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AbstractÐE�ects of size on predominantly mechanical properties of materials are reviewed at a ®rst-order
level. Microstructural constraints, e.g. due to second-phase particles and grain boundaries, and dimensional
constraints in small-scale materials such as thin ®lms are distinguished. Phenomena addressed are particle
strengthening in plasticity, creep and magnetism, grain size strengthening and the limits to Hall±Petch
behavior as well as the yielding of thin ®lms and multilayers. Important aspects can be understood from
the point-of-view of the interaction of a characteristic length (which may be as diverse as the dislocation
radius of curvature at a given stress or the magnetic exchange length) with a size parameter (grain or par-
ticle size, or ®lm thickness). It is demonstrated that such an approach can reveal interesting analogies
between otherwise very di�erent properties of materials.

# 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd.

1. INTRODUCTION

The science of materials is, to a large extent,

couched in terms of length scales and their inter-

actions. Its domain ranges from the behavior of in-

dividual atoms to macroscopic aspects of materials

properties. What distinguishes classical materials

science from its neighboring disciplines of, e.g. solid

state physics and chemistry, on the one hand, and

from materials technology and mechanical design,

on the other, is its preoccupation with the inter-

mediate level between the atomistic and the macro-

scopic rangeÐthat of microstructure. For the sake

of de®nition, microstructure is usually meant to

encompass the arrangement of crystallites (of equal

or di�ering phase constitution) and of the crystal

defects (excluding those which are present in ther-

mal equilibrium, such as vacancies).

The microstructure of a material is controlled by

the processing steps chosen for its fabrication. Such

microstructural design a�ects the nature of the

phases present, their topology (i.e. geometrical dis-

tribution and interconnection) and their dispersion

(described by relevant ``size'' parameters). The full

characterization of these parameters is the domain

of quantitative metallurgy (e.g. Ref. [1]). Some of

the quantities which will be dealt with in the present

paper are illustrated in Fig. 1, and the symbols used

throughout the text are compiled in Appendix A.

All other parameters of the microstructure being

equal, its size parameters exert a strong in¯uence

on the materials properties. In fact, it is this varia-

bility of the property spectrum through microstruc-

tural control that has often led to new materials of

metallic, but also of ceramic and of polymeric ori-

gin. Most of these size e�ects come about because

of the microstructural constraint to which a particu-

lar physical mechanism is subjected. Consider the

classic case of strengthening a metallic matrix by

particles or grain boundaries: lattice dislocations

are forced, by the microstructural constraint, to

bow out or pile up, which requires an external

stress characteristic of a microstructural parameter.

An analogous case is the ``magnetic strength'' of a

ferromagnet, which re¯ects the ease of motion of

magnetic domain walls; here, the wall thickness

relative to the size of the microstructural inhom-

ogeneity can control the macroscopic behavior.

In general, it is therefore the competition or

coupling between two di�erent size dependencies

that determines the properties of a material. We

thus have to deal with the interaction of two length

scales: one is the dimension characteristic of the

physical phenomenon involved, called the character-

istic length throughout this paper. The other is

some microstructural dimension, denoted as the size

parameter. The range in which these two quantities

overlap is of particular interest: here conventional

size laws often break down and may even be

reversed.

Apart from microstructural constraints, a new el-

ement relevant for this paper has been introduced

in recent years by the developments in micro-tech-
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nology: the fabrication of thin ®lms, multilayers

and micro-machined components used in microelec-

tronic and micromechanical systems requires ma-

terials to be tailored to small component

dimensions. In these cases, the physical mechanism

may begin to ``feel'' the presence of the surface or

an interface; as a result, a dimensional constraint

can appear which superimposes on that of the

microstructure (Fig. 2). With ever-continuing minia-

turization, an understanding of these e�ects will be

of increasing relevance, both for fundamental

reasons and in the interest of the reliability of

small-scale systems. Compared to electronic size

e�ects, which arise from the constraint of electron

waves in small structures, the interactions of defects

with geometrical constraints are less well under-

stood and merit further attention.

The purpose of this paper is to provide a synop-

sis of such size e�ects, both through microstructural

and dimensional constraints, on materials proper-

ties. On closer inspection it becomes apparent that

materials science abounds with size e�ects, many of

which cannot be included in the present text. The

selection favors mechanical phenomena in predomi-

nantly metallic materials, and parallels are drawn to

magnetic properties. The central theme will be the

interaction of microstructure or ®lm dimensions, on

the one hand, with the characteristic length, on the

Fig. 1. Microstructural constraints: examples of size parameters include grain size D, grain boundary
width db, obstacle spacing L, and obstacle radius R; characteristic lengths, which are connected with a
physical mechanism, can be the equilibrium diameter d of a dislocation loop, the spacing w between
partial dislocations, or the width d of a magnetic domain wall. Special macroscopic behavior results

when the ranges of characteristic lengths and of size parameters overlap.

Fig. 2. Dimensional constraints: when the external dimensions of components become small, they can
control the material behavior. An example is a thin ®lm, in which the ®lm thickness H is the relevant
size parameter. This parameter can interact with microstructural parameters (such as grain size D, par-

ticle spacing L, etc.) and with characteristic lengths as in Fig. 1.
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other. The approach, being rather tutorial, gives
simple formulations of ®rst-order e�ects; for more

sophisticated treatments the reader will be referred
to the literature.

2. MECHANICAL STRENGTHENING OF METALS
BY MICROSTRUCTURAL CONSTRAINTS

Strengthening of pure metals can be achieved by
solute atoms (``solid solution hardening''), by cold
deformation (``work hardening''), by precipitates or

hard dispersoids (``precipitation'', or ``dispersion
strengthening'') or by grain size re®nement.
Through these technologically important alloying
strategies, the hardness of metallic alloys can be

varied over more than two orders of magnitude. In
all cases, the strengthening e�ect is due to obstacles
which block or retard the motion of lattice dislo-

cations. These processes are prime examples of size
e�ects due to length scale interaction.
The most fundamental ``characteristic length'' of

a lattice dislocation is the magnitude b of its
Burgers vector, which characterizes the strength of
the lattice distortion caused by its presence. The
resulting ``line tension'' imparts to the dislocation a

resistance against bending. A related characteristic
length is therefore the equilibrium diameter a
curved dislocation (or a dislocation loop) assumes

under a shear stress t. Assuming elastic isotropy,
this diameter is given by

d�t� � 2Td

bt
1Gb

t
�1�

where Td1Gb2=2 is a simpli®ed expression for the
line tension and G is the shear modulus of the

matrix material. The relevant size parameter against
which this diameter must be compared depends on

the nature of the obstacle, as will now be discussed.

2.1. Particle strengthening in plasticity and creep

2.1.1. The Orowan mechanism: dislocation curva-

ture vs obstacle spacing. Consider the interaction
between a dislocation and an array of hard ob-
stacles which are impenetrable for the dislocation
(Fig. 3). The dislocation is forced to bow out

between the obstaclesÐthis is the primary e�ect re-
sponsible for all particle strengthening mechanisms.
Plastic deformation due to long-range dislocation

motion requires dislocations to fully bypass the ob-
stacles (the ``Orowan mechanism'' [2]). The relevant
size parameter for this case, given by the micro-

structure, is the obstacle spacing L. The bypass con-
dition is reached when the characteristic length d(t)
approaches (or comes to lie below) L, i.e.

d�t�RL: �2�
In other words, plastic deformation requires the dis-
location loops (or half-loops) to ®t between two
neighboring obstacles [Fig. 3(b)]. This geometric

requirement is expressed by the inequality
[equation (2)], which sets into relation the two
length scales, one (L) characteristic for the micro-

structure and the other (d) for the mechanism.
Combining equations (1) and (2) gives the

bypassing stress or ``Orowan stress'' tOr in shear

tOr � 2Td

bL
1Gb

L
A

Gb

R
�3�

where the proportionality establishes a connection

Fig. 3. The onset of plastic ¯ow controlled by obstacles, seen as a size e�ect: plasticity requires bypass-
ing of strong obstacles by dislocations, equivalent to the condition that a dislocation loop ®t between
neighboring obstacles. The size parameter is a (suitable average of the) obstacle spacing L, the charac-
teristic dimension is the diameter d(t) of a (®ctitious) dislocation loop at a shear stress t [equation (1)].
Case a: d > L, no deformation; case b: d � L, deformation. For penetrable obstacles these requirements

are modi®ed as described in the text.
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with the radius R at constant volume fraction of

particles.

Equation (3), which is at the heart of mechanical

metallurgy, describes the maximum ¯ow stress

increase a dispersion of obstacles can impart in a

dislocation-dominated material. It re¯ects a classical

size e�ect: a ®ner dispersion results in more e�cient

hardening. In technical alloys, in which particle spa-

cings and sizes are typically in the ranges 10±1000

and 1±100 nm, respectively, strength increases of

several hundred MPa can be achieved in this way.

We note that the treatment given here covers

only ®rst-order e�ects. More sophisticated theories

have long been available, which de®ne an ``average''

value of L in arrays of statistically distributed ob-

stacles, e.g. Refs [3, 4], or examine the e�ects of

elastic anisotropy and of dipole interaction on line

tension [5].

A special case of the treatment above is the

phenomenon of work hardening. Here, the obstacles

are forest dislocations and the relevant size par-

ameter is given by their average spacing:

L � 1���
r
p �4�

where r is the dislocation density. Requiring again

that L � d, we get the classical Taylor equation for

work hardening:

t � aGb
���
r
p �5�

where a<1 accounts for the fact that dislocations

are ``penetrable'' obstacles.

2.1.2. E�ects of obstacle strength: age hardening.

Many obstacles are not impenetrable to the dislo-

cation, but ``give'' at a shear stress substantially

below the Orowan stress. Such ``weak'' obstacles

are, for example, solute atoms or coherent precipi-

tates. In these cases, modi®cations of the concept

have been found necessary.

First, the dislocation can now be released from

the obstacles before the limiting condition given by

equation (2) is met. A new condition can be formu-

lated as follows:

d�t�RL

�
2Td

Fm

�
�6�

where Fm is the maximum force sustained by the

obstacle. The factor �2Td=Fm� describes the obstacle

strength (for details see, e.g. Brown and Ham [6]).

Note that in the case of impenetrable obstacles, for

which Fm � 2Td, this and the following expressions

reduce to those of Section 2.1.1.

Second, the obstacle spacing is now no longer a

constant given by the microstructure, but depends

also on the strength of the obstacle (``Friedel

e�ect''). Weaker obstacles force the dislocation to

bow out less, which, in a random particle array,

causes the dislocation to encounter fewer obstacles

along its length. This e�ect can be incorporated in

the present approach by introducing a modi®ed size

parameter L* which depends on Fm [6]:

L* � L

�
2Td

Fm

�1=2

: �7�

Combining equations (1), (6) and (7) leads to a

standard equation of the ``cutting stress'' for weak

obstacles [6]:

t � Gb

L

�
Fm

2Td

�3=2

: �8�

Shearable particles, for which Fm scales with R,

impart strengthening of the following form:

tAR1=2: �9�
It is important that the cutting stress scales with

ZR, in contrast to the bypassing stress [equation (3)]

with a 1/R-dependence.

These opposite size e�ects are the basis for age-

hardening behavior of precipitation-strengthened

systems. Figure 4 illustrates schematically a simple

ageing curve constructed using equations (3) and

(9). The maximum yield stress, corresponding to the

``peak-aged'' conditions, occurs at the transition

from cutting to bowing, i.e. at a critical particle

radius R̂ which re¯ects the particle properties and

is, at the present level of approximation, indepen-

dent of volume fraction. This treatment, of course,

neglects subtleties such as the loss of coherency

with increasing particle size or the transformation

sequence of metastable phases. Depending on the

Fig. 4. Age hardening in precipitation strengthened alloys:
a classic size e�ect resulting from a ZR-dependence of the
cutting stress [equation (9)] and a 1/R-dependence of the
bypassing stress [equation (3)]. This causes a maximum in
yield stress sy vs particle radius R at a characteristic value

R̂.
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desired properties, a heat treatment may be chosen

to give an optimum yield stress. This strategy,

which is today an important technological concept,

illustrates the main theme of this paper: the appli-

cation of di�erent size e�ects brought about by

length scale interaction.

2.1.3. Creep strength and particle size. At high

temperatures, lattice dislocations gain a new degree

of freedom: they can now circumvent obstacles by

climb or cross-slip, both of which are aided by ther-

mally-activated processes. Successful high-tempera-

ture alloys therefore contain obstacles which are

Fig. 5. Size e�ects in particle strengthening against creep: dislocations are forced to bend by (a) ``chan-
neling'' through interparticle regions (as in superalloys), or by (b) attractive interactions with ®ne dis-
persoids (as in dispersion-strengthened alloys). A classic example of a TEM micrograph showing the

attractive interaction is given in (c) (from SchroÈ der and Arzt [7]).
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not easily surmounted by these mechanisms (Fig. 5):

(a) coarse precipitates which con®ne dislocation

motion to the narrow channels between them (e.g.

g' particles in conventional Ni±base superalloys), or

(b) ®ne dispersoids which pin the dislocations by

exerting an attractive interaction on them (e.g. in

dispersion-strengthened superalloys). In both

instances pronounced size e�ects arise. In the ®rst

case the relevant size parameter is the width of the

channels [8], which plays a similar role as the ®lm

thickness in thin-®lm plasticity (see Section 4.1

below); in the second case, the following particle

size e�ect occurs.

The only way in which small obstacles can e�ec-

tively impede the climb + glide motion of dislo-

cations at high temperature is by exerting an

attractive force on them [Fig. 5(c)]. This e�ect,

which has repeatedly been observed by TEM, e.g.

Refs [7, 9], can be attributed to the partial relax-

ation of the dislocation strain ®eld by di�usion in

the particle±matrix interface [10]. The attraction

can be modeled by assigning a lower line energy

(k �Uel where k<1) to the dislocation segment at

the interface compared to the segment in the matrix

(Uel) [11]. It has been shown that only a small relax-

ation is necessary for dislocation detachment from

the particle to become the rate-determining event.

By considering thermally-activated detachment,

RoÈ sler and Arzt have developed an equation for the

creep strength of the following form [12]:

t
td
� 1ÿ 1

1ÿ k

�
kT ln _e0=_e
Gb2R

�2=3
�10a�

where T is the absolute temperature, k is
Boltzmann's constant, _e the strain rate, _e0 a factor

containing the di�usivity and the mobile dislocation
density, and td is the ``athermal'' detachment stress:

td � tOr

�������������
1ÿ k2
p

: �10b�
A normalized creep strength is plotted, for constant
volume fraction, as a function of normalized par-
ticle radius in Fig. 6. It is seen that the creep

strength improves at ®rst with decreasing particle
size; this is due to the increase in the Orowan stress,
which enters in equation (10b). However, for even

®ner dispersoids, the probability of thermal detach-
ment of dislocations is raised. The optimum particle
size is predicted as

Ropt1
kT

Gb2
2 ln�_e0=_e�
�1ÿ k�3=2 : �11�

Depending on the strength of the particle±disloca-
tion interaction (k), this value typically lies in the

nanometer range. Like in age hardening, arbitrarily
®ne dislocation obstacles are not desirable.
A more complicated case, which has only recently

been considered, is dispersion strengthening of

ordered matrix materials such as intermetallic alloys.
There, the lattice dislocations frequently dissociates
into partial (or ``superpartial'') dislocations which

interact individually with the dispersoid [13] and, in
addition, with each other (Fig. 7). The detachment
process for such a case has been modeled, under

certain simplifying assumptions, by GoÈ hring and
Arzt [14±17]. It is found that again the interaction
of two length scales becomes decisive: the character-
istic length is the spacing w of the superpartial dis-

locations, and the relevant size parameter is given
by the particle diameter 2R. Optimum creep
strength is predicted for a characteristic ratio

between the two (w=2R10:6). Indeed, evidence for
such an e�ect, supported by extensive TEM
observations [18], has recently been found in

Fe1 ÿ xAlx compounds with varying composition
and hence superpartial spacing [15].
This case is an example for the interaction of two

length scales which characterize a heterogeneity on
di�erent levels, i.e. that of the microstructural fea-
ture and that of the defect itself. A similar situation
arises in magnetism, where the width of the domain

walls interacts with the size of non-magnetic in-
clusions (see Section 3).

2.2. Grain size e�ects in plasticity and creep

2.2.1. Hall±Petch e�ect. Strengthening of poly-

crystalline materials by grain size re®nement is tech-
nologically attractive because it generally does not
adversely a�ect ductility and toughness. The classi-

cal e�ect of grain size on yield stress [19, 20] can,
among other possibilities, be explained by a model
invoking a pile-up of dislocations against grain
boundaries, which results in a dependence of the

Fig. 6. Schematic of the creep strength (normalized) vs
particle radius (normalized by the Burgers vector) for dis-
persion-strengthened materials [equation (10a)]. An opti-
mum particle size (at a given volume fraction) arises
because of the interplay between a high bypassing stress
and thermally-activated detachment from small

particles [12].
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hardening increment on the square root of the grain

size D:

t � kHP����
D
p �12�

where kHP is a constant. This is the classical Hall±

Petch e�ect.
2.2.2. Limits to Hall±Petch behavior: dislocation

curvature vs grain size. Whereas many metallic ma-

terials obey such a relationship over several orders

of magnitude in grain size (e.g. Ref. [21]), it is inevi-

table that the reasoning behind equation (12) must

break down for very small grains. A clear limit for

the occurrence of dislocation plasticity in a poly-

crystal is given by the condition that at least one

dislocation loop must ®t into an average grain

[Figs 8(a) and (b)]. The characteristic length, i.e. the

loop diameter [equation (1)], must now be com-

pared with the grain size D as the relevant size par-

ameter:

d�t� � D �13a�
or

t � 2Td

bD
1Gb

D
: �13b�

Figure 8(c) illustrates schematically this limit on

Hall±Petch behavior: ``conventional'' grain size

strengthening can be expected only to the right of

the heavy line which signi®es the limiting condition

(13a)±(b). For Cu, as an example, the criticial grain

size estimated in this way is about 50 nm; this value

is in reasonable agreement with experimental results

by Chokshi et al. [23], as shown in Fig. 9. Similar

estimates have been made for di�erent materials by

Nieh and Wadsworth [24].

The plastic behavior of nanocrystalline materials

with grain sizes below the critical value is not fully

clear. Some authors (e.g. Refs [25±27]) also report

an ``inverse'' Hall±Petch e�ect, others ®nd an insen-

sitivity to grain size or a reduced Hall±Petch con-

stant kHP in this range. It has been argued that

because of the viscous behavior of amorphous ma-

terials (which can be considered the limiting case

for grain re®nement) the grain size strengthening

e�ect will have to be reversed once the grain size D

starts to approach the grain-boundary thickness db.
In fact, expectations of superplasticity in otherwise

brittle ceramics rely on such an e�ect [28].

One possible explanation for such a softening

e�ect comes from a re-consideration of the line ten-

sion Td in equation (13b). The more re®ned ex-

pression

Td � Gb2

4p
ln
r1
r0

�14�

contains a lower (r0) and an upper (r1) cut-o� dis-

tance for the stress ®eld of the dislocation. In con-

ventional materials r1 generally lies in the

Fig. 7. Dislocation±particle interaction in ordered matrix
materials: as dissociated superpartials interact individually
with the particle (a), the characteristic length is the spacing
w between the partials and the size parameter the particle
radius R. The creep behavior is in¯uenced by the ratio
between the two. A TEM weak-beam micrograph of
superdislocation±particle interaction in Fe±30 at.%Al is

shown in (b) (after Behr et al. [13]).
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micrometer range and therefore signi®cantly exceeds

r0 (for which values between 2 and 10b are com-

monly assumed); this justi®es replacing the logarith-

mic term by a constant. However, in

nanocrystalline materials it is reasonable to equate

r1 to the grain size, which now gives r11r0 and

makes T sensitive to the value of the grain size D.

Therefore, we now have a case in which the charac-

teristic length (d) is a function of the size parameter

(D).

The resulting strength increment is given by

t � Gb

2pD
ln
D

r0
: �15�

This expression vanishes rapidly as the grain size D

approaches the lower cut-o� distance r0. An even

more re®ned expression has been obtained by

Scattergood and Koch [22]. They draw upon Li's

model [29] for the generation of dislocations from
grain-boundary sources: as the dislocation density r

Fig. 8. Grain size strengthening, as explained by pile-ups of dislocation loops against grain boundaries
(a). This mechanism must break down when the diameter d of the smallest loop no longer ®ts into a
grain of size D (b). The limiting condition is shown as the heavy line in (c) where the shear strength t is
plotted schematically as a function of grain size D. Hall±Petch behavior can only be found to the right
of this line; abnormal or inverse behavior may result otherwise. The dotted line re¯ects schematically

the Scattergood±Koch [22] equation [equation (16)].
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scales inversely with grain size D, the obstacle spa-

cing is L01=
���
r
p 0

����
D
p

, which yields

t1 Gb����
D
p ln

D

r0
: �16�

This expression, which is schematically shown as a

dotted line in Fig. 8(c), reduces correctly to Hall±

Petch behavior for D� r0. It gives a possible in-

terpretation of grain-boundary softening behavior

in nanocrystalline Cu and Pd [22].

2.2.3. Di�usional creep as a size e�ect. An

alternative explanation of grain-boundary softening

in very ®ne-grained materials can be based on

increasing contributions of di�usional creep. Di�u-

sional processes in a potential gradient [caused in

this case by a normal stress gradient, Fig. 10(a)]

exhibit a natural size e�ect because the length scale

a�ects the magnitude of the gradient. For maintain-

ing a constant strain rate _e by di�usion of atoms

from grain boundaries under compression to those

under tension, the following shear stress t is

required [30, 31]:

t � _ekTD2

C1DvO
: �17�

Here Dv is the volume di�usivity, O the atomic

volume, and C1 a dimensionless constant of the

order of 10. Accounting for grain-boundary di�u-

sion (with di�usivity Db through a grain boundary

with thickness db) gives [32]

t � _ekTD3

C2dbDbO
: �18�

In addition to this, the triple lines in nanocrystalline

materials can also act as fast di�usion paths [33].

Equations (17) and (18) re¯ect grain size e�ects

which are opposite in direction and far stronger

than those of dislocation plasticity (Hall±Petch

e�ect). They are due to the increase, with ®ner

grain size, in the volume fraction of ``disordered''

Fig. 9. Inverse Hall±Petch behavior in nanocrystalline Cu (�Hÿ �H0 denotes the hardness increment, D
the grain size): the classical behavior breaks down at a grain size of about 50 nm, in agreement with an

estimate based on the loop diameter [equations (13a)±(b)]. Replotted after Chokshi et al. [23].

Fig. 10. Di�usional creep is driven by gradients in normal tractions on grain boundaries (a). Fine
arrows delineate the paths for transport of matter. This mechanism ceases to operate (b) once a grain
boundary dislocation loop no longer ®ts into a grain facet (d > D 0). Note the analogy with Fig. 8 for

lattice dislocations.
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material which can act as short-circuit di�usion

path, and to the higher density of sinks and sources

for matter.

It is still a matter of debate whether grain-bound-

ary softening, which has occasionally been reported

for nanocrystalline materials, can be attributed to

these e�ects at room temperature. Chokshi et al. [23]

claim that agreement of equation (18) with their

results on Cu can be obtained by using a reduced

value of the activation energy for grain-boundary

di�usion (62 instead of 104 kJ/mol). Nieh and

Wadsworth [24], by contrast, argue that such a

comparison neglects the large di�erences in the

grain size exponents (Fig. 9): according to

equation (18), t0D3 would be expected, whereas

the observed behavior is closer to t0Dn with n<1.

A new element is introduced in this discussion by

noting that in very small grains the rate of creep

may no longer be controlled by the di�usion step

[as is tacitly assumed in equations (17) and (18)],

but by the deposition and removal of atoms at the

grain boundaries. Ashby [34] and Arzt et al. [35]

have shown that for such ``interface-controlled'' dif-

fusional creep the grain size dependence is much

weaker:

t �
�

_ekTGbb
C4ODeff

�1=2

D1=2: �19�

This result was obtained by modeling the interface

reaction as the climb motion of an array of grain-

boundary dislocations. Here De� is an e�ective

di�usivity, bb the Burgers vector of a boundary dis-

location and C4 another numerical constant. The

D1/2-proportionality, which results from the

assumption of a stress-dependent dislocation

density, is in better agreement with the data of

Chokshi et al. (Fig. 9). However, because of the

reduced grain size dependence, an even lower acti-

vation energy (about 40 kJ/mol) for di�usion has to

be assumed to predict realistic deformation rates at

room temperature.

Also, the motion of grain boundary dislocations

is subject to a similar grain size limit as for lattice

dislocations: models based on their presence must

break down once an average grain facet of diameter

D' can no longer accommodate a grain-boundary

dislocation loop [Fig. 10(b)]. The corresponding

limiting condition is, in analogy with equation (13b),

given by

t � Gbb
D 0

: �20�

The value of bb corresponds to the di�erence in

Burgers vector between two lattice dislocations and

is therefore only a fraction of b. Hence, a stress

window will exist in which plasticity due to lattice

dislocations is suppressed or slowed down [at stres-

ses below that given by equation (13b)], but di�u-

sion creep operates because grain-boundary
dislocations are still present and mobile.

Overall, the topic of plastic deformation and
creep in nanocrystalline materials is by far not fully
understood. The conditions for the appearance of

abnormal Hall±Petch behavior, in particular, are
not clear and controversial reports have been pub-
lished. In addition, there is no accepted theoretical

model, and the phenomenon is open to other in-
terpretations.

3. THE ANALOGY WITH MAGNETIC
STRENGTHENING

We now turn brie¯y to a di�erent class of
phenomena, which nevertheless displays interesting

analogies to mechanical behavior, as suggested by
Haasen [36, 37]. Ferromagnetism is due to spon-
taneous magnetization, i.e. the parallel alignment of

electron spins along ``easy'' crystallographic direc-
tions. Because of the multiplicity of such directions
in crystals of high symmetry a ``magnetic micro-
structure'' consisting of magnetic domains with uni-

form magnetization is formed; the domains are
separated from one another by domain walls in
which the spin direction rotates smoothly between

the easy directions of the adjacent domains. The
magnetization occurs, to a large extent, by the
growth of domains oriented favorably with regard

to the external magnetic ®eld. This process requires
the motion of the domain walls, whose interaction
with defects determines the ease of magnetization
(i.e. the coercive ®eld).

The most fundamental length scale in magnetism
is the domain wall thickness in the unperturbed lat-
tice. It is, like the spacing of partial dislocations

(Section 2.1.3), determined by two competing size
e�ects: the quantum±mechanical exchange inter-
action, favoring parallel spins, tends to widen the

wall; the crystal anisotropy, which maintains ``easy''
spin directions, encourages rapid spin rotation. The
wall thickness is set by an energy minimum and is a

material parameter:

d � p
�

A

K1

�1=2

�21�

where A is the magnitude of the exchange integral

and K1 the magnetic anisotropy constant. The
quantity d is (except for the factor p) identical with
the ``exchange length'', i.e. the minimum length

over which the magnetization can vary appreciably.
Values for d range, e.g. from about 200 nm for Ni
to about 3 nm for Fe14Nd2B. For magnetic

phenomena, the wall thickness is an important
characteristic dimension; its interaction with micro-
structural size parameters will now be addressed.

3.1. Particle strengthening in magnetism

The interaction of domain walls with magnetic
inhomogeneities is analogous to dislocations [36, 37]
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or grain boundaries [38] interacting with a ®eld of
particles. Consider a microstructure with non-mag-

netic particles of radius R in a ferromagnetic
matrix. A major contribution to the ``hardness'' of
such a magnet, characterized by its coercive ®eld

Hc, comes from the reduction in wall energy, which
has to be supplied by the magnetization energy as
the wall pulls away from the particles.

For geometric reasons, two limiting cases are
generally distinguished: for a particle which is much
smaller than the wall thickness (R� d), the maxi-

mum force exerted on the wall is

Fm1R3g

d2
�22�

where g is the domain wall energy per unit area.
The resulting coercive ®eld is then, in the simplest
case, given by

HcA
gR

d2
: �23�

The magnetic ``strength'' is therefore expected to

increase with particle size in this limit.
Large particles (R� d) exert a maximum force

of

Fm12Rpg �24�
which gives an inverse relationship between Hc and
R:

HcA
g
R
: �25�

Because of the di�erent particle size dependencies, a

maximum in magnetic strength is expected when

R1d: �26�
Thus, a direct analogy with age hardening, as dis-

cussed in Section 2.1.2, becomes apparent. It is
emphasized that our simple derivation neglects im-
portant e�ects of particle statistics, whose incorpor-

ation can give modi®ed R-dependences [36, 39].
Also, detailed experimental veri®cation of
equation (25) is di�cult, because other e�ects, such
as stray ®elds or magnetostrictive interactions with

coherency stresses of the particles, may superimpose
on the mechanism considered here (e.g. Ref. [39]).
This principle of magnetic age hardening has been

exploited in the development of mechanically
strong, but magnetically soft alloys. In this case the
mechanically ``peak-aged'' condition corresponds to

®ne particle sizes which are ``under-aged'' with
respect to magnetic propertiesÐa technical appli-
cation of size e�ects in di�erent property domains.

3.2. Grain size e�ects in magnetism

In polycrystalline ferromagnets, grain boundaries

are, by necessity, magnetic domain boundaries
(whereas the converse is of course not true). As the
domain wall mobility is determined by the volume
density of these defects, the coercive ®eld increases

with decreasing grain size in the following
way [38, 40]:

Hc � Hc,o � kM
D

�27�

where Hc,o re¯ects the coercivity due to other
e�ects, such as internal stresses, impurities, in-

clusions, etc. The constant kM contains the wall
energy and other magnetic properties of the ma-
terial.
Thus, when the grain size is progressively re®ned,

the magnetic ``hardness'' increases (Fig. 11).
However, because of the interaction beween domain
walls and grain boundaries, we expect this depen-

dence to break down for

d1D: �28�
Indeed, the grain size dependence reverses at a

value close to the wall thickness (Fig. 11). The
value of Hc then decreases rapidly to values com-
parable with those for amorphous soft magnets.

Such a behavior can be seen as an analogy to the
dependence of the yield stress on grain size (cf.
Fig. 9).
The reason for the strong drop in coercivity at

grain sizes below the wall thickness lies in a new
micromagnetic mechanism: the ferromagnetic
exchange interaction, which now extends over sev-

eral grains, tends to align the magnetic moments,
overriding the ``easy'' directions of each individual
grain. As a result, the anisotropy is reduced and,

following equation (21), the domain wall thickness
is further increased. This e�ect leads to a strong
grain-size dependence of the coercive ®eld [41±43]:

HcAD6: �29�
Nanocrystalline magnets have been developed in
the last decade which exhibit exceptional soft-mag-
netic properties [41, 44]. The system Fe±Cu±Nb±Si±

B has been found to be particularly promising
because, in addition to the reduced anisotropy, also
the magnetostriction practically vanishes in the
nanocrystalline state. Compared to conventional

soft magnets, this new material class o�ers decisive
advantages in magnetic properties (e.g. a substan-
tially improved saturation polarization).

4. MECHANICAL STRENGTH OF THIN FILMS: THE
DIMENSIONAL CONSTRAINT

Thin ®lms are by de®nition materials in which
one dimension (that in the ``thickness'' direction) is
much smaller than the other two. It can then be

expected that the size constraint, rather than the
microstructure, will control the mechanical proper-
ties. Also transport properties have been found to

exhibit size e�ects: the electrical and thermal con-
ductivity of thin ®lms, for example, decrease signi®-
cantly once the ®lm thickness is reduced below the
mean free path of electrons or phonons.
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The obvious size parameter for a thin ®lm is its

thickness H. An important complication in poly-
crystalline thin ®lms is the fact that this size con-

straint often causes a microstructural constraint:
normal grain growth usually stagnates once the

grain size is comparable to the ®lm thickness [45].
As a consequence, thin ®lms generally consist of

relatively ®ne grains, unless they are deposited epi-
taxially on single crystal substrates or heat treated

in a way to encourage abnormal grain growth [46].
The grains often extend through the thickness of
the ®lm (``columnar grains'') such that the ®lm can

be thought of as a two-dimensional array of single
crystals.

An important property of thin ®lms which has

been studied extensively in recent years is their plas-
tic yield stress. This property is of practical import-
ance because it can a�ect the reliability of thin-®lm

components. In terms of micromechanisms, thin-
®lm plasticity is in¯uenced by the dimensional con-

straint on dislocation motion, which results in a
pronounced size e�ect.

4.1. Film thickness and yield stress: the ``dislocation

channeling'' mechanism

Consider a single-crystalline ®lm attached to a

substrate and subjected to a biaxial stress in the

®lm plane. We wish to determine the shear stress ty
necessary to cause yielding by the motion of dislo-

cations, which are constrained to ``channel''

through the ®lm. A ®rst estimate is obtained by

requiring a dislocation loop to ®t inside the ®lm

(Fig. 12); if the ®lm surface is impenetrable to the

dislocation (e.g. because of the presence of an oxide

layer), the limiting condition becomes, in analogy

with equation (2) [Fig. 12(a)]

d�t� � H 0 �30�
or, equivalently

ty � Gfb

H 0
�31�

where d(t) is again the characteristic loop diameter

[equation (1)], Gf the shear modulus of the ®lm and

Fig. 11. Grain size e�ects in magnetism (after Herzer [41]): The coercive ®eld follows classically a 1/D
(where D is the grain size) dependence. For very small grains, a D6 proportionality is found. The maxi-
mum magnetic ``hardness'' occurs when the grain size D is comparable to the width d of a domain

wall. Note the analogy with mechanical strengthening (Fig. 9).
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H 0 � H=sin j the size parameter (where j is the

angle between the normal to the plane of the loop

and the ®lm normal). This expression is similar to

the Orowan stress [equation (3)], with the obstacle

spacing L replaced by H'.
Alternatively, if the ®lm surface is ``free'' and

exerts attractive image forces on the dislocation, it

is su�cient to ®t half a loop into the ®lm

[Fig. 12(b)]. The stress estimate is then half of that

given in equation (31). It is, however, generally

found (e.g. Ref. [47]) that equation (31), which has

been suggested in similar form early in the develop-

ment of thin-®lm mechanics [48], substantially

underestimates the yield stress.

A more sophisticated model has been developed

by Freund [49] and Nix [47]. As a dislocation

advances in a ®lm by ``channeling'', it creates ad-

ditional line length in the interfaces. The energy of

these ``mis®t dislocations'' is, in the presence of an

elastically sti�er substrate and, possibly, an oxide

layer, raised against the line energy far from the

interface. An energy balance between the work

done by the dislocation and the energy stored in the

mis®t dislocation arms leads to a result in which Gf

[in equation (31)] must be replaced by an ``e�ective''
shear modulus given by

Geff � Gf

2p�1ÿ ��
�

Gs

Gf � Gs
ln
b1H
b

� Go

Gf � Go
ln
b2Ho

b

�
: �32�

Here the subscripts s and o refer to substrate and

oxide layer, respectively, Ho is the thickness of the
oxide layer, b1 and b2 are constants de®ning the

cut-o� radii, and n is Poisson's number of the ®lm.

The ``free''-surface case is readily obtained by delet-
ing the second term in equation (32). For sti� sub-

strates, Ge� can exceed Gf considerably; therefore

this modi®cation predicts, in comparison with
equation (31), much higher yield stresses. For

coarse-grained Al ®lms, the calculated values have

been shown to agree well with experimental results,
e.g. those of Venkatraman and Bravman [50]. They

are about an order of magnitude higher than for

bulk Al of the same purityÐan impressive manifes-
tation of the size constraint on dislocation motion.

Fig. 12. The dimensional constraint on plasticity in thin ®lms: the yield stress can be estimated by
requiring a ``dislocation loop'' to ®t into the ®lm (d<H 0). H' depends on the ®lm thickness H and the
orientation of the slip plane (see Fig. 2). Case a: impenetrable ®lm surface; case b: ``free'' ®lm surface.

Fig. 13. Separation of dimensional and microstructural constraints on plastic deformation of thin Cu
®lms: the measured yield stresses sy scale with the reciprocal of ®lm thickness H, but substantially
exceed the prediction of equations (32) and (33) (``Nix±Freund model'' [47, 49]). The discrepancy can
be tentatively explained by a superposition of the thin-®lm e�ect with grain size (Hall±Petch) and with

Taylor hardening (after Keller et al. [52]).
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4.2. Grain size e�ects: Hall±Petch strengthening in
thin ®lms?

The remaining discrepancies between theory and

experiments on polycrystalline ®lms can be attribu-

ted to the interaction of the dislocation with grain

boundaries. Following the simple treatment by

Thompson [51], a grain-size dependent term can be

included in the energy balance, which should give

an additional contribution to the yield stress:

tgby 1Gfb

D

sin j
4p�1ÿ �� ln

b3D
b
: �33�

As a consequence, grain size strengthening in thin

®lms would not be expected to exhibit Hall±Petch

behavior. There is in fact circumstantial evidence

for this conclusion [50].

A recent study on the yield stress of polycrystal-

line copper ®lms, however, leads to a di�erent

result. Keller et al. [52] found that the thin-®lm con-

tribution [equations (31) and (32)] explained only a

fraction of the stresses measured (Fig. 13). It should

be noted that, after normalizing with Ge�, stress

values for both unpassivated and passivated ®lms

fell on the same straight line; the e�ect of the passi-

vation therefore seemed to be correctly accounted

for by the Freund±Nix model. The data could best

be ®tted by superimposing on the ®lm thickness

e�ect a grain-boundary contribution following a

Hall±Petch relation [equation (12)], but with a con-

stant kHP three times the value commonly found for

bulk materials. Alternatively, the experimental stres-

ses could also be explained by a superposition of

thin-®lm e�ect, Hall±Petch e�ect and a contribution

from dislocations (Taylor hardening). Besides this

uncertainty, it is not fully clear at present whether

the Hall±Petch or the Thompson description is

more generally valid for thin ®lms. The issue of

grain size strengthening in thin ®lms, and in par-
ticular the superposition of dimensional and micro-

structural constraints, will therefore require further
studies in the future.

4.3. Hardness of multilayers: ``channeling'' vs inter-

face penetration of dislocations

As a ®nal example, we consider epitaxial multi-

layers, which consist of alternating layers of two
dissimilar materials. Such thin-®lm ``superlattices''
exhibit interesting electrical, optical, and magnetic
properties and are attractive for many technological

applications ranging from X-ray mirrors to hard
disk media and magnetoresistive sensors. Their
mechanical properties are also remarkable: for

example, the hardness values, as measured by nano-
indentation through many consecutive layers, are
considerably enhanced over those measured for the

pure ®lms of the two components (Fig. 14 [53]).
This property shows a clear size e�ect with respect
to the bilayer period L, i.e. the sum of the two indi-
vidual layer thicknesses. On decreasing L, the hard-

ness rises at ®rst, reaches a plateau and then
decreases sharply.
Daniels [53] argues that the hardness maximum is

due to two competing e�ects: at large bilayer
periods, dislocation pile-ups are assumed to favor
the penetration of dislocations from one layer into

the adjacent layer. The resulting Hall±Petch descrip-
tion is in good agreement with the data (Fig. 14);
an explanation based on dislocation channeling,

however, has also been found to be a viable alterna-
tive. At small L, dislocation penetration is no
longer aided by pile-ups, but is instead controlled
by image stresses due to the discontinuities in elastic

modulus. Following earlier models [54±58], the
analysis by Daniels leads to a prediction which is in
good agreement with the experiment for

Fig. 14. Size e�ect in a multilayer thin-®lm system [53]: the hardness of an epitaxial sputter-deposited
Fe(001)/Pt(001) multilayer exhibits, as a function of bilayer period L at equal layer thicknesses, a maxi-
mum. The lines show the results of a model by Daniels [53]: penetration of a dislocation through the
multilayer interfaces is controlled by pile-ups (Hall±Petch e�ect) at large L, and by image stresses at
small L. Note that all hardness values considerably exceed those of the pure materials (Fe: 4.8 GPa, Pt:

2 GPa) or of a rule-of-mixtures calculation (3.4 GPa).
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L< 150 nm (Fig. 14). The reverse size e�ect is
attributed to the reduced image stresses acting in

the forward direction as the bilayer thickness is
increased. This model, which could be further
re®ned to include ``di�use'' interfaces or multiple

dislocations [53], has proven to be successful in the
description of the size e�ect on hardness in some
multilayer systems.

Overall, the data in Fig. 14 are another convin-
cing example of size e�ects in thin-®lm systems. As
must be expected, the increase in strength with

further miniaturization does not continue inde®-
nitely but is subject to the intervention of alterna-
tive mechanisms with a di�erent size dependence.
We note that the maximum displayed in Fig. 14 is

reminiscent of the breakdown of Hall±Petch beha-
vior in nanocrystalline bulk materials (Fig. 9).

5. CONCLUDING REMARKS

Size e�ects are abundant in the materials world.
In the present paper we have focussed on properties
which are governed by the motion of defects such
as dislocations, vacancies and domain walls. For

such processes, size e�ects come about because an
intrinsic property of the defect (its curvature, or its
extension) interacts with a microstructural or a

dimensional constraint. Other examples (not treated
here) are the interaction of grain boundaries with
particles, resulting in a characteristic equilibrium

grain size (``Zener e�ect''), or the pinning of ¯ux
lines by inclusions in type II superconductors [37].
A question of considerable technological import-

ance concerns the dimensional e�ects in micro-
machined components. It is obvious that the elastic
behavior, for which the length of an atomic bond is
the characteristic length, should not be a�ected by

the microdimensionality. By contrast, dislocation
plasticity, as has been discussed for thin ®lms, is
subject to strong size e�ects because of the much

larger characteristic lengths involved; appreciable
e�ects will appear for metallic components with
sizes below several micrometers. It can further be

expected that the local accumulation of plastic
strain, such as in fatigue loading, will be a�ected at
even larger component sizes: the self-organization
of dislocation structures results in cells and slip

bands which can extend over several tens of mi-
crometers. The constraints on these processes may
explain experimental evidence for increased fatigue

life in thin metallic wires [59, 60]. Finally, the frac-
ture behavior will also exhibit size dependencies: in
ductile fracture a new mechanism must occur as the

component dimensions fall below the size of frac-
ture dimples observed in bulk materials. Also the
fracture probability of brittle materials is known to

decrease for smaller sizes, re¯ecting defect statistics;
it is this e�ect which has contributed to the success
of silicon as a mechanical material [61] for micro-
systems which, in large dimensions, could not be

built reliably from such an intrinsically brittle ma-
terial.

In retrospect, it is seen that size e�ects have unex-
pected commonalities in several otherwise unrelated
phenomena: almost all properties addressed in this

paper exhibit a maximum at a characteristic value
of the size parameter: particularly clear examples
are the yield stress as a function of particle size and

of the bilayer period in multilayers, as well as the
magnetic properties dependence on grain size. Other
maxima are less well established, let alone under-

stood, e.g. the yield stress of extremely ®ne-grained
materials (breakdown of Hall±Petch behavior).
Formally, another commonality is visible in sev-

eral size e�ects: they are the result of a balance

between two quantities with di�erent dependences
on length. In the Orowan e�ect, the work done by
a dislocation advancing between two particles scales

with the obstacle spacing (or radius), whereas the
balancing forces at the particles do not; similarly, in
thin-®lm plasticity the elastic strain energy of the

®lm scales with its thickness, whereas the energy of
the interface dislocations left behind does not (or
only weakly through a logarithmic dependence). In

such cases the size e�ect can be traced back to a
surface-to-volume ratio as the governing parameter.
Other ®elds, such as biology, cannot escape such
size e�ects either: because of surface-to-volume

e�ects on metabolism, the average lifetime of mam-
mals depends clearly on their size [62]. Biological
evolution, too, is therefore subject to dimensional

constraints and has found optimum sizes: trees are
known not to grow into the skies.
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APPENDIX A

Nomenclature

Characteristic lengths

db grain-boundary thickness
d thickness of magnetic domain walls
d diameter of a dislocation loop
w pacing of superpartial dislocations.

Size parameters

D grain size
H ®lm thickness
L obstacle spacing
L* obstacle spacing for penetrable particles
R obstacle radius
L bilayer period of a multilayer.

Other symbols

A ferromagnetic exchange integral
b Burgers vector of a lattice dislocation
bb Burgers vector of a grain-boundary dislocation
g speci®c domain wall energy
Dv lattice di�usivity
Db grain-boundary di�usivity
_e strain rate
Fm maximum force
G shear modulus
Hc coercive ®eld
�H hardness
k relaxation factor
k Boltzmann's constant
kHP Hall±Petch constant
K1 magnetic anisotropy constant
O atomic volume
r dislocation density
T absolute temperature
Td line tension
t shear stress
td detachment shear stress
tOr Orowan stress in shear
Uel line energy.
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