fi-1)
_Clyfk+2
=—c(dy + K) Aty fip1 +(dy + K) Aty fir1 +cfirr —e(dy + A) Aty frtr-
(5.38)
Here we used that 6Z A (dy + K) A (dy + A) Aty fr—1 =0and ((dy + A) A Hy — (dy + K) A
F) Ady + K) A (dy + A) Aty fir—1 = 0. Further using that 1, H3 = — H, one finds
S =(dy+ K)A&E—1 — (dy + K) A (dy + A) Aty Ek—1 + 1kt
—Hy A fir—1+ Hy A (dy + A) Aty fim1 — (dy + K) A F2 Aty fr—1
+cldy+K)AN(dy+ A) A fim1 — cfiv1 =8Z AN (=(dy + K) A fe—1 — by fier1)
—dy+K)ANdy+A) ANHy A fr3+ Hy A fr1
+(dy+A)ANHy —(dy+K)ANF) A(—=(dy + K) A fe—3 =ty fi—1)
+e(dy + K) Aty fierr + cfirtr —c(dy + A) Aty fiy - (5.39)

If we set & =0 and ¢ = ¢ = 0 we get

HyA(dy+A) Aty fio1 —(dy+K)ANFy Ay fred
—(dy+K)A(dy+A)ANHy A fr—3
+((dy+A)AHy —(dy+K)ANF) A(=(dy +K)A fr—3 =ty fic) =0, (5.40)

as expected. It remains to consider the ¢ and ¢ dependent terms only

&= (dy +K) A &1 — (dy + K) A (dy + A) A tyEx—t + tyEkit
+c(dy + K) A (dy + A) A fi—1 — cfit
—(cdy+A)—cldy + K) A (=dy+ K) A fi—1 =ty frer1)
+é(dy + K) Aty fir1 + cfir1 — c(dy + A) Aty fira
=dy+K)ANE—1—dy+K)A(dy+A) A& +1yEkt1 - (5.41)
Thus, if & =0 then & = 0, i.e. the backgrounds (5.13) and (5.14) supplemented by R-R

fields have their corresponding modified equations mapped into each other by this generalised
T-duality.
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6. Concluding remarks

There are several open problems and puzzling questions. First, it remains unclear if the scale
invariant but arguably not Weyl invariant 7-model can still be used to define a critical superstring
theory. This might be possible in view of the existence of the A-model [24] which is classically
related to the n-model by the Poisson-Lie duality combined with an analytic continuation of
the deformation parameter, and for which there is a candidate supergravity solution [25] (i.e.
it should represent a Weyl invariant sigma model). In fact, a special limit [13] of this solution
should be essentially equivalent to the HT solution [12].”® Thus if the classical Poisson—Lie
duality relation [26] between the n-model and A-model [27,12] extends to the full quantum level
there may be a way to associate a string theory to the ABF background. This might also require
increasing the number of 2d fields (such as in a doubled or phase space formulation). Indeed,
already at the classical level, establishing the connection between the two models calls for the
use of the phase space formalism. The quantum n-model defined in terms of an extended number
of fields (including, e.g., analogs of 2d gauge fields of the gWZW part of A-model) may then be
Weyl invariant, and integrating out extra fields might produce the GS action corresponding to the
ABF background plus extra non-local terms required for restoring its Weyl invariance.

As we have seen above, the fact that the HT background solves the type [IB equations implies
that the T-dual ABF background should satisfy the /-modified type II equations. These explicitly
depend on the isometry vector I, whose origin can be traced to the presence of the linear term in
the dilaton of the HT solution. One can ask whether these /-modified equations are Lagrangian,
i.e. if they can be derived from the action principle. Answering this question may require the
introduction of R-R potentials and understanding whether one should treat the vector / as an
external source or as an auxiliary field with no physical degrees of freedom. In view of our
analysis of T-duality in section 5, it would be interesting to know if there exist more general
I-modified equations that are compatible with T-duality and have ¢ ¢ # 0 in (5.16). One would
also like to understand how the usual action of the T-duality group O (d, d) is modified.

In the present work we discussed only the /-modified equations for bosonic fields. It is an
interesting question how the equations for the fermionic fields of type II theory are modified.
Furthermore, if the /-modification destroys the local supersymmetry of type II theory one may
ask if there is still any (hidden) symmetry of the /-modified equations for bosonic and fermionic
fields.

To better understand the nature of the ABF background it would be important to derive the
quartic fermionic action for the n-model of [1] and to show that the /-modified equations indeed
follow from the x-symmetry [1] of this action. Starting with the standard GS action for the HT
solution [12] (which, as was mentioned in the Introduction, is invariant under shifts of the 6
isometric coordinates) and performing the T-dualities one will get #* and higher terms in the
n-model GS action depending on the vectors / and Z. These will originate from the dilaton,
043¢, etc., terms in the HT GS action. The resulting n-model action should still be invariant
under the x-symmetry defined in [1], however it is then probable that the structure of these
transformations will deviate from those of the usual GS action.

28 The need for T-duality in order to relate the HT solution to the ABF background can be understood from the two
facts: that the A-model is a deformation of the non-abelian T-dual of the AdS5 x 53 sigma model and that in the limit of
[13], which enhances the Cartan directions making them the isometries, the non-abelian T-duality along these isometric
directions turns into the standard abelian one.
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The knowledge of the quartic fermionic action should also enable one to perform the full com-
putation of one-loop divergences of the n-model in the R-R sector (completing our discussion
in Appendix G) and hence check the agreement between the 2nd-order equations for R-R fields
derived from the modified type Il equations with the scale invariance beta-functions for 7.

It would also be important to attempt a direct analysis of the Weyl invariance conditions,
which should lead to Ist-order conditions for R-R strengths equivalent to type II supergravity
equations. More generally, one may study the one-loop renormalisation of a generic x -symmetric
sigma model with 8 bosonic and 8 fermionic degrees of freedom, and classify interaction terms
for which the corresponding model is either conformal or scale invariant only. It is possible that
the class of conformally invariant models may be bigger than just the usual type II GS superstring
sigma models.

Finally, it would be interesting to perform a similar analysis for the deformations of AdS,, x S"
backgrounds constructed from other solutions of the modified classical YB equation [1,40], or
solutions of the classical (non-modified) YB equation, see, e.g., [41,42]. In the latter case many
of the resulting metrics and B-fields can be completed to full type II supergravity solutions,
however it remains to verify that these completions are indeed realised by the supercoset action.
Indeed, the analysis of [7] has shown that the large »-limit of the n-model does not coincide with
the AdSs x S° mirror sigma model [43] even though the bosonic part of the model does.
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Appendix A. Conventions and some standard relations
A.1. Conventions for forms

We have for any m-form Y and n-form Z on a manifold of dimension d

. : : . o
Z =i ZiyeiydX N ndxt 5Dy = iEiviaon i 27T

_ 1 i i T A T
l[Z = m[pzlnzmlndx 2N Adxin 5 (Y N Z)ll'“lmjl“‘]n = Y[ll.“lmzjl...jn] ,
YAZ= Vi in ZjyojydXN A Adxm AdxIUA - Adxdn (A1)

where the antisymmetrisation is understood as

dxil /\.../\dxim+n X
(A.2)

Zz Z

: : |
. . . . 1] e Im+n — (Wl+}’l) . . . .
Y[ll“'lm lm+1'“lm+n]d‘x A Adx - mn! Yll"'lm Um+1"""Im+n

In d dimensions with Lorentzian signature we have
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(_1)nd+n+l

*ZZn — (_1)dn+n+lzn . [(%(Y,n /\*Zn)]i1~~in_m — yiting

m!

In particular for m = 1 and even d one has

*(I ANxZy) =112, .
A.2. Dimensional reduction formulae

Let us take the metric and B-field as in (5.13)
ds®> =e*(dy + A,Ld)c“)2 + guvdxtdx" |
B=K,(dy+ SAudx") Adx’ + Sby,dx* Adx”
where y is an isometric direction. It is useful to define
Fuo=0,A, — A, , Hy,, =0,K,—0,K,,
huvp = (db+ SANAK + LK Ad A, .

i '“infmjl /m :

(A3)

(A4)

(AS5)

(A.6)

We can now write the various d-dimensional quantities appearing in the modified type II equa-

tions in terms of (d — 1)-dimensional ones as follows

GYY :e—Za + AZ , G — — AM 7 G :g”” ,
Hyw=—Hpy , Hyvp =hpvp — (ANAK) p
Fiy = eZ“A”Z),La , F’y‘y = 2ty ,

[yp=dua+e* A A da + 3™ AYF,, |
Y, = 2(VuAy + VoA + Avdua + Apdva + X A, A, A8 pa
+ 12 AP (AuFpy + AvFyp)

Tl =—e®A,0ta— e Fr,,  TM =0, I =da+vy),.
T, =y — €A A 0Pa — 5e* (A FP, + A FP L) = yih, + 6T,
Ryy = —€*1VH3,a — X3 adya + Le F 1

Ry, = RyyA, — 3e*0aF,, — 3¢*V'F,,

Ruv =Ry — Vydva — duadva + Ay Ryy + AyRyy — AyAyRyy — 12 F,PF,)

R=R— 1e¥FMF,, —20"ad,a —2D*d,a,

HMHyy = H" Hy, | HMHyy = —H"hy, + Ay HP H,yp

HM Hogg = 1y hopo — hy° AyHpo — by Ay Hpo + Ay AyHP Hpo

+2e" % Hy, H,

H"™P Hypp = WP hypy +3e 2 H' Hy,,

D"Hyyi =V Hyyy — Hyyd"a + 22 FPhy,

DMHypk = VPl + (hywp + Ay Hyp — AyHyp)Pa — €24 FP% Apuhoylpe
—2A[,V* Hyp -

(A7)

(A.8)

(A9)

(A.10)

(A.11)
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Also, for a vector X = X ,dy + X, dx" we have

D" Xy =VHFX, — X, VFA, — X A 3,0 + X 90 — A*9, X,

X" X =€ X; + X5A A, —2X AV X + X1 X, (A.12)

DyX, = eZ“XMB,La — e2aXyA“8Ma ,

DyX, = 1e* (= Fuy +23,aA,) (X" — Xy AY) — Xyd,a

DuXy=3e* (= Fuy +28,aA,)(X" — XyA”) — Xyd,a + 3, Xy

DX, =V, X, — XyAuda — XyAydua — $X, VA — X,V A,

— $* (ApFup + AyFup —20,aA, A,)(XP — XyAP) (A.13)

Here Qv = %(Q,w — Quu), V. is the covariant derivative with respect to the (d — 1)-

dimensional metric g,, with connection yli‘v, and Ry, and R are the (d — 1)-dimensional Ricci
tensor and scalar respectively.

A.3. T-duality rules

Let us consider two isometric backgrounds related by T-duality, with the fields of the dual
background denoted with hats. The metric and B-field will be taken in the form of (5.13), and
we will also consider the isometric dilaton ¢ and the R-R field strengths Fj = e? F; of type II
theory

ds? = e (dy + Aﬂd)c“)2 + guvdxtdx" | ¢, Fr,

B = K,(dy + $Audx") Adx’ + Sbydxt Adx” (A.14)
d§? = e*(d§ + Audx™)? + guvdxtdx b,  Fi,

B=K,(dy+ LA, dx") Andx¥ + Lb,,dx" Adx” . (A.15)

The T-duality rules for the NS-NS fields are (see (A.6))

Ku=A,, Fu=H,, Huo=F., hup=hu,. (A.16)

In terms of the forms A = A,dx*, K = K,dx", Hy =dK, H3 = dB, and the corresponding
hatted ones, one has?’

Hy=Hi+dy+ A AH,—dy+K)A B>,
Hy=Hi+(dy+ A AH,—dy+K)AF . (A.17)

To write the T-duality rules for the R—R fields it is convenient to introduce

fr= eia/z}-k = ?7a/2 F, fk = 67&/2.7}1{ = 6(137&/2 ﬁk . (A.18)
Then
fi=—Wy+K)A fici + (dy +K) Ay + A) Aty frot =ty firl > (A.19)

29 Here for notational simplicity we use the same y for the isometric direction and its dual — whether it is y or y is clear
from context.
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where ¢y fi = vy, fi, I;" = &', Also using the assumption of invariance of the R-R forms under
the isometry, £ I f &) = 0, one has

by fo=—fio1 + dy + A) Ay fiot
dfi = (dy + K) Adfi—1 — (dy + K) A (dy + A) A tydfir + tyd fiyn
— Hy A fit + Ha A (dy + A) Aty fimr — (dy + K) A Fa Aty fi (A.20)

Appendix B. ABF background and T-dual HT solution

The ABF background [6,7] represents the couplings in the n-deformed AdS5 x S5 action [1]
expanded to quadratic order in fermions and formally identified with a GS action. This back-
ground for the type IIB fields (G, B, Fi, F3, Fs5) (but not the dilaton which cannot be extracted
from the DMV action, and, in fact, does not exist) is given by

1+ 02 dp? 2 cos?
ds? =— /2)2dt2+ 25 B 1024-4-2[112
1—x2p (I =s2p)(1+p7) 14 x2p*sin“¢
de? 22 2
4+ — 2> 4 p*sin“&d
1+ x2p*sin’ ¢ g e
n 1—r2 4o+ dr? r? cos? & 2
122 T a0 =) T T 2rtsinte
dg? 22,2
+ ——  +r°sin“&dos,
1+ x2r4sin® & 5402
5 Xp4sin§cos§ AdE — ){r4siH§COS§ déy AdE |

14 2p4sin?e 1+ x2r4sin® &

Fi=%°F [p4 sin? ¢ dry — r¥sin? & d¢2] ,

F F[7p381n2§dt/\dl/f Ndp+ 78 4o dgy nd
=x r
3 1 —x2p? 2REOT T 22 2
4 4.
prsing cos¢ r*sin& cosé&
————————dyo ANdY 1 ANd + ———————dPpry Adpr AN d
1+ x2p4sin®¢ vandyindg 1+ 22r4sin® & b2 1 dg ndE
prisics Ad ”2p4r5in2§d¢ ANdp Ad
e s _xprsm s ,
1 —x2p? P 2 1+ %22 2nae
w2 ptrising c:o.sgzsinzédl//1 NdE A ddy
1+ %2p*sin” ¢
2 442,
x“p*r*sin” ¢ sin€ cos &
dys A dgi A dg]
1+ 22r4sin® & V2 ndginds
3 .
p”sIng cosé
F :F[ dt Adyn Adyy Ade Ad
> (1 —22p2)(1 4 22 p*sin’ 7) vandynndindp

r3siné cos&
(1 + 22r2)(1 4 »2r4sin® £)

doNdpy Ndpy ANdE Ndr
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}fzpr
(1 —22p%) (1 + 2%2r?)
x (p2sin®cdt Adyn Adp Ado Adr +r?sin®Edt Adp Ade Adg Adr)

1% p*r¥sin cos ¢ sin& cos &
(14 x2p*sin® 2)(1 + »2r4sin® &)
X ([dya Ndyy ANde ANdpy ANdE —dYyy ANdE ANdpa Adpy A dE)
x2prisin& cos €
(1 =2p2)(1 + x2r4sin% €)
x (p2sin® ¢ dit Adyn Adp Adgi AdE —dt Adp Adgy Adpi AdE)
12 p*rsing cos¢
(1 +22r2)(1 4 22 p*sin® 7)
x (r2sin? € dyy Ade Ado Adgy Adr +dys Adyy Ade Ade Adr)
x4 p3rtsin cos ¢ sin® &
B (1 —22p2) (1 + 22 p*sin’ ¢)
x4 p*r3 sin® ¢ sin& cos &
(4 22 2)(1 4 a2t sin? £)

dt Ndyry ANdE Ndp Ndpy

Ay Adg A de Ads,:Adr],

F 44/1 4+ 22 B.1)
B V1= 32021 + x2p* sin? EV1 + 2223/ 1 + x2r* sin® & . .
Here x = 13’372 is a continuous deformation parameter of the n-model: » = 0 corresponds to the

standard AdSs x S° solution [28].
ds? = G (x)dx™dx" defines the 10d metric G and the sign of B-field is chosen as in [6],
i.e. it corresponds to the sign in (1.2). Fj = e? F are effective R-R k-form strengths of type 1B
theory that appear in the GS action. The self-duality equation satisfied by the R-R 5-form is
anpqr = %Emnpqrstuvw Ftuvw s Emnpgrstuvw = \/E Emnpqrstuvw - G= |d€t Gmn| s
(B.2)

where we order the coordinates as x™ = (¢, V2, ¥1,¢, 0,0, ¢2,¢01,&,r) and take
Eryaycppdadisr = — 1.

As found in [ 12], there exists an exact solution of the standard type IIB supergravity equations
that is T-dual to the ABF background (provided we ignore the dilaton transformation). This HT

background has the following explicit form>’
a2 1_;{2,02 ” d,o2 d&lz .
ds =— dr” + + 4+ (pdt +xptan¢ d
’ 1+ p? (14 p2) (1 —x2p2%)  p?cos?¢ (pdE +xptant dyn)
d@% 1+ x*r? .2 dr? d(i’%

do” +

+
p2?sin?¢  1—r? A =r2)(1+x%r%)  r2cos?&

30 Here we have redefined (132 — —q32 compared to [12] to account for the opposite definition we use for the Hodge
dual. Also, recall that to perform the T-duality in 7 we first analytically continue to Euclidean time, then T-dualise and
finally continue back.
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y)

+ (rdé — xrtan& déy)* + ¢22§
B=0, F=F=0,
R 4iv/1 d dy) d
Fs= o [(d + V2 D (e — ertant i)

/1+ p2/1 x=p psing pcosg

r . . xrdr dq32 dé,
7 do) — (do —
A(1+x2r2+%r ¢)—(dg 1+z2r2) rsin& /\rcoss

) d )
A (pd¢ + xptanc diny) A (1——52# + }f,odt)]

(1= ?p?) (1 +2°r?)?

B=t0 4= )= 2eh —dnFlo e el B
When written in terms of the following “boosted”/“rotated” vielbein basis
e3=pd§—|—xptan§d1/}1, e4=\/1i_7(1_i—pzpz+xpdf),
C=Jiali- ). C=AR. I-rle
S =rdé — xrtanédg; , 692\/11—(1+ L+ xrd@) (B.4)
the metric and ]:"5 in (B.3) take the following remarkably simple form [12]
ds* = nunveM eV Fs =4i\/1—|——}f2(eo/\el N NN N AN NN
(B.5)

where M, N =0, ..., 9 are flat tangent-space indices, and 1,y is the Minkowski metric.
Appendix C. Conservation of R-R stress tensor and dilaton beta function identity

Given a Weyl invariant sigma model the dilaton beta function % in (1.6) represents a natural
definition of the central charge: it appears as the coefficient of the R®-term in the expectation
value of the trace of the stress tensor on a curved 2d background [20,21], and for this reason must
be a constant [9].3!

In the case of the ABF background we found an analog of the dilaton beta-function

B* =R - LHH™ +4D,X" —4X* (C.1)

and the equation 8% = 0 was used in section 2 to determine the isometric part I of the diffeo-
morphism vector X. In this appendix we reverse the logic and show that the modified type 11
equations for the NS—-NS and R-R fields with the same vector X implies the constancy of g%. In
other words, on the equations of motion (2.1)-(2.4), (3.4)—(3.9) governed by the vector (2.9) we
have the dilaton beta-function identity d,,8% =0

31 The one-loop equation 9, B%=0isa special case of the Curci—Paffuti identity [22] that extends to higher loops.
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To proceed, we first need to derive the conservation law for the R-R stress tensor 7y, in (2.3)
that should hold on the R-R equations of motion. First, consider

(Dn - 2Zn)(fm-7:n) = _(d]:l)mn]:n + %Dm(}—n}—n) +-Fm(Dn - Zn)fn - -FmZn]:n .
(C.2)
Now using (3.4) and (3.5), we find
(D" = 2Z")(FnFn) = 3 (D — 2Z) (FuF") — 1P (F" Founp) + s Fn H* Fape . (C.3)
Next, we have
(D" =2Z")(Funpg Fa"") = =5 dF3)mnpg F'"7 + § Do (Fupg F'7)
+ FnPU(D" — Z") Fupg — Fn’1Z" Fupg (C4)
such that using (3.7) and (3.6), we obtain
(D" =2Z")(Fupg FaP") = §(Dom = 2Zn) Fupg F"*) = 3 Fin H Fape + Hynpg Fu F"P
+ éHabc]:mpq]:pqabc - 2Ip(~7:n]:mnp) - %Ip]:abc}—mabcp .
(C5)
Finally, we need
(D" =22")(Fnpgrs Fa??"*) = = £ (dF5)mnpgrs F*P4"
_i_]_-mpqrs(Dn - Zn)]:npqrs - Zn]:npqrs]:mpqrs
= %(H3 A ]:3)mnpqrs]:npqrs + ;_OgmabcdnpqrslanCdfnpqrs
- 31_6]:mpqrsqursabcdeHabCfdef - 4Ipfabc-7:mabcp )
(C.6)

where we have used (3.8) and (3.9) and that .7’-'52 = 0. Taking into account the self-duality of Fs,
which also implies that 7,79 ¢ pgrsabede = —248miaFbedes)» We find

(Dn - zzn)(]:mpq”]:npqrs)
= 4H,,"? F Frpabe — 4Fn™ H Fupave — 817 F Frabep - (C.7)
Combining (C.3), (C.5), (C.7) we find the following conservation law for the stress tensor 7,,,,
(D" =2Z")Ton = 2K 1" + 5 Hyte K (C.8)

where KC,,,,, is defined in (2.4). We would like to rewrite this formula in terms of X = Z + 1. We
have

(D" = 2X") Toun = 2(Kmn = Tou) 1" + 5 Hyuten K" (C9)
Further, we use (2.1) and (2.2) (with Y = X) to write
Konn = Tu) " = — 5 DX Hin I" + Z¥ Hinn I" + (Dyy Ly — Dy L)) 1™ — Ry I"
+ $H M Hyg I" — (D Zy + Dy Zy) 1™ . (C.10)

Notice that due to the properties of [, in (2.6) one has [D,, D,,]1I" = Ry, 1" = —D"D,1,,
which implies the following identity
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Ryn1" = 3D"(Dyy I, — Dyly) . (C.11)
Then
(Ko = Tan) 1" = 5 D* (Hignn I") = 5 Honten D*I" + Z* Himn I" + 3 H! Hig 1"
+ (D Iy — Dply)I" — A D" (D 1y — Dyly) — (D Zy + Dy Z)1" .
(C.12)
Now using (2.13), we obtain
(Knn = Tun)1" = =3 D" (D Zy — Dy Zi) — D" (D 1y — Dy 1)
— $Hypn DX I — L Hypiy DX 27
+ Z"(DpZn — DpZp) 4+ I"(Didy — Dyply) — (D Zy + Dy Zy) 1™ .

(C.13)
Taking into account that
—(DnZn 4 DnZn)I" = (D Zy — Dy Zy)I" — 2Dy Z,, 1"
= (DyZy — DpZy)I" +22" D,y I,
=In(DmZn _Dnzm)+zn(DmIn _Dnlm) , (C~14)
we find
(ICmn - 7;,,,1)1'1 = _%(Dn - 2Xn)(Dan - DnXm) - %HmknDan . (C15)

Thus, the conservation law (C.8) acquires the following form depending only on the vector X
(D" = 2X") Toun = 5 Hptn K" = (D" = 2X")(Dpu X, = DaXm) — Huta D X" . (C.16)

Here, using (2.2), the tensor K¥ can be eliminated such that the r.h.s. of (C.16) is written solely
in terms of H3 and X. B
Now we ready to show the constancy of 8%. We have from (C.1)

dnBX =2D"Ryyy — t H™ Dy Hyy — S H™ Dy Hypg + 4D,y Dy X" — 8X" Dy X,y

(C.17)
Since Dy, Hyiip = 0 this can be rewritten as
3mBX =2D" (Rmn - %Hmlenkl) —4X" Ryun
+ 3D, H™ Hyppy +4D" Dy X,y — 8X" Dy X - (C.18)
Furthermore, using
4DanXn = 2l)n(l)mxn + Dan) - 2Dn(l)nxm - Dan) )
—8X"Dyp X, =—4X"(Dp X, + Dp X)) +4X" (DX — D Xy) (C.19)

we may combine the terms in (C.18) as

ImBX =2(D" = 2X")(Run — § Hukt H)"' + D Xy + Dy X o)
+ (ADyH™ — X, H"™) Hypy — 2(D™ = 2X")(Dy Xim — D Xn) - (C.20)
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Finally, using eq. (2.1) we have

ImPX =2(D" —2X")Tn
— Hypin K" + Hypn DX X™ +2(D" — 2X™") (D Xy — DpXm) =0, (C.21)

where the r.h.s. vanishes due to the conservation law (C.16). This proves that EX is a constant
(actually zero) on the modified equations of motion. The same is then true also in the spacial case

of the standard type IIB supergravity equations (i.e. in the limit (3.10)) with the R—R strengths

non-zero. 32

Appendix D. Derivation of second-order equations for R-R strengths from modified
type II equations

Here we present the derivation of the 2nd-order equations for the R-R field strengths, which,
as discussed in section 4, are candidates for the scale invariance conditions of the GS sigma
model, starting with the modified type Il equations (3.4)—(3.9) or (3.17), i.e. (n € Z)

dFous1 — Z AN Fopg1 + H3 A Foy—p —*(I A*Fopi3) =0,
d* Fop1t = Z AxFonyt — H3 AxFopi3 ++ (I A Fop1) =0 (D.1)

Our aim is to derive (4.2). Acting on the first equation by xd* and on the second equation by dx
we get
*d *xdFop11 —*xd x (Z A Fopy1) +*d x (H3 A Fop—1) +*d(I A *Fpu43) =0,
dxdxFoyps1 —d*x(Z AN*xFopy1) —d *x (H3 A *Fopy3) —d(I A Fopn—1) =0. (D.2)

Taking the sum of these equations and using x(I A xZ,,) = (; Z,,, we find

*d *xdFoni1 +dxd* Fopp1 —*Lx * Fonr1 — LxFont1
+*d * (H3 AN Fon—1) —d x (H3 A *Fop43) + *tzd(xFont1) + Lz dFonti
+xd(I A%Foni3) —d(I A Fop_1)+ 21 - ZFoni1 =0, (D.3)
where we have used (3.18): Lz Fopn+1 = LxFon+1 — L1Fon+1 = LxFont1 — L - Z) Fong1-
The terms on the first line are the same as in (4.2), so we consider the last line in (D.3)
xizdx Fopi1 +izdFopg1 +xd(I AxFopy3) —dU AN Fop1)+ 21 - ZFpp 11
=x1z(Z N*Fopy1 + H3 A*Fopy3 — iy * Fon—1) +12(Z N Fop1 — Hz A Fop—i
+uFont3) +x(dI AxFopy3) —dI N Fop—i —x(I Nd * Fang3) + 1 ANdFoy—i
+21-ZFouq1
=*(d1 A *Fan13) +x(tz(H3) A xFony3) —dI A Fon—1 — tz(H3) A Fon—i

—*(H3z Ntz (xF2p3)) +*1z(Z AxFopg1 — 1y * Fon—1)

32 While expected, this was not explicitly shown before in the literature. This provides a consistency check of the
equivalence of the supergravity equations of motion with the sigma model Weyl invariance conditions.
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+ H3 ANizFon—1 +12(Z AN Fopngt + 11 Fong3) —*x(I ANd x Fop3) + 1 AdFon—q
+21-ZFum+1 - (D.4)

Now we use (2.2) with Y = X or
dI +zH; = B2, (D.5)
to get

*«(BE A *xFong3) — B® A Foni
—x(H3 AN iz(xFon43)) +xtz(Z A*xFopt1 —tp * Fon—1)
+Hy Az Fon—1 +iz(Z A Fopgr + 11 Fong3) —*UU Ad * Fopy3) +1 ANdFp,g
+2I-ZFuy1 - (D.6)
The two terms on the first line are the same as in (4.2). To derive the remaining terms of (4.2),
we use the relations
—* (I Nd* Fopy3) = — % (H3 A*d Fopq3) — *(H3 Ax(H3 A Font1))
+*(H3 A*(Z A Fony3)) —*x(I NZ AN *Fonq3)
+x(I A*(I A Fapt1)) s
I NdFon—1=H3 ANxd x Fop—1 — H3 Ax(H3 A *Fopi1)
—H3AX(ZNA*Fon—1) +INZANFo—1+ 1 A*x(I A*Fops1)
(D.7)

which transform the last two lines of (D.6) into

—x (H3 A %d Font3) — *(Hz Ax(H3 A Font1)) + Hz A xd x Fop—y
— Hy Ax(H3 AxFop1) +*(I AN Z A *Fopg3) —*x(I Ax(IA Fopt1)) + I NZ A Fop—y
F I AT A*Fopg1) +xiz(Z A*Fopp1 — g * Fop1) +1z(Z A Fopg1 + 1 Fon43)
£ 20 - ZFons1 . (D.8)

Now using the identities

* (I NZ ANxFong3) =tztiFonts s xizlpx Fop—1 =1 NZ AN Fop—1,

* (I A*(I A Fopg1)) =0 A Fongr)

*x (I AxFopy) =T Ax(I AxFopp1) =1 ANipFopyr (D.9)
one finds

—* (H3 A *d Fopy3) — *x(H3 Ax(H3 A Fon1)) + Hz A wd % Fop—i
— H3 A*(H3 AxFont1) + tx (X) Foni
= — % (H3 A *d Fop13) — *(Hz Ax(H3 A Font1)) + Hz A xd x Foy—1
— Hy Ax(Hy AxFopit) + (R — g % (Hy A*H3)) Fopst + (xd % X) Faps1 . (D.10)

This leads precisely to (4.2).



G. Arutyunov et al. / Nuclear Physics B 903 (2016) 262-303 293

Appendix E. Derivation of “Bianchi identity” for Z

Here we observe that the modified “Bianchi identity for the dilaton” (2.13) that holds for the
ABF background may be derived more generally from the Bianchi equations for F, the invari-
ance of the R-R fields under the isometry L£;Fj = 0, the conditions F| A F3 #0, F1 A F5 #0
or F3 A F5 # 0 and the condition ¢; F7 = 0. Starting from (see (3.4)—(3.9))

dF1—ZANF1—yuF=0, (E.1)
dFs—ZANFs+H3ANF1 —uyFs5=0, (E.2)
we take the differential of (E.1) and use (E.2) to give33
—AdZNFI+ZNdF1—d(F3)=—dZANFi1+ZANuyFz+udFs
=—dZANFI+ZAuFs+u(ZAF3) —(HANF)
=—dZANFI+uZAFH—yHANFi=—[dZ+yH)AF1=0. (E.3)
Thus
dZ +uyH~F; . (E4)
A similar analysis of the Bianchi equations for /3 and F5 gives
dZ+uyH)AF3=0, dZ+ 1 H3)) A F5=0. (E.5)
Thusif F1 AF3#£0, FiAFs£0or FaAFs#0thendZ 4+ H =0.

Appendix F. Deformed AdS3 x S3 and AdS, x S? cases

In the deformed AdS3; x S> case the (complete) T-dual HT background [12] consists of just the
metric, dilaton and a single R—R 3-form flux, and therefore has a simple embedding into Type IIB
supergravity — one just needs to add 4 extra toroidal dimensions. Explicitly, this background
which is T-dual to the n-deformed AdS3 x S3 background (cf. [35,36]) is given by

. 1—x2p? dp? dy?
dszz_#dtz 25 2 %
1+p (I =27p2)(1 + p)

1+ 222 2 dr? ¢)2

—d dxg,dx, ,
T R A T e vy s S R

B=0, .7:—12.7}520,

A 2ia/1 4 32 xpdp dl/All dr .
F3= [(d ﬁ) N——=N (55 txrd9)
/14 p2d/1 x°p P 14 x4r
. xrdr d¢31 dp N
dp— —— N — A (———— dl‘]
+ (dy 1+x2r2) P (1_X2p2+%p )

33 Note that here we use the condition t7F1 =0, which if dZ # 0 follows from (E.1) after acting on it with (7

ydF1+ZyF1=0 = dyF—-ZgyF =

where we have used (;Z = 0 and £;F| = 0. We see that if (; 7] # 0 then Z = dlogt; F|, which contradicts our
assumption.
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(1 —x?p?)(1 4 x*r?)

¢ = o — 2x(f +§) + log (E.1)
pry/1+ p2/1 —r2
When written in terms of the “boosted”/“rotated” vielbein basis [12]
0_ 1 d, 1 _ dy 2_ 1 d, A
e —\/1+p2(dt_|_ 1%/;2/0 ), el = p] 7 e _m(—l—%gxﬂ —{—}f,odt),
31 A d 4_ dé s_ 1 d A
e —m(dgﬁ—li’;{z;z), e’ = rl s e _ﬁ(l-'rk—rzi’z +%rd§0), (F2)
the metric and fg take the following simple form (cf. (B.5))
~2 ~
ds” =nunveMeN +dx,dx, | F3=2iv1+ }fz(eo/\el ned+e2ne’ /\64) . (E3)

As in the AdSs5 x S° case, the dilaton and the R-R flux F3 depend on the isometric directions of
the metric, but this dependence is such thatAeq’F = JF is invariant under the isometries. Therefore,
we can formally T-dualise the metric and F to find the following analog of the ABF background
(cf. (B.1))

1+,02 2 dpz 2 2 1—}’2 2
ds®>=— t d ——d
s 1— 2202 A= 2 1p0) TPVit aa
+ ar® +r2d¢? + dxod
r Xqdxy ,
(1+2x2r2)(1 —r2) ! e
B=0,
Fi=xF|p2dyi +r%dgn],
T =F[$(m Adyy Adp + 322 di A dgr A dp)
W(dgo Addy Adr — 32 p2de Ady A dr)] ,
or
Fs= F[ dit Adp Nd Addy Adr —di Adyn Adp Ade Ad
s=x (1_%2p2)(1+%2r2)( o ANdo Ndgy Adr Vi Adp Ndo Adr)

— (02dy + r2den) Adxi Adxy Adxs A dx4] ,
241 + %2
V1221 + 222

As in the AdSs5 x S5 case, it turns out that there exist vectors X and Y such that the scale invari-
ance conditions for the metric and B-field (2.1), (2.2) are satisfied (cf. (2.5), (2.8))

F

(F4)

1+ p? x2p
X:dexm :coﬁdt—f—C]p dl/f] Tﬂdp
1—r 5 x%r a
+ szd(p + c3rcdo + mdi’ + kadx® , (E.5)
1—{-,02 sz,o 1—r2 %2r
Y =Y,dx" = — d 2 d dr . F.6
max 1 —32p2 1 — 32 p2 Pt J{1+}f2r2 (p+1+x2r2 " F6)

The parameters ¢; and k, are eight arbitrary constants parametrising the Killing vector part of
X,n, while Y is defined up to a total derivative. As in the AdSs x S° case, we may split the vector
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X into two parts: /, containing the 8§ commuting Killing vectors, and Z, which contains the rest.
If we fix the constants ¢; and k, as

co=cp=2x, cir=c3=k, =0, ET7)

so that Y,,, = X,,, then the equations (2.10), (2.11), (2.13), (3.4)—(3.9) are all satisfied, and hence
the background (F.4) solves the same system of equations as the ABF background (B.1). Finally,
we find ¢ in (2.14) is given by

¢ = Llog(1 — % pH) (1 + %17 . (F.8)

For the deformed AdS, x S case, the T-dual HT background [12] consists of just the metric,
dilaton and a single R—R 2-form flux. It can be again embedded into Type IIB supergravity
by adding 6-torus T and combining the 2-form with the holomorphic 3-form on T to give a
self-dual 5-form:

g 1—x%p% o dp? 1+ %2 72 dr?
14 p? (1=x20H)(1+p%)  1—r2 (1 +x2r2)(1 = r?)
+dx,dx, ,

B=0, Fi=FK=0,

A ivV14 %2 .~ xpd r

Fs= @i+ 25 A (s
V2 1+ p2/1 =72 1—xp 14 x°r

+xrd®) A (wr + wp)

R xrdr dp
+ (ng - 1+J{2r2) /\(1 —%2,02 +%pdi) A (a)r _C!),)] B
. . (1 = 22p3) (1 + %%r?)
¢ =¢o—x(t + ¢) +log ; (F.9)
V14 p2/1—r2
where w, and w; are the real and imaginary parts of the holomorphic 3-form on 79, e.g.,

wy —dx" Adx3 Adx® —dx' Adx* Adx® —dx®E Adxd Adx® —dxE A dx* Adx? ,

w; =dx?> Adx* Adx® —dx? Adx Adx® —dxP Adx* Adx® —dx' Adxd AdxO .
(F.10)

As in the AdSs x S° and AdS; x S> cases, when written in terms of the “boosted”/*rotated”
vielbein basis [12]

0_ 1 2 xpdp 1 1 dp 2~

¢ = it (di + 17;(2;;2) ’ ¢ = e (1*%2/)2 +xpdi)

2 ~ d d N

e = Jllj(mp— ), e= Jllj(lﬂgrz +xrdg), (F.11)

the metric and F5 have take the following simple form

A2
ds = nMNeMeN +dx,dx, ,

Fs= ﬁ\/l +x2[eo AN A (o + ;) —el Aer A (wp — wl-)] . (F.12)

Applying T-duality to the metric and F gives the analog of ABF background for the AdS, x S?
n-model
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1407 2. dp? N 1—r2 22
1 —x2p2 (1 =x2p2)(1 +p2) 1+ 2212
dr?
+ (14+%2r2H(1 =712
B=0, F1=0,

Fs= %){F[(—p +rwr + (p +”)0)i] ;

ds* =

+dx,dx, ,

1+x%p 1+ x%pr

N
3 Zdt/\d’o/\wi_l_m

do Ndr A o,
1 —x4p

| 1 —x%pr

1 —x%pr
T3
V21 + 2
V1 =32 p2 1T+ 222
Here again the scale invariance conditions for the metric and B-field (2.1), (2.2) are satisfied
provided

+ d(p/\dr/\wi],

F

(F.13)

1+ p2 1—r2
X = dexm :C()mdl + md(p + kadx” s (Fl4)

1+ p? 1—r2
Y =Y, dx™ =xldt + il

——=dyp . F.15
1 — 222 T2 (F.15)

The parameters ¢; and k, are eight arbitrary constants parametrising the Killing vector part of
X, while Y is defined up to a total derivative. Here X, is given just by I, (i.e. the sum of
commuting Killing vectors) and thus Z,, = 0. If we fix the constants ¢; and k, as

co=ci=x, kqi=0, (F.16)

so that Y,, = X,, then the equations (2.10), (2.11), (2.13), (3.4)—(3.9) are all satisfied, i.e. the
background (F.13) solves the same system of equations as the ABF background (B.1) in the
AdSs x S case. Finally, here we find that ¢ in (2.14) is given by

$=0. (F.17)

As in the AdSs x S° case, the coefficients in (E.7), (F.16) are equal to (minus) the correspond-
ing coefficients of the isometric coordinates in the linear terms of the dual dilatons ¢ of the
T-dual HT backgrounds [12]. Furthermore, the “dilatons” ¢ in (E.8), (F.17) are again found by
applying the standard T-duality rules to the remaining parts (depending only on non-isometric
coordinates) of the dilatons (;3 of the T-dual solutions. Therefore, these examples also fit into the
general picture described in section the main text.

Appendix G. Second-order equations for R-R fields from scale invariance conditions for
type II GS sigma model

In this appendix we shall expand on the discussion in section 4 and explain how the 2nd-order
equations for the R—R couplings F such as (4.9)—(4.11) can emerge as the one-loop conditions
of scale invariance (UV finiteness) of the GS sigma model (1.2). While we will not compute the
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beta-functions for R—R couplings in full, our aim will be to illustrate how the relevant structures
come out of logarithmically divergent parts of the corresponding one-loop Feynman graphs.**

We shall consider the type IIB GS sigma model [5] with couplings representing a generic
type 1IB superspace background subject to constraints required for x -symmetry: we will assume
k-symmetry to be able to gauge fix it but otherwise will keep the R—R fields unconstrained. The
GS sigma model action expanded in powers of fermions may be written as (see, e.g., [14,8], cf
(1.2)%

Lgs=Lp+Los+Lag+... (G.1)

Ly =3y daxtdpx" Gy — 3€ ﬂaaxuaﬁx P (G.2)

Ly =i(y*Ps" —e*Ps™p! et T, D 0% €5 = €l (x)dx" (G.3)
Dy = 3y + 30, Tap) — §53Hap T + $e? [F1yso + ¥y + $Fs)s0] T

=Dy + 3¢ [Fyso + Fysi + 3Fs)s0] Ty Dy = 8ux"Dy (G4

Lig =K}, xy0' M0/ 6K N oL . (G.5)

In (G.5) the indices X and Y stand for multi-indices of the same type as the one carried by the
fermions. The 2 x 2 matrices appearing in Ly are s = s3 = 03, §| = 01, S0 = i02. The R-R
couplings are

¥, = 1 e? oy q, T4 anz— pay [ (G.6)

where F,, are not required a priori to be field strengths.

We shall first fix the k-symmetry gauge 0! = 62 and also consider flat 2d space (or, equiv-
alently, fix the conformal gauge for 2d diffeomorphisms) and then expand (x, ) near some
background values (x, ®). The aim will then be to compute the one-loop UV divergences that
renormalise the R—R couplings in the quadratic fermionic term (G.3), i.e. (F=F(&))

Loy = 3e*P®e4T Hupeey T O + LT, (G.7)
LY, = Zn“ﬁGEgFaZeeﬂFbG + Ze“ﬁGeaFaZgéng® , (G.8)

Ze=F0) So=Fun+3Fe (G9)
8Ly =e*POOf 0+ 517, (G.10)
SLT; =P OEp0 + ¥ 0 0up® . (G.11)

Here the classical term Zz}—f and the expected divergent term § Zg'} are decomposed into parity-
even and parity-odd parts containing the linearly-independent combinations of antisymmetrised
products of Dirac matrices. The combinations £ and O should then represent the R-R beta-
functions that should be set to zero modulo use of equations of motion on (x, ®) or modulo target
space (super)reparametrisations. A further contribution to the two-fermion divergence is the first

34 Previous studies of the UV finiteness conditions of the GS string [10,11] did not include R—R couplings, but special
cases of AdS5 x §5 [38] and pp-wave backgrounds [39] were explicitly discussed. The vanishing of the beta-functions
for the R-R couplings was not checked as the fermionic coordinate was assumed to have trivial background.

35 n this appendix we use «, 8, y, ... for 2d indices, with y"‘ﬂ = «/—haﬂ I, v, ... are 10d coordinate indices, and
a,b,c, ... are tangent space indices with G, = e, eﬂ nap- The indices I, J, K = 1, 2 label two MW spinors of type 1IB
action.
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term in § L, ; it should be proportional to the NS-NS fields (vielbein and H) beta-functions and
thus should contain terms independent of the R-R fields.
Introducing the fluctuations (¢§#, 0) around (x*, ®) as

xt— it +atE), 0—>0+0, (G.12)
the standard relations of the bosonic normal coordinate expansion are
0u (B + 1) = 0 X1 + V& + 1R, 0,867 + OE7)
O (RH 4 7)€l = 0§ + Vo€ + SRUpeallEET + O, (8=0,51,  (G.13)
8uv = &uv + 3R EME7 + O,
& =+ cRud 8+ OE),
wu =% + 3E Ry + 35 EPV, Ry + O(EY) . (G.14)
The normal coordinate expansion of the R—R tensor fields (.7:" = F(x))

Fiiveotin = Fpurin +E Vo Fuy i

1 - e - _
+ 56" (Vo P + 3 > Furoysin R ;) + O
j=1

takes a simpler form using tangent space indices:

Faran =Fayan +E" VT ap + SEHE"V, Vo Fuy ay + OEY) . (G.15)

Note that the beta-functions for the couplings F,,. 4, and F, . ., are related by extra terms
involving beta-functions of vielbein e}, or the metric G, ; this is related to the presence of BC
terms in (4.5) or (4.9)—(4.11).

The expanded Lagrangian (G.1) has the following structure:

L=Ly+L +15 +L% +. .. (G.16)
Ly= %n”ﬁvasavﬂs”nab + Vo £ U + 15980 Xy (G.17)
L8 = 1V, 60Vp65CoF 1 Vo980 CE, + L5960 Cyp G.18)
Lf," = Vo UP Db + Vu£9090 + £93,06 (G.19)

LY =i0p*Dub +0Y0r6 +0Y20 , (G.20)

where Yor and Y37 contain zero and two background fermions ®, respectively. We have also
defined p, = ¢IT . It will be sufficient to further assume that the induced metric is trivial, i.e.

Guv(i)axiﬂaﬂiv = nap and P@PpB) = Nap-
The explicit form of the quadratic terms in (G.16)is (L f = Loy + Lay + ..., see (G.3),(G.5))
Ly =30 [ Vab* Vpe nap + Racar it 6
1 1
+ 560113 [CfVﬂSbECHabc + _C&lgl};é‘dsc Va,’l'labc:|

—iL55 = f5EEN R aot Sl + R eacllE5) (PO T T, 10 — P BT, 3,1, 0)
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+lvo,§avﬁgb(n“ﬁélr =00 — 8T, 2,I,0)

+ 5 (Va0 4+ L8VEENE P OIT V4T T0 — PO/ TV Z,T0)
+ o 66 Eh R pea® + 6 ¢4 Rpea”) (1P O T 1O — € BT, , T, 0)
+ §C8eh EE P OIT Ve VyTeTy0 — PO/ TV Vg ToT50)

&0
_’sz

= 4PV, £ OT Db + 30 L5560 R OT Tg0

+ 5P (CEVBES + Va5 (OT o Hego 190 + 0Ty Heg T4 ©)

+ 0P (L4 VEES + VutC5)(OT Tl 4 T T I O)

— P EVEE + VL) (OT ol + 0T %, O)

+ 18 GEN (BT VaZ T + 6T, VaZ,I'c0)

— P rlrfE (O VaEol 0 + 0T, VT, 0)
—ngf_zn“ﬁga; 0T Dyt + 3€*P 4 L30Ty Hpeal ™6

“ﬂga; 0T Zel0 — & “ﬁga; 0T, 2,0

Lﬁ? = K“ﬂ Y(OMFOINSO +OMIOONL O +OMYO6N; ©

+0OM}OONL 0 +0M) OGN, © +0My0ON; ©)

XY_ Z KIJKLXY (G21)
I1JKL

Thus the matrix coefficients appearing in (G.16)—(G.20) are
ff;, = %Gaﬂé‘EHabc s
Xab =n"PL504 Reaba + 3€P 50 (VaHpea + Vi Hacd)
c b =i, 2. 1,0 — e O/T,2,I,0) , etc. (G.22)

It is straightforward to find the UV-divergent term (G.11) for the general Lagrangian (G.16).
It receives contributions from Feynman graphs with one C or one Y, vertex (each containing
two background fermions) and from Feynman graphs with two vertices of the type W (each
containing a single background fermion). The result has the form

aL{f =8L+8Lyr+ 8Ly +8Ls+8Ls, (G.23)

158

where § L| contains one vertex from 7 and any number of vertices from Lp, § L5 contains Y3 7,

8L, contains two vertices from Lgf , 8 L3 contains two vertices from Léfe and one from Lp, 6 L4

contains two vertices from Lgfg and more than one from L p. Explicitly,

8Ly = (—3Capn™ + Jnpy TI[CPY X1 — {np, TH{(UP — UPT)(CY — CYT))) Iy

+ L TU + U Glapdy — nypda — 1y2dp)CP7 110 (G.24)
8Ly = InapgWeYor Wl Io + L7 T (nagdy — 1ypde — nyadp)Vh 1% I

+ 10 1,5 (0) W)

— I WP Yor W Io + 162 BSP T (apdy — nay 85 — 1y ) Won® Io
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+ WGP Ly ()W) 1 + SeSWIT W Iy (G.25)
Ly = Y7 WeT Wl (UY — UYTY (nagnys + ayngs + nasngy) o

+ %CVC@;XFC‘PI?(U‘S = UTY (105 + Nay s + Nasnpy) lo

+ %‘i'(xl)gﬂlaﬁy&(alv 32)‘11()62)3,/616“”

+ 0D Tapysp D1, 02)UP — lasypp (32, 0DUPT )W (x2))°

+ %Ecy‘I&(leﬂcq’b(U‘S — UTY (1o nys + Ny s + Nasnpy) Lo

+ %C’/”@gﬁrc‘l’gxab(naﬂnya + NayNps + Nastpy) Lo

+ WD apyp 01, 02)UP — Lypap (92, 00U 1) W (xp)} (G.26)
SLy= %gyfliz,‘j’ﬂrcqu(Up —UPTY UE —USTY P Iy 50

+ %{”clffgﬁFc‘If,‘jp[(Us _ U?,-‘T)adde + Xad(Up _ UpT)db][aﬁyapS

+ 5 WP () apys (31, 82, U)W (x2)

+ %gVC\Iff,‘ﬁrcxng(UP —UrTYad@us — Uty Ut — U T Loy speor 5 (G.27)
8Ls= Y Tr[YorYasllo . (G.28)

The standard dimensional regularisation integrals used to derived these expressions are (d =
2—¢€)

d 0 Il -
o=/ dﬂl ’ [2( ) _ fdd112(1+ﬁ7)2 = Inaplo + finite ,
1 lalpl 1 i
LY = JdU s = =5 (tap Py + Nay Pp + Npy Pa) o + finite
0 _ d lolglyls 1 :
L7 = Jd l—lz(l+p)2il+q)2 = g Hapyslo + finite ,

oyl Lo oy las Lo 1 .
Loy ayozagasas = fddl = (iz)f =6 = 38 Hoyoxazaqasas 10 + finite ,

la lot lot lu loc lc( lot lOt 1 1
loyyzaqasaparay = fddl — (142)55 = WHalazasmasaeamg Io + finite .~ (G.29)

The tensors H are given iteratively by:

Ha1a2a3a4 = Nayar Nazas T Noyos Naaos + Noayas Mooy
Ha1a2a3a4a5a6 = Najay Ha3a4a5a6 + Nayas Ha2a4a5a6 + Noyay Ha2a3o¢5(x6
+ Nayas Hoyazas06 + Moo Honosesas
Ha1a2a3a4a5a6a7a8 = Najay Ha3a4a5a6a7ag + Najos HO(zO(4O{5Dt6017Ot3 + Mooy Ha2a3a5a6a7a3
+ Nayas Hoyazauagaras T Nayag Hoasauasarag + Nayar Haasasasagas
+ Nojag Ha2a3a4a5a6a7 . (G.30)

Some integrals which lead to derivatives acting on the background-dependent fermion mass term
Yor were left unevaluated:

Lapy (@) = [d11g( +id)o (I +id), ,ﬁpm ,
Lupys@) = [ d11aly (I +i0)( +i9)s 77 Griay -
Lapyp 91,81, 32) = [ d11g(1 +i8D)a( +i81),( +i02)y Trimr o2 G52
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Lupys @1, 32) = [ d1gl, (L +180)a( +i2)s iy grtom? T
Lygysp 1, 82) = [ d11gly (L +i00)p(U +i80) 0 +i92)s Fryer G502 GH5
Lapys @1, 82, U)*

14l
=/ddl /f;OF(l—i-i&l)a(l+i82)5(—(l+i31)pU(x3)p

+ (L +i8143)pU (x3)) (1 +i9243) U (x3)° — (L +i82),U (x3)")7 . (G.31)

The same applies to integrals that lead to derivatives acting on two of the three vertices.
Using the coefficients (G.22) extracted from the expanded Lagrangian (G.21), one finds that
the divergent term §L 1 in (G.24) is given by

SLi = [g;ggg(n“ﬁéravzzerb(a —€*P@Or,v2s,r,0)

—Lede] (Ra“Sh + 84R > — Ry y — Rq" 1) (P OT T, T0 — €F O 5,1 0)

— Lede] (VO Hy + VP Hyp) (0 OT 5,750 — e*P O 2.I',0)
= SE8eh Y (1P BTV 5,10 — BTV ,140) | lo (G.32)

where X,, X, were defined in (G.9) and Iy ~ é is the UV pole factor.

Comparing (G.32) to the corresponding terms in the classical action (G.8) one can read off
the contributions to the beta-functions for the R—R couplings. Projecting onto the independent
set of Dirac matrices I'y,. 4, we indeed observe the presence of the Hodge—de Rham operator
terms as in (4.9)—(4.11). There are also similar terms depending on the Hj field strength and its
derivatives. The UV singular terms in § Ly, § L3, 8 L4 in (G.25)—(G.27) containing a single factor
of WS B will have a similar structure. The first term in § L4 contains two factors of H and one of
R-R field and should account for all such terms in eqgs. (4.9)—(4.11).

There are apparently also other UV singular terms that do not appear in (4.9)—(4.11): terms
containing two W P factors are independent of the R-R fields and contain only the H3 strength
and factors of the curvature tensor. We expect such terms to combine into the beta-function of the
NS-NS fields entering the couplings (G.10) and thus yield the same scale invariance conditions
as in eqgs. (2.1), (2.2). Moreover, all terms in §L,, §L3 and § L4 which do not contain w;‘ﬂ are
bilinear in R-R fields and all terms in § L3 contain at least one additional factor of either H3 flux
or the curvature tensor. We expect such terms to cancel or to vanish upon use of the NS—NS scale
invariance conditions (2.1), (2.2).
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