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We give an alternative computation of the Galois group of the
maximal 2-ramified and complexified pro-2-extension of any 2-
rational number field (Theorem 2), a particular case of results
of Movahhedi–Nguyen Quang Do. This short Note is motivated
by the paper [J. Jossey, Galois 2-extensions unramified outside 2,
J. Number Theory 124 (2007) 42–76] and, at this occasion, we
bring into focus some classical technics of abelian �-ramification
which, unfortunately, are often ignored, especially those developed
by J.-F. Jaulent with the �-adic class field theory, and by G. Gras
in his book on class field theory, and which considerably simplify
the study of such subjects; for instance, our proof of Theorem 2
generalizes the purpose of Jossey’s paper in such a way using
a result of Herfort–Zalesskii. This Note is mainly an attempt of
clarification about �-rationality.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and history

The notions of �-rational field and �-regular field (for a prime number � and a number field K ),
independently introduced by A. Movahhedi and T. Nguyen Quang Do in [MN], and by G. Gras and
J.-F. Jaulent in [GJ], coincide as soon as K contains the maximal real subfield of the field of �th roots
of unity, thus especially for � = 2.

• The �-regularity expresses the triviality of the regular �-kernel of K (i.e. the kernel, in the �-
part of the universal group K2(K ), of Hilbert symbols attached to the non-complex places not
dividing �).
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• The �-rationality traduces the pro-�-freeness of the Galois group G K := Gal(MK /K ) of the maxi-
mal pro-�-extension �-ramified ∞-split MK of K (i.e. unramified at the finite places1 not dividing
� and totally split at the infinite places).

More precisely, let cK be the number of complex places of K ; let μK (resp. μKl
) be the �-group

of roots of unity in K (resp. in the localization Kl); and let

V K := {
x ∈ K × ∣∣ x ∈ K ×�

l
∀l | � and vp(x) ≡ 0 mod � ∀p � �∞}

be the group of �-hyperprimary elements in K × . Then, with these notations, from [JN, Th. 1.2] or [G3,
IV.3.5, III.4.2.3], the �-rationality of K may be expressed as follows:

Theorem and definition 0. The following conditions are equivalent:

(i) The Galois group G K is a free pro-�-group on 1 + cK generators.
(ii) The abelianization G ab

K of G K is a free Z�-module of dimension 1 + cK .
(iii) The field K satisfies the Leopoldt conjecture (for the prime �) and the torsion submodule T K of G ab

K is
trivial.

(iv) One has the equalities:

V K = K ×� and rk�(μK ) =
∑
l|�

rk�(μKl
).

When any of these conditions is realized, the number field K is said to be �-rational.

The premises of the notion of �-regularity go back to the works of G. Gras, mainly to his note
on the K2 of number fields [G2, II, §2; III, §§1, 2], whereas the notion of �-rationality appears (in
a hidden form) in the work of H. Miki [Mi] concerning the study of a sufficient condition for the
Leopoldt conjecture, as well as those of K. Wingberg [W1,W2], concerning the same condition.

Movahhedi’s thesis and the above papers [GJ,MN] characterised the going up for �-rationality in
any �-extension in terms of �-primitivity of the ramification (a definition given in [G2, III, §1] from the
use of the Log function defined in [G1]), a property which was unknown in the preceding approaches.

For instance, this gives immediately that if K is an �-extension of Q, an N.S.C. for K to be �-rational
is that K/Q be �-ramified, or that K/Q be {p, �}-ramified, where p �= � is a prime ≡ 1 mod (�) such
that p �≡ ±1 mod (8) if � = 2 and p �≡ 1 mod (�2) if � �= 2 (cf. [G3, IV.3.5.1] giving Jossey’s examples
without any class groups considerations, which is the philosophy of �-ramification theory). We must
also quote another approach of �-rationality, by R.I. Berger, using a normic criterion via genera theory
(see [G3, IV.4.8]).

A synthesis of these results is given in [JN] and a systematic exposition is developed in the book
of G. Gras [G3, III, §4, (b); IV, §3, (b); App., §2]; see also [NSW, Ch. X, §7] for cohomological proofs
and the descriptions of the Galois groups.

Last, various generalizations of these notions have been studied by O. Sauzet and J.-F. Jaulent (cf.
[JS1,JS2]), especially in the case � = 2 which is, as usual, the most tricky; in particular, they introduce
the notion of 2-birational fields.

Very recently, J. Jossey [Jo] has given a notion of �-rationality which is incompatible with the
classical one (for � = 2, as soon as K contains real embeddings) and is unlucky since it does not
apply to the field of rationals Q.

For these reasons, to avoid any confusion, we propose to speak, in his context, of 2-superrational
fields. More precisely:

1 According to the conventions of the �-adic class field theory (cf. [G3,Ja]), we never speak of ramification at infinity but of
complexification of real places.
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Definition 1. Let K be a number field with rK real places and cK complex places; let M ′
K be the

maximal 2-ramified pro-2-extension of K , and MK be the maximal subextension of M ′
K totally split

at the infinite places. We say that K is:

(i) 2-superrational, if G′
K := Gal(M ′

K /K ) is pro-2-free;
(ii) 2-rational, if its quotient G K := Gal(MK /K ) is pro-2-free.

The purpose of the next section is to focus on the structure of the Galois group G′
K when the

number field K is 2-rational.

2. Description of the Galois group G′
K = Gal(M ′

K /K )

As a matter of fact, the structure of G′
K = Gal(M ′

K /K ), in case the number field K is 2-rational, is
given by the following special case of [MN, Th. 2.8]:

Theorem 2. Let K be a 2-rational number field having rK real places and cK complex places. The Galois group
G′

K := Gal(M ′
K /K ) of the maximal 2-ramified pro-2-extension M ′

K of K is the pro-2-free product

G′
K 	 Z

�(1+cK )
2 � (Z/2Z)� rK

of 1 + cK copies of the procyclic group Z2 and of rK copies of Z/2Z.

In fact, the article of A. Movahhedi and T. Nguyen Quang Do [MN] deals with S-ramified pro-
extensions, so the theorem above is obtained in case the finite set S contains only the infinite places
and those dividing �. Unfortunately it seems that some of these results of [MN], which do contains
[Jo, Theorem 2], are largely ignored and we thank the referee for his pertinent remark. Moreover, the
similar reference [JN] does not include all these results on the role of the real infinite places.

So, in order to complete [JN], we give here an alternative proof of this result, which relies on the
functorial properties of �-ramification theory, in the spirit of Jossey’s approach (based on Herfort–
Zalesskii description of virtually free groups) and does not involve the notion of primitive set of
places.

As a consequence, this gives:

Corollary 3. The 2-rational number fields which are 2-superrational are the totally imaginary ones.

Proof. Consider the quadratic extension L = K [i] generated by the 4th roots of unity. It is 2-ramified
over K , thus thanks to the going up theorem of [GJ,MN] (cf. e.g. [JN, Th. 3.5] or [G3, IV.3.4.3, (iii)]),
it is 2-rational, then 2-superrational since it is totally imaginary. In other words, the Galois group
GL = G′

L of the maximal 2-ramified pro-2-extension ML of L is pro-2-free.
Since the quadratic extension L/K is 2-ramified, ML is also the maximal 2-ramified pro-2-

extension M ′
K of K ; the Galois group G′

K is potentially free since it contains the pro-2-free open
subgroup GL of index 2 in G′

K .
As in [Jo], the results of W. Herfort and P. Zalesskii (cf. [HZ, Th. 0.2]) give the existence of a finite

familly (Fi)i=0,...,k of free pro-2-groups on respectively d0, . . . ,dk generators (where k is the number
of conjugacy classes of subgroups of order 2 in G′

K ), such that:

G′
K 	 F0 �

( k�(Fi × Z/2Z)
)
.

i=1
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In particular, the abelianisation G ′ab
K of G′

K admits the direct decomposition:

G ′ab
K 	 Z

d0
2 ⊕

( k⊕
i=1

(
Z

di
2 ⊕ Z/2Z

)) 	 Z
d0+d1+···+dk
2 ⊕ (Z/2Z)k.

Since the 2-rational field K satisfies the Leopoldt conjecture, we get
∑k

i=0 di = 1 + cK as well as
the isomorphism T ′

K := torZ2 (G ′ab
K ) 	 (Z/2Z)k . Moreover T K := torZ2 (Gab

K ) = 1, so that T ′
K is generated

by the decomposition groups of the real places of K which are deployed, a key argument of class field
theory (cf. [Ja], [G3, III.4.1.5], or [MN, 2.5] in the �-rational case) giving k = rK .

Now the pro-2-decomposition of G′
K clearly shows that the minimal number of generators d(G′

K )

and of relations r(G′
K ), defining G′

K as a pro-2-group, are:

d(G′
K ) = k +

k∑
i=0

di = rK + 1 + cK and r(G′
K ) =

k∑
i=1

(1 + di) = d(G′
K ) − d0.

It is well known by many authors (cf. e.g. [G3, App., Th. 2.2, (i)]) that one has2:

d(G′
K ) − r(G′

K ) = dimF2

(
H1(G′

K ,F2)
) − dimF2

(
H2(G′

K ,F2)
) = 1 + cK .

Thus we obtain d0 = 1 + cK , giving di = 0 for 1 � i � k, then the expected result. �
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