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a b s t r a c t

The Crank–Nicolson scheme is considered for solving a linear convection–diffusion
equation with moving boundaries. The original problem is transformed into an equivalent
systemdefined on a rectangular region by a linear transformation. Using energy techniques
we show that the numerical solutions of the Crank–Nicolson scheme are unconditionally
stable and convergent in the maximum norm. Numerical experiments are presented to
support our theoretical results.
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1. Introduction

Moving boundary problems occur in themathematical modelling of many physical processes involving diffusion, such as
themovement of the shoreline in a sedimentary ocean [1], the drift and collection of oil [2], heat conduction across the solid
from a liquid–solid interface to the cooled surface [3] etc. Moving boundary problems also exist in the swelling of biological
tissues [4,5] and the swelling of polymers [6].
Due to the difficulties in obtaining analytical solutions, it is important to develop numerical methods for moving

boundary problems. Recently, more finite difference schemes have been used for dealing with moving boundary
problems [7–10], but there are no analyses of the convergence and stability of difference schemes. In addition, Baines
and Hubbard [11] established a moving mesh finite element algorithm for moving boundary problems. Immersed interface
methods and immersed boundary methods also have been used to deal with moving boundary problems [12–14].
The linear convection–diffusion equation

∂u
∂t
+
∂

∂x

(
au− κ

∂u
∂x

)
= g(x, t), (x, t) ∈ QT (1.1)

along with the initial value condition

u(x, 0) = u0(x), x ∈ Ω0, (1.2)

and the moving boundary value conditions

u(x, t) = Φ(x, t), x ∈ ∂Ωt , 0 < t ≤ T (1.3)
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as a mathematical model is widely used in various applications, where QT =
{
(x, t) ∈ R2, x ∈ Ωt , t ∈ [0, T ]

}
, Ωt is an

interval in R for each t ∈ [0, T ], a and κ are two positive constants.
Movingmeshmethod is very effective for dealingwithmoving boundary problems.Mackenzie andMekwi [15] discussed

the stability and convergence of time integration schemes for the solution of (1.1)–(1.3) (they took g(x, t) = Φ(x, t) = 0).
Using variable mesh method and energy techniques they showed that the backward Euler scheme is unconditionally stable
in a mesh-dependent L2 norm, but the Crank–Nicolson scheme is only conditionally stable.
Sun [2] gave a three-level linearized and weak coupled difference scheme using a moving mesh for the model of oil drift

and collection with moving boundary value, and analyzed the solvability and convergence of the difference scheme. He
proved that the convergence order of the difference scheme is O(τ 2 + h2).
In this article, the Crank–Nicolson scheme for the linear convection–diffusion equation with moving boundaries

(1.1)–(1.3) is analyzed. A linear transformation is introduced in our analysis to transform (1.1) to an equivalent equation
defined on a rectangle region. It is proved that the Crank–Nicolson scheme for (1.1)–(1.3) is unconditionally stable and
convergent in the maximum norm. The convergence order is O(τ 2 + h2).
The contents will be organized as follows. In the next section, an equivalent system defined on a rectangular region is

achieved by making a linear transformation to Eq. (1.1). Mesh generation and some notations are also introduced in this
section. The Crank–Nicolson scheme is constructed for the equivalent system in Section 3. Section 4 presents the energy
analysis for the Crank–Nicolson scheme and gives the main results of the article. Numerical experiments are provided to
support our theoretical results in Section 5.

2. A linear transformation and mesh generation

Assume that the initial value u0 and exterior force g are regular enough in (1.1)–(1.3), the boundary valueΦ is piecewise
smooth, u0(x) = Φ(x, 0), x ∈ ∂Ω0, and the domain Ωt can be defined as Ωt = [xl(t), xr(t)], where the functions
xl(t), xr(t) ∈ C1[0, T ], and xl(t) < xr(t) for every t ∈ [0, T ].
Introduce a linear transformation{

x = (1− ξ)xl(t)+ ξxr(t), 0 ≤ ξ ≤ 1
t = t, 0 ≤ t ≤ T (2.1)

and denotew(ξ, t) = u ((1− ξ)xl(t)+ ξxr(t), t) , G(ξ , t) = g ((1− ξ)xl(t)+ ξxr(t), t). Then we have

∂w

∂t
=
∂u
∂x
·
∂x
∂t
+
∂u
∂t
,

∂w

∂ξ
=
∂u
∂x
xξ (t),

∂2w

∂ξ 2
=
∂u
∂x
xξξ (t)+

∂2u
∂x2
x2ξ (t).

(2.2)

It is obvious that

xξ (t) = xr(t)− xl(t) > 0, xξξ (t) = 0. (2.3)

Performing in (1.1)–(1.3) the substitution (2.1) and then using (2.2)–(2.3) we obtain

∂w

∂t
−

κ

(xξ )2
∂2w

∂ξ 2
−
1
xξ

(
∂x
∂t
− a

)
∂w

∂ξ
= G(ξ , t), (ξ , t) ∈ QR, (2.4)

along with the initial value condition

w(ξ, 0) = w0(ξ), 0 ≤ ξ ≤ 1 (2.5)

and the boundary value conditions

w(0, t) = φ1(t), w(1, t) = φ2(t), 0 < t ≤ T (2.6)

where QR =
{
(ξ , t) ∈ R2, 0 ≤ ξ ≤ 1, 0 < t < T

}
, w0(ξ) = u0 ((1− ξ)xl(0)+ ξxr(0)), φ1(t) = Φ (xl(t), t), φ2(t) =

Φ (xr(t), t).
Summarizing above results, we obtain the following theorem.

Theorem 1. Assume that the interval Ωt can be defined as Ωt = [xl(t), xr(t)], where the functions xl(t), xr(t) ∈ C1[0, T ]. If
xl(t) < xr(t) for every t ∈ [0, T ], then the problem (1.1)–(1.3) is equivalent to (2.4)–(2.6).

Let

Ωh(t) ≡ {xi(t) | xi(t) = ih(t), 0 ≤ i ≤ M}

be a variable mesh of the intervalΩt = [xl(t), xr(t)]with h(t) = 1
M [xr(t)− xl(t)], where t ∈ [0, T ] is fixed. Let

Ω̃h ≡ {ξi | ξi = ih, 0 ≤ i ≤ M}
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be a uniform mesh of the interval [0, 1] with h = 1/M and
Ωτ ≡ {tn | tn = nτ , 0 ≤ n ≤ N},

where τ = T/N . Further, we denote
Ωτ
h = Ωh(t)×Ωτ = {(xni , tn) | x

n
i = ih(tn), tn = nτ , 0 ≤ i ≤ M, 0 ≤ n ≤ N},

Ω̃τ
h = Ω̃h ×Ωτ = {(ξi, tn) | ξi = ih, tn = nτ , 0 ≤ i ≤ M, 0 ≤ n ≤ N}.

In addition, let

tn+ 12 =
1
2
(tn + tn+1), ξi+ 12

=
1
2
(ξi + ξi+1), xn

i+ 12
=
1
2
(xni + x

n
i+1).

It is obvious that
xni = (1− ξi)xl(tn)+ ξixr(tn), h(tn) = h[xr(tn)− xl(tn)]. (2.7)

Supposew = {wni | 0 ≤ i ≤ M, 0 ≤ n ≤ N} is a grid function on Ω̃
τ
h . Introduce the following notations:

w
n+1/2
i =

1
2
(wni + w

n+1
i ), δtw

n+1/2
i =

1
τ
(wn+1i − wni )

δξw
n
i+ 12
=
wni+1 − w

n
i

h
, δ2ξw

n
i =

wni+1 − 2w
n
i + w

n
i−1

h2
,

‖wn‖∞ = max
0≤i≤M

|wni |, |wn|1 =

√√√√h M−1∑
i=0

(
δξw

n
i+ 12

)2
,

‖wn‖ =

√√√√h[1
2
(wn0)

2 +

M−1∑
i=1

(wni )
2 +

1
2
(wnM)

2

]
.

For deriving the maximum norm estimate of the Crank–Nicolson scheme, we need the following lemma [16].

Lemma 2. If wn = (wn0, w
n
1, . . . , w

n
M) is a grid function on Ω̃h and satisfiesw

n
0 = w

n
M = 0, then

‖wn‖∞ ≤
1
2
|wn|1. (2.8)

3. Construction of the Crank–Nicolson scheme

We denote
L(t) = xr(t)− xl(t) (3.1)

and
c1 = max

0≤t≤T
|L(t)|, c2 = max

0≤t≤T
max{|x′l(t)|, |x

′

r(t)|}. (3.2)

According to (2.3), we have
xξ (t) = L(t), xξξ (t) = 0. (3.3)

We consider the difference discretization of the problem (2.4)–(2.6). Define the grid functions

W ni = w(ξi, tn), G
n+ 12
i = G(ξi, tn+ 12 ), Ln+ 12 = L(tn+ 12 ), ξi ∈ Ω̃h, tn ∈ Ωτ .

The construction of Crank–Nicolson method is standard.
Consider the Eq. (2.4) at the point (ξi, tn+ 12 ), we have

∂w(ξi, tn+ 12 )

∂t
−

κ

L2(tn+ 12 )

∂2w(ξi, tn+ 12 )

∂ξ 2
−

1
L(tn+ 12 )

(
∂x(ξi, tn+ 12 )

∂t
− a

)
∂w(ξi, tn+ 12 )

∂ξ
= G

n+ 12
i . (3.4)

Using the method of Taylor expansion, one can derive that

δtW
n+ 12
i −

κ

(Ln+ 12 )
2
δ2ξW

n+ 12
i −

1
2Ln+ 12

(δtx
n+ 12
i − a)

(
δξW

n+ 12
i− 12
+ δξW

n+ 12
i+ 12

)
= G

n+ 12
i + R

n+ 12
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (3.5)

and there exists a constant c > 0 such that

|R
n+ 12
i | ≤ c(h

2
+ τ 2), (3.6)
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where δtx
n+ 12
i =

1
τ
(xn+1i − x

n
i ). In addition, it follows from (2.5) and (2.6) that

W 0i = w0(ξi), 0 ≤ i ≤ M, (3.7)

W n0 = φ1(tn), W nM = φ2(tn), 1 ≤ n ≤ N. (3.8)

Omitting the small terms R
n+ 12
i in (3.5), and replacing the grid function W ni with the numerical approximation w

n
i , the

Crank–Nicolson scheme for the system (2.4)–(2.6) is obtained as follows

δtw
n+ 12
i −

κ

(Ln+ 12 )
2
δ2ξw

n+ 12
i −

(δtx
n+ 12
i − a)
2Ln+ 12

(
δξw

n+ 12
i− 12
+ δξw

n+ 12
i+ 12

)
= G

n+ 12
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (3.9)

w0i = w0(ξi), 0 ≤ i ≤ M, (3.10)

wn0 = φ1(tn), wnM = φ2(tn), 1 ≤ n ≤ N. (3.11)
Define a grid function u = {uni } onΩ

τ
h by

uni = w
n
i , 0 ≤ i ≤ M, 0 ≤ n ≤ N (3.12)

and let uni be an approximation of u(x
n
i , tn).

Denote

u
n+ 12
i =

1
2
(uni + u

n+1
i ), δxu

n+ 12
i+ 12
=

1
h(tn+ 12 )

(
u
n+ 12
i+1 − u

n+ 12
i

)
,

δtu
n+ 12
i =

1
τ

(
un+1i − u

n
i

)
, δ2xu

n+ 12
i =

1[
h(tn+ 12 )

]2 (un+ 12i+1 − 2u
n+ 12
i + u

n+ 12
i−1

)
.

Then the difference scheme (3.9)–(3.11) can be written as

δtu
n+ 12
i −

(
δtx
n+ 12
i

)
·
1
2

(
δxu

n+ 12
i− 12
+ δxu

n+ 12
i+ 12

)
+ a ·

1
2

(
δxu

n+ 12
i− 12
+ δxu

n+ 12
i+ 12

)
− κδ2xu

n+ 12
i

= G
n+ 12
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1, (3.13)

u0i = u0(x
0
i ), 0 ≤ i ≤ M, (3.14)

un0 = φ1(tn), unM = φ2(tn), 1 ≤ n ≤ N. (3.15)
We can interpret the difference equation (3.13) as an approximation of (1.1) by

δtu
n+ 12
i −

(
δtx
n+ 12
i

) δxun+ 12i− 12
+ δxu

n+ 12
i+ 12

2
∼
∂u
(
x
n+ 12
i , tn+ 12

)
∂t

,

a
δxu

n+ 12
i− 12
+ δxu

n+ 12
i+ 12

2
∼ a

∂u
(
x
n+ 12
i , tn+ 12

)
∂x

,

−κδ2xu
n+ 12
i ∼ −κ

∂2u
(
x
n+ 12
i , tn+ 12

)
∂x2

.

4. Maximum norm error estimates for the Crank–Nicolson scheme

In the following, we prove the solvability, stability and convergence of the Crank–Nicolson scheme (3.9)–(3.11).

Theorem 3. Let {wni | 0 ≤ i ≤ M, 0 ≤ n ≤ N} be the solution of the difference scheme (3.9)–(3.11). If w
n
0 = w

n
M = 0, 0 ≤

n ≤ N, then we have

‖wn‖∞ ≤
1
2
e
3
2 Tc
∗

(
|w0|21 +

3(c1)2

2κ
τ

n−1∑
k=0

‖Gk+
1
2 ‖
2

) 1
2

, 0 ≤ n ≤ N, (4.1)

where

c∗ =
(c2 + |a|)2

2κ
. (4.2)
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Proof. Multiplying (3.9) by hδtw
n+ 12
i and summing up for i from 1 toM − 1, we obtain

h
M−1∑
i=1

(
δtw

n+ 12
i

)2
−

κ

(Ln+ 12 )
2
h
M−1∑
i=1

(
δtw

n+ 12
i

)(
δ2ξw

n+ 12
i

)
−

1
2Ln+ 12

h
M−1∑
i=1

(δtx
n+ 12
i − a)

×

(
δξw

n+ 12
i− 12
+ δξw

n+ 12
i+ 12

)(
δtw

n+ 12
i

)
= h

M−1∑
i=1

(
δtw

n+ 12
i

)
G
n+ 12
i . (4.3)

According to the assumption wn0 = w
n
M = 0, 0 ≤ n ≤ N , we get that the time difference quotient δtw

n+ 12
i vanishes at

the boundary points. Applying the discrete Green formula, we have

−h
M−1∑
i=1

(
δtw

n+ 12
i

)(
δ2ξw

n+ 12
i

)
= h

M−1∑
i=0

(
δξw

n+ 12
i+ 12

)(
δt(δξw

n+ 12
i+ 12

)

)

=
1
2τ

M−1∑
i=0

[(
δξw

n+1
i+ 12

)2
−

(
δξw

n
i+ 12

)2]
=
1
2τ

(
|wn+1|21 − |w

n
|
2
1

)
.

By using the inequality ab ≤ 1
2 (a

2
+ b2), we obtain

1
2Ln+ 12

h
M−1∑
i=1

(δtx
n+ 12
i − a)

[
δξw

n+ 12
i+ 12
+ δξw

n+ 12
i− 12

](
δtw

n+ 12
i

)

≤
1
2
h
M−1∑
i=1


(
δtw

n+ 12
i

)2
+
(δtx

n+ 12
i − a)2

2(Ln+ 12 )
2

[(
δξw

n+ 12
i− 12

)2
+

(
δξw

n+ 12
i+ 12

)2] (4.4)

and

h
M−1∑
i=1

(
δtw

n+ 12
i

)
G
n+ 12
i ≤ h

M−1∑
i=1

[
1
2

(
δtw

n+ 12
i

)2
+
1
2

(
G
n+ 12
i

)2]
=
1
2
‖δtw

n+ 12 ‖2 +
1
2
‖Gn+

1
2 ‖
2. (4.5)

Substituting (4.4)–(4.5) into (4.3), we get

1
2τ

κ

(Ln+ 12 )
2

[
|wn+1|21 − |w

n
|
2
1

]
≤
1
4
h
M−1∑
i=1

(
δtx
n+ 12
i − a

)2
(
Ln+ 12

)2
[(
δξw

n+ 12
i− 12

)2
+

(
δξw

n+ 12
i+ 12

)2]
+
1
2
‖Gn+

1
2 ‖
2.

Using (3.2) and (4.2), we have

1
τ

(
|wn+1|21 − |w

n
|
2
1

)
≤
h
2κ

M−1∑
i=1

(δtx
n+ 12
i − a)2

[(
δξw

n+ 12
i− 12

)2
+

(
δξw

n+ 12
i+ 12

)2]
+

(Ln+ 12 )
2

κ
‖Gn+

1
2 ‖
2

≤
(c2 + a)2

κ
|wn+

1
2 |
2
1 +

c21
κ
‖Gn+

1
2 ‖
2

≤
(c2 + a)2

2κ

(
|wn|21 + |w

n+1
|
2
1

)
+
c21
κ
‖Gn+

1
2 ‖
2

and (
1− τ c∗

)
|wn+1|21 ≤

(
1+ τ c∗

)
|wn|21 +

(c1)2

κ
τ‖Gn+

1
2 ‖
2, 0 ≤ n ≤ N − 1.

Supposing the time-step size τ ≤ 1/(3c∗), we obtain

|wn+1|21 ≤ (1+ 3τ c
∗)|wn|21 +

3τ(c1)2

2κ
‖Gn+

1
2 ‖
2, 0 ≤ n ≤ N − 1.

Thus, the discrete Gronwall inequality yields

|wn|21 ≤ e
3c∗nτ

[
|w0|21 +

3(c1)2

2κ
τ

n−1∑
k=0

‖Gk+
1
2 ‖
2

]
, 0 ≤ n ≤ N.

Applying Lemma 2, we can obtain the estimate (4.1). �
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Theorem 4. The difference scheme (3.9)–(3.11) is uniquely solvable.
Proof. Since (3.9)–(3.11) is a system of linear algebraic equations at each time level, it suffices to show that the
corresponding homogeneous equations:

δtw
n+ 12
i −

κ

(Ln+ 12 )
2
δ2ξw

n+ 12
i =

(δtx
n+ 12
i − a)
2Ln+ 12

(
δξw

n+ 12
i+ 12
+ δξw

n+ 12
i− 12

)
, 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1 (4.6)

w0i = 0, 0 ≤ i ≤ M, (4.7)

wn0 = w
n
M = 0, 1 ≤ n ≤ N (4.8)

have only a trivial solution. Using Theorem 3, one gets

‖wn‖∞ = 0, 0 ≤ n ≤ N.

This implies thatwni = 0, 0 ≤ i ≤ M, 0 ≤ n ≤ N . The proof is complete. �

Theorem 5. Let the system (1.1)–(1.3) have the solution u(x, t) ∈ C4,3x,t (QT ) and {wni | 0 ≤ i ≤ M, 0 ≤ n ≤ N} be the solution
of the difference scheme (3.9)–(3.11). Let

uni = w
n
i , 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Then the estimate

max
0≤i≤M

|u(xni , tn)− u
n
i | ≤

1
2
e
3
2 Tc
∗

√
3T
2κ
c1c(h2 + τ 2) (4.9)

holds for nτ ≤ T .

Proof. Denote

w̃ni = W
n
i − w

n
i , 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Subtracting (3.9)–(3.11) from (3.5), (3.7) and (3.8), we obtain the error system of equations

δtw̃
n+ 12
i −

κ

(Ln+ 12 )
2
δ2ξ w̃

n+ 12
i −

(δtx
n+ 12
i − a)
2Ln+ 12

(
δξ w̃

n+ 12
i− 12
+ δξ w̃

n+ 12
i+ 12

)
= R

n+ 12
i , 1 ≤ i ≤ M − 1, 0 ≤ n ≤ N − 1,

w̃0i = 0, 0 ≤ i ≤ M,
w̃n0 = w̃

n
M = 0, 1 ≤ n ≤ N.

According to Theorem 3, we have

‖w̃n‖∞ ≤
1
2
e
3
2 c
∗T

{
3(c1)2

2κ
τ

n−1∑
k=0

[
h
M−1∑
i=1

(R
k+ 12
i )2

]} 1
2

, 0 ≤ n ≤ N.

Using (3.6), we arrive at

‖w̃n‖∞ ≤
1
2
e
3
2 Tc
∗

√
3T
2κ
c1c(h2 + τ 2), 0 ≤ n ≤ N.

Since u(xni , tn)− u
n
i = w(ξi, tn)− w

n
i = w̃

n
i , this completes the proof. �

5. Numerical experiments

To verify our discussions in the previous sections, we solve the problem (1.1)–(1.3) numerically by the Crank–Nicolson
scheme (3.9)–(3.11). Denote

e(h, τ ) = max
1≤n≤N

max
0≤i≤M

|u(xni , tn)− w
n
i |.

Taking the domainΩt = [xl(t), xr(t)] and a = 0, κ = 0.05, we consider the following cases.
Case 1. xl(t) = 1 − e

t
2 , xr(t) = e

t
2 , initial data u0(x) = x sin(x − 1), boundary values φ1(t) = φ2(t) = 0 and forcing

function

g(x, t) = sin(x− e
t
2 )
(
0.5e

t
2 + 0.05(x− 1+ e

t
2 )
)
− cos(x− e

t
2 )
(
0.5e

t
2 (x− 1+ e

t
2 )+ 0.1

)
.

In this case, the analytic solution of the system (1.1)–(1.3) is u(x, t) = (x− 1+ e
t
2 ) sin(x− e

t
2 ).
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Table 1
Convergence of Crank–Nicolson scheme in maximum norm for Case 1.

h τ e(h, τ ) log2
e(h,τ )
e(2h,2τ)

1/64 1/64 1.2583e−4 ∗

1/128 1/128 3.1515e−5 1.9974
1/256 1/256 7.8798e−6 1.9998
1/512 1/512 1.9700e−6 2.0000
1/1024 1/1024 4.9251e−7 2.0000

Table 2
Convergence of Crank–Nicolson scheme in maximum norm for Case 2.

h τ e(h, τ ) log2
e(h,τ )
e(2h,2τ)

1/64 1/64 2.1771e−5 ∗

1/128 1/128 5.4436e−6 1.9998
1/256 1/256 1.3609e−6 2.0000
1/512 1/512 3.4019e−7 2.0001
1/1024 1/1024 8.5047e−8 2.0000
1/2048 1/2048 2.1262e−8 2.0000

Table 3
Convergence of Crank–Nicolson scheme in maximum norm for Case 3.

h τ e(h, τ ) log2
e(h,τ )
e(2h,2τ)

1/64 1/64 7.9416e−5 ∗

1/128 1/128 1.9860e−5 1.9996
1/256 1/256 4.9655e−6 1.9999
1/512 1/512 1.2414e−6 2.0000
1/1024 1/1024 3.1035e−7 2.0000

Fig. 1. Numerical solution of Crank–Nicolson scheme with h = τ = 1/16 for Case 3.

Case 2. xl(t) = 1
2 (1− e

−2t), xr(t) = 1
2 (1+ e

−2t), initial data u0(x) = (x− 1) sin x, boundary values φ1(t) = φ2(t) = 0
and forcing function

g(x, t) = sin(x+ 0.5e−2t − 0.5)
(
e−2t + 0.05(x− 0.5e−2t − 0.5)

)
− cos(x+ 0.5e−2t − 0.5)

(
e−2t(x− 0.5e−2t − 0.5)+ 0.1

)
.

In this case, the analytic solution of the system (1.1)–(1.3) is u(x, t) = (x− 0.5e−2t − 0.5) sin(x+ 0.5e−2t − 0.5).
Case 3. xl(t) = 0, xr(t) = e

t
2 , initial data u0(x) = x2 + 1, boundary values φ1(t) = 1, φ2(t) = e2t + 1 and forcing

function

g(x, t) = (x2 − 0.1)et .

In this case, the analytic solution of the system (1.1)–(1.3) is u(x, t) = x2et + 1.
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Fig. 2. Analytic solution for Case 3.

Fig. 3. Error surfaces of numerical solutions with different stepsize for Case 3.

In Tables 1–3, the maximum norm errors between u(xni , tn) and w
n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N are given by e(h, τ )

and the numerical order of convergence is computed by log2 (e(h, τ )/e(2h, 2τ)). From these tables we observe that the
numerical results are in accordance with the theoretical results.
Further, some figures are drawn for Case 3. It is shown fromFigs. 1 and2 that the numerical solution of the Crank–Nicolson

scheme with h = τ = 1/16 and the analytic solution are much the same. Fig. 3 shows the trend of error |u(xni , tn) − w
n
i |

when the stepsize h and τ are changed.

6. Conclusion

In this article, for a linear moving boundary value problem, we construct a Crank–Nicolson type difference scheme
and prove that the scheme is unconditionally stable and convergent in the maximum norm. Introduction of a linear
transformation is an effective method to avoid discussing the Crank–Nicolson scheme on moving boundaries directly.
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