Journal of Number Theory 129 (2009) 495-498

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Note on 2-rational fields

Georges Gras^{a,*}, Jean-François Jaulent^b

^a Villa la Gardette, Chemin Château Gagnière, F-38520 Le Bourg d'Oisans, France
^b Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351, cours de la libération, F-33405 Talence Cedex, France

ARTICLE INFO

Article history: Received 6 May 2008 Revised 1 June 2008 Available online 10 October 2008 Communicated by David Goss

Keywords: *l*-Rational fields *l*-Regular fields *l*-Ramification Class field theory 2-Rational fields 2-Regular fields *p*-Regular fields

ABSTRACT

We give an alternative computation of the Galois group of the maximal 2-ramified and complexified pro-2-extension of any 2-rational number field (Theorem 2), a particular case of results of Movahhedi–Nguyen Quang Do. This short Note is motivated by the paper [J. Jossey, Galois 2-extensions unramified outside 2, J. Number Theory 124 (2007) 42–76] and, at this occasion, we bring into focus some classical technics of abelian ℓ -ramification which, unfortunately, are often ignored, especially those developed by J.-F. Jaulent with the ℓ -adic class field theory, and by G. Gras in his book on class field theory, and which considerably simplify the study of such subjects; for instance, our proof of Theorem 2 generalizes the purpose of Jossey's paper in such a way using a result of Herfort–Zalesskii. This Note is mainly an attempt of clarification about ℓ -rationality.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and history

The notions of ℓ -rational field and ℓ -regular field (for a prime number ℓ and a number field *K*), independently introduced by A. Movahhedi and T. Nguyen Quang Do in [MN], and by G. Gras and J.-F. Jaulent in [GJ], coincide as soon as *K* contains the maximal real subfield of the field of ℓ th roots of unity, thus especially for $\ell = 2$.

• The ℓ -regularity expresses the triviality of the regular ℓ -kernel of K (i.e. the kernel, in the ℓ -part of the universal group $K_2(K)$, of Hilbert symbols attached to the non-complex places not dividing ℓ).

0022-314X/\$ – see front matter @ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2008.06.012

^{*} Corresponding author. E-mail addresses: g.mn.gras@wanadoo.fr (G. Gras), jean-francois.jaulent@math.u-bordeaux1.fr (J.-F. Jaulent). URL: http://monsite.orange.fr/maths.g.mn.gras/ (G. Gras).

• The ℓ -rationality traduces the pro- ℓ -freeness of the Galois group $\mathcal{G}_K := \text{Gal}(M_K/K)$ of the maximal pro- ℓ -extension ℓ -ramified ∞ -split M_K of K (i.e. unramified at the finite places¹ not dividing ℓ and totally split at the infinite places).

More precisely, let c_K be the number of complex places of K; let μ_K (resp. μ_{K_1}) be the ℓ -group of roots of unity in K (resp. in the localization K_1); and let

$$V_K := \{ x \in K^{\times} \mid x \in K_1^{\times \ell} \, \forall l \mid \ell \text{ and } v_p(x) \equiv 0 \mod \ell \, \forall p \nmid \ell \infty \}$$

be the group of ℓ -hyperprimary elements in K^{\times} . Then, with these notations, from [JN, Th. 1.2] or [G₃, IV.3.5, III.4.2.3], the ℓ -rationality of K may be expressed as follows:

Theorem and definition 0. The following conditions are equivalent:

- (i) The Galois group \mathcal{G}_K is a free pro- ℓ -group on $1 + c_K$ generators.
- (ii) The abelianization \mathcal{G}_{K}^{ab} of \mathcal{G}_{K} is a free \mathbb{Z}_{ℓ} -module of dimension $1 + c_{K}$.
- (iii) The field K satisfies the Leopoldt conjecture (for the prime ℓ) and the torsion submodule \mathcal{T}_K of \mathcal{G}_K^{ab} is trivial.
- (iv) One has the equalities:

$$V_K = K^{\times \ell}$$
 and $\operatorname{rk}_{\ell}(\boldsymbol{\mu}_K) = \sum_{\mathfrak{l}|\ell} \operatorname{rk}_{\ell}(\boldsymbol{\mu}_{K_{\mathfrak{l}}}).$

When any of these conditions is realized, the number field K is said to be ℓ -rational.

The premises of the notion of ℓ -regularity go back to the works of G. Gras, mainly to his note on the K₂ of number fields [G₂, II, §2; III, §§1, 2], whereas the notion of ℓ -rationality appears (in a hidden form) in the work of H. Miki [Mi] concerning the study of a sufficient condition for the Leopoldt conjecture, as well as those of K. Wingberg [W₁,W₂], concerning the same condition.

Movahhedi's thesis and the above papers [GJ,MN] characterised the going up for ℓ -rationality in any ℓ -extension in terms of ℓ -primitivity of the ramification (a definition given in [G₂, III, §1] from the use of the Log function defined in [G₁]), a property which was unknown in the preceding approaches.

For instance, this gives immediately that if *K* is an ℓ -extension of \mathbb{Q} , an N.S.C. for *K* to be ℓ -rational is that K/\mathbb{Q} be ℓ -ramified, or that K/\mathbb{Q} be $\{p, \ell\}$ -ramified, where $p \neq \ell$ is a prime $\equiv 1 \mod (\ell)$ such that $p \not\equiv \pm 1 \mod (8)$ if $\ell = 2$ and $p \not\equiv 1 \mod (\ell^2)$ if $\ell \neq 2$ (cf. [G₃, IV.3.5.1] giving Jossey's examples without any class groups considerations, which is the philosophy of ℓ -ramification theory). We must also quote another approach of ℓ -rationality, by R.I. Berger, using a normic criterion via genera theory (see [G₃, IV.4.8]).

A synthesis of these results is given in [JN] and a systematic exposition is developed in the book of G. Gras [G₃, III, §4, (b); IV, §3, (b); App., §2]; see also [NSW, Ch. X, §7] for cohomological proofs and the descriptions of the Galois groups.

Last, various generalizations of these notions have been studied by O. Sauzet and J.-F. Jaulent (cf. $[JS_1JS_2]$), especially in the case $\ell = 2$ which is, as usual, the most tricky; in particular, they introduce the notion of 2-birational fields.

Very recently, J. Jossey [Jo] has given a notion of ℓ -rationality which is incompatible with the classical one (for $\ell = 2$, as soon as K contains real embeddings) and is unlucky since it does not apply to the field of rationals \mathbb{Q} .

For these reasons, to avoid any confusion, we propose to speak, in his context, of 2-*superrational* fields. More precisely:

¹ According to the conventions of the ℓ -adic class field theory (cf. [G₃,Ja]), we never speak of ramification at infinity but of *complexification* of real places.

Definition 1. Let *K* be a number field with r_K real places and c_K complex places; let M'_K be the maximal 2-ramified pro-2-extension of *K*, and M_K be the maximal subextension of M'_K totally split at the infinite places. We say that *K* is:

- (i) 2-superrational, if $\mathcal{G}'_K := \operatorname{Gal}(M'_K/K)$ is pro-2-free;
- (ii) 2-*rational*, if its quotient $\mathcal{G}_K := \operatorname{Gal}(M_K/K)$ is pro-2-free.

The purpose of the next section is to focus on the structure of the Galois group \mathcal{G}'_K when the number field *K* is 2-rational.

2. Description of the Galois group $\mathcal{G}'_{K} = \operatorname{Gal}(M'_{K}/K)$

As a matter of fact, the structure of $\mathcal{G}'_{K} = \text{Gal}(M'_{K}/K)$, in case the number field *K* is 2-rational, is given by the following special case of [MN, Th. 2.8]:

Theorem 2. Let *K* be a 2-rational number field having r_K real places and c_K complex places. The Galois group $\mathcal{G}'_K := \operatorname{Gal}(M'_K/K)$ of the maximal 2-ramified pro-2-extension M'_K of *K* is the pro-2-free product

$$\mathcal{G}'_{K} \simeq \mathbb{Z}_{2}^{\circledast(1+c_{K})} \circledast (\mathbb{Z}/2\mathbb{Z})^{\circledast r_{K}}$$

of $1 + c_K$ copies of the procyclic group \mathbb{Z}_2 and of r_K copies of $\mathbb{Z}/2\mathbb{Z}$.

In fact, the article of A. Movahhedi and T. Nguyen Quang Do [MN] deals with *S*-ramified proextensions, so the theorem above is obtained in case the finite set *S* contains only the infinite places and those dividing ℓ . Unfortunately it seems that some of these results of [MN], which do contains [Jo, Theorem 2], are largely ignored and we thank the referee for his pertinent remark. Moreover, the similar reference [JN] does not include all these results on the role of the real infinite places.

So, in order to complete [JN], we give here an alternative proof of this result, which relies on the functorial properties of ℓ -ramification theory, in the spirit of Jossey's approach (based on Herfort–Zalesskii description of virtually free groups) and does not involve the notion of primitive set of places.

As a consequence, this gives:

Corollary 3. The 2-rational number fields which are 2-superrational are the totally imaginary ones.

Proof. Consider the quadratic extension L = K[i] generated by the 4th roots of unity. It is 2-ramified over *K*, thus thanks to the going up theorem of [GJ,MN] (cf. e.g. [JN, Th. 3.5] or [G₃, IV.3.4.3, (iii)]), it is 2-rational, then 2-superrational since it is totally imaginary. In other words, the Galois group $G_L = G'_L$ of the maximal 2-ramified pro-2-extension M_L of *L* is pro-2-free.

Since the quadratic extension L/K is 2-ramified, M_L is also the maximal 2-ramified pro-2extension M'_K of K; the Galois group \mathcal{G}'_K is *potentially free* since it contains the pro-2-free open subgroup \mathcal{G}_L of index 2 in \mathcal{G}'_K .

As in [Jo], the results of W. Herfort and P. Zalesskii (cf. [HZ, Th. 0.2]) give the existence of a finite familly $(\mathcal{F}_i)_{i=0,\dots,k}$ of free pro-2-groups on respectively d_0, \dots, d_k generators (where k is the number of conjugacy classes of subgroups of order 2 in \mathcal{G}'_k), such that:

$$\mathcal{G}'_{K} \simeq \mathcal{F}_{0} \circledast \Big(\bigotimes_{i=1}^{k} (\mathcal{F}_{i} \times \mathbb{Z}/2\mathbb{Z}) \Big).$$

In particular, the abelianisation $\mathcal{G}_{K}^{'ab}$ of $\mathcal{G}_{K}^{'}$ admits the direct decomposition:

$$\mathcal{G}_{K}^{'ab} \simeq \mathbb{Z}_{2}^{d_{0}} \oplus \left(\bigoplus_{i=1}^{k} (\mathbb{Z}_{2}^{d_{i}} \oplus \mathbb{Z}/2\mathbb{Z}) \right) \simeq \mathbb{Z}_{2}^{d_{0}+d_{1}+\dots+d_{k}} \oplus (\mathbb{Z}/2\mathbb{Z})^{k}.$$

Since the 2-rational field *K* satisfies the Leopoldt conjecture, we get $\sum_{i=0}^{k} d_i = 1 + c_K$ as well as the isomorphism $\mathcal{T}'_K := \operatorname{tor}_{\mathbb{Z}_2}(\mathcal{G}_K^{'ab}) \simeq (\mathbb{Z}/2\mathbb{Z})^k$. Moreover $\mathcal{T}_K := \operatorname{tor}_{\mathbb{Z}_2}(\mathcal{G}_K^{ab}) = 1$, so that \mathcal{T}'_K is generated by the decomposition groups of the real places of *K* which are deployed, a key argument of class field theory (cf. [Ja], [G₃, III.4.1.5], or [MN, 2.5] in the ℓ -rational case) giving $k = r_K$.

Now the pro-2-decomposition of \mathcal{G}'_K clearly shows that the minimal number of generators $d(\mathcal{G}'_K)$ and of relations $r(\mathcal{G}'_K)$, defining \mathcal{G}'_K as a pro-2-group, are:

$$d(\mathcal{G}'_K) = k + \sum_{i=0}^k d_i = r_K + 1 + c_K$$
 and $r(\mathcal{G}'_K) = \sum_{i=1}^k (1 + d_i) = d(\mathcal{G}'_K) - d_0$.

It is well known by many authors (cf. e.g. [G₃, App., Th. 2.2, (i)]) that one has²:

$$d(\mathcal{G}'_K) - r(\mathcal{G}'_K) = \dim_{\mathbb{F}_2} \left(H^1(\mathcal{G}'_K, \mathbb{F}_2) \right) - \dim_{\mathbb{F}_2} \left(H^2(\mathcal{G}'_K, \mathbb{F}_2) \right) = 1 + c_K.$$

Thus we obtain $d_0 = 1 + c_K$, giving $d_i = 0$ for $1 \le i \le k$, then the expected result. \Box

References

- [G1] G. Gras, Logarithme p-adique et groupes de Galois, J. Reine Angew. Math. 343 (1983) 64-80.
- [G₂] G. Gras, Remarks on K₂ of number fields, J. Number Theory 23 (1986) 64–80.
- [G₃] G. Gras, Class Field Theory: From Theory to Practice, Springer Monogr. Math., Springer, 2003; second corrected printing 2005.
- [G] G. Gras, J.-F. Jaulent, Sur les corps de nombres réguliers, Math. Z. 202 (1989) 343–365.
- [HZ] W. Herfort, P. Zalesskii, Finitely generated pro-2-groups with a free subgroup of index 2, Manuscripta Math. 93 (1997) 457-464.
- [Ja] J.-F. Jaulent, Théorie ℓ-adique globale du corps de classes, J. Théor. Nombres Bordeaux 10 (1998) 355–397.
- [JN] J.-F. Jaulent, T. Nguyen Quang Do, Corps p-rationnels, corps p-réguliers et ramification restreinte, J. Théor. Nombres Bordeaux 5 (1993) 343–365.
- [JS1] J.-F. Jaulent, O. Sauzet, Pro-ℓ-extensions de corps de nombres 1-rationnels, J. Number Theory 65 (1997) 240–267, J. Number Theory 80 (2000) 318–319.
- [JS2] J.-F. Jaulent, O. Sauzet, Extensions quadratiques 2-birationnelles de corps totalement réels, Publ. Mat. 44 (2000) 343–351.
- [Jo] J. Jossey, Galois 2-extensions unramified outside 2, J. Number Theory 124 (2007) 42–76.
- [Mi] H. Miki, On the Leopoldt conjecture on the *p*-adic regulators, J. Number Theory 26 (1987) 117–128.
- [MN] A. Movahhedi, T. Nguyen Quang Do, Sur l'arithmétique des corps de nombres p-rationnels, in: Sém. Théor. Nombres Paris (1987/1988), in: Progr. Math., vol. 89, 1990, pp. 155–200.
- [NSW] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Grundlehren Math. Wiss., vol. 323, Springer-Verlag, 2000; second ed. 2008.
- [Sa] I.R. Šafarevič, Extensions with prescribed ramification points, Publ. Math. Inst. Hautes Etudes Sci. 36 (1986) 71–95.
- [W1] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification, J. Reine Angew. Math. 400 (1989) 185–202.
- [W2] K. Wingberg, On Galois groups of p-closed algebraic number fields with restricted ramification II, J. Reine Angew. Math. 416 (1991) 187–194.

498

² This argument is equivalent to the use of the formulas of Šafarevič (cf. [Sa] or [NSW, Th. 8.7.3]).