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Current data from neutrino oscillation experiments are in good agreement with δ = −π
2 and θ23 = π

4
under the standard parametrization of the mixing matrix. We define the notion of “constrained maximal 
CP violation” (CMCPV) for predicting these features and study their origin in flavor symmetry. We derive 
the parametrization-independent solution of CMCPV and give a set of equivalent definitions for it. We 
further present a theorem on how the CMCPV can be realized. This theorem takes the advantage of 
residual symmetries in neutrino and charged lepton mass matrices, and states that, up to a few minor 
exceptions, (|δ|, θ23) = ( π

2 , π4 ) is generated when those symmetries are real. The often considered μ–τ
reflection symmetry, as well as specific discrete subgroups of O(3), is a special case of our theorem.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

While a coherent picture in leptonic mixing has emerged, im-
portant measurements are still lacking. In particular, the Dirac CP 
angle δ and the exact value of the atmospheric neutrino mixing 
angle θ23 are of great interest. Whether θ23 is maximal or departs 
sizably from π

4 has important ramifications for flavor symmetry 
models [1]. The CP phase also has model building impact, and the 
question of whether the lepton sector violates CP has conceptual 
significance in connection to the matter–antimatter asymmetry via 
leptogenesis [2]. While maximal atmospheric mixing is compatible 
with data since the observation of atmospheric neutrino oscilla-
tions, recently first hints towards a Dirac CP angle δ = −π

2 have 
arisen from the appearance and disappearance measurements of 
T2K [3] when combined with reactor antineutrino data. Indeed, 
global fits [4–6] confirm a mild preference for this particular value 
of CP phase.

With these in mind, it is tempting to study the origin of such 
values of δ and θ23 within theories of flavor symmetry. In par-
ticular, the so-called μ–τ reflection symmetry [7–10] was often 
considered in the literature in this respect. It transforms the neu-
trino fields as (νe, νμ, ντ ) → (ν∗

e , ν∗
τ , ν∗

μ), leading to |δ| = π
2 and 

θ23 = π
4 in the standard parametrization of the PMNS mixing ma-
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trix [11,12]. In our study, we demonstrate that these two features 
arise as the outcome of “Constrained Maximal CP Violation” (CM-
CPV), which we will establish in a parametrization-independent way 
by maximizing the Jarlskog invariant under a minimal constraint.

The framework we will discuss is that a flavor symmetry group 
G is broken such that the neutrino and charged lepton mass ma-
trices are invariant under certain subgroups of G . We will propose 
and prove a general theorem revealing that if the residual flavor 
symmetries are real,1 then the CMCPV is generated. There are a 
few minor exceptions to this theorem which we will clarify in Sec-
tion 3. The μ–τ reflection symmetry is actually a special case of 
this theorem, which can be shown explicitly after a simple ba-
sis transformation. We further deduce some corollaries from the 
theorem which are practically useful in understanding and build-
ing models for the CMCPV. For instance, specific subgroups of O(3) 
can generate CMCPV, so do the models with certain groups under 
which all neutrino fields transform as triplets. As an illustration, 
we will present a simple model to explicitly realize the CMCPV.

This paper is organized as follows. In Section 2, we will es-
tablish our definition of CMCPV in a parametrization-independent 
way, and give a set of equivalent descriptions. Various physical im-
plications (such as leptonic unitarity triangles) from CMCPV are 
further discussed. In Section 3, we present our theorem for the 
origin of CMCPV and derive its corollaries which are important for 
practical model buildings. We will study applications in Section 4, 

1 Here and henceforth “a symmetry is real” always means that the transformation 
matrix representing the symmetry is real.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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and finally we conclude in Section 5. Some elaborated mathemati-
cal proofs are presented in Appendices A and B.

2. Parametrization-independent formulation of constrained 
maximal CP violation

What we mean by “constrained maximal CP violation” (CM-
CPV) is not merely |δ| = π

2 in the standard parametrization of the 
PMNS matrix [11,12], but both the |δ| = π

2 and θ23 = π
4 . In general, 

a parametrization-independent definition of the maximal CP viola-
tion should be given in terms of Jarlskog invariant J [13], rather 
than the CP angle δ, because δ is not rephasing invariant. Further-
more, we will clarify shortly that naively maximizing J without 
constraint is already excluded by experimental data. Hence, intro-
ducing the new concept of CMCPV is essential for studying the 
viable maximal CP violation. For this purpose, we first formulate 
the CMCPV in a parametrization-independent form.

Definition 1 (CMCPV). Constrained Maximal CP Violation (CMCPV) 
is defined as the maximum of the absolute value of Jarlskog in-
variant under the minimal constraint that the absolute values of 
the elements in the first row of the PMNS matrix are fixed.

Definition 1 is parametrization-independent because it does not 
invoke any explicit form of the PMNS matrix. Note that this is a 
constrained maximization problem. The Jarlskog invariant J [13]
can be regarded as a function of the PMNS matrix U . We are look-
ing for the maximal values of the function J (U ), where U is not 
an arbitrary unitary matrix but a constrained one. We impose this 
constraint on U by requiring the absolute values of its elements in 
the first row, (|Ue1|, |Ue2|, |Ue3|), be fixed to certain given values. 
(Actually, fixing any two of them in the first row is enough, due 
to the unitarity condition |Ue1|2 + |Ue2|2 + |Ue3|2 = 1.) The reason 
that we fix absolute values of the elements of U in its first row, 
rather than any other rows or columns, will become clear shortly 
(cf. footnote 2).

This constraint is necessary because without it J would reach 
its maximal value as allowed by unitarity, | J | = 1

6
√

3
, which is 

equivalent to all unitarity triangles being equilateral. The corre-
sponding U in this case is just the Wolfenstein mixing matrix [14],

U W = 1√
3

⎛
⎝ 1 1 1

1 ω2 ω

1 ω ω2

⎞
⎠ , (1)

with ω = ei2π/3, which has been excluded by oscillation data. In 
the standard parametrization [12], the Jarlskog invariant is given 
by

J = 1

8
sin δ cos θ13 sin 2θ13 sin 2θ23 sin 2θ12 . (2)

Indeed, if we compute its maximum by ∂θ J = 0 with θ =
{θ12, θ13, θ23, δ}, we obtain the Wolfenstein mixing, (θ13, θ12, 
θ23, |δ|) =

(
arctan 1√

2
, π

4 , π
4 , π

2

)
. This includes the desired values 

of (θ23, δ), but gives unrealistic (θ12, θ13). Hence, the Wolfenstein 
mixing is already excluded by experimental data. To derive accept-
able maximization of J , we observe that if we fix θ12 and θ13
(to their best-fit values for instance) and then maximize J , we 
still obtain (|δ|, θ23) =

(
π
2 , π

4

)
. This is in fact consistent with the 

above parametrization-independent Definition 1 of CMCPV, because 
fixing (θ12, θ13) corresponds to fixing the absolute values of the 
elements in the first row of U under the standard parametriza-
tion. Note that this is the allowed minimal constraint we could 
impose on the Jarlskog invariant: fixing any other row or column 
of the PMNS matrix and then maximizing J will not lead to exper-
imentally acceptable results.2 Hence, the above Definition 1 gives a 
minimal parametrization-independent definition of viable maximal 
CP violation.

It is worth noting that the Jarlskog invariant can be further cast 
into a manifestly parametrization-independent form [15],

J 2 = |Uαi |2
∣∣Uα j

∣∣2 ∣∣Uβi
∣∣2 ∣∣Uβ j

∣∣2 − 1

4

(
1 − |Uαi|2 − ∣∣Uα j

∣∣2

− ∣∣Uβi
∣∣2 − ∣∣Uβ j

∣∣2 + |Uαi|2
∣∣Uβ j

∣∣2 + ∣∣Uα j
∣∣2 ∣∣Uβi

∣∣2)2
(3a)

= |Ue1|2 |Ue3|2
∣∣Uμ1

∣∣2 ∣∣Uμ3
∣∣2 − 1

4

(
1 − |Ue1|2 − |Ue3|2

− ∣∣Uμ1
∣∣2 − ∣∣Uμ3

∣∣2 + |Ue1|2
∣∣Uμ3

∣∣2 + |Ue3|2
∣∣Uμ1

∣∣2)2
. (3b)

The above Eq. (3a) is a general expression with (α, β) = e, μ, τ
and (i, j) = 1, 2, 3, where α �= β and i �= j. Eq. (3b) corresponds to 
the case of (α, β) = (e, μ) and (i, j) = (2, 3). It is clear that the 
Jarlskog invariant can be fully determined by any 4 independent 
matrix elements {|Uαi |, |Uα j |, |Uβ i|, |Uβ j|} with α �= β and i �= j, 
as shown in Eq. (3a). According to our above Definition 1 of CMCPV 
and using Eq. (3b), we can maximize Jarlskog invariant by impos-
ing the extremal conditions with the two elements (|Ue1|, |Ue3|) of 
first row fixed, ∂ J 2/∂|Uμ1|2 = 0 and ∂ J 2/∂|Uμ3|2 = 0. From these 
two equations, we can derive the solution of CMCPV,

∣∣Uμ j
∣∣2 = ∣∣Uτ j

∣∣2 = 1

2

(
1 − |Uej|2

)
( j = 1,2,3) , (4)

which is the maximum of J under the minimal constraint of Defi-
nition 1, and is manifestly parametrization-independent. The detail 
of this derivation is presented in Appendix A.

When adopting the standard parametrization [12] of PMNS 
mixing matrix U , we can use Eq. (4) to immediately deduce the ex-
plicit realization of CMCPV, (|δ|, θ23) =

(
π
2 , π

4

)
, which is shown in 

Appendix A. Furthermore, we find that once we realize (|δ|, θ23) =(
π
2 , π

4

)
under the standard parametrization [12], the PMNS matrix 

exhibits an interesting feature, which we explain as follows. The 
standard parametrization of the PMNS matrix is expressed as [12],

U =
⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − c23s12s13eiδ c23c13

⎞
⎠ , (5)

where we have used the common notations (si j, ci j) =
(sin θi j, cos θi j). Under the rephasing

U ′ ≡ diag(1, e−iδ, e−iδ) U diag(1, 1, eiδ) , (6)

we obtain

U ′ =
⎛
⎝ c12c13 s12c13 s13

−c12s23s13 − s12c23e−iδ −s12s23s13 + c12c23e−iδ s23c13

−c12c23s13 + s12s23e−iδ −s12c23s13 − c12s23e−iδ c23c13

⎞
⎠ .

(7)

For (δ, θ23) =
(±π

2 , π
4

)
, we find that U ′ becomes

U ′
m = 1√

2

⎛
⎝

√
2c12c13

√
2s12c13

√
2s13

−c12s13 ± i s12 −s12s13 ∓ i c12 c13

−c12s13 ∓ i s12 −s12s13 ± i c12 c13

⎞
⎠ . (8)

2 To be explicit, we have directly verified that fixing the second row or the third 
row of the PMNS matrix will result in |Uej | = |Uτ j |, or |Uej | = |Uμ j | ( j = 1, 2, 3), 
respectively. Fixing the first, second or third columns will lead to |U�2| = |U�3|, 
|U�1| = |U�3|, or |U�1| = |U�2| (� = e, μ, τ ), respectively. All these cases are already 
excluded by the current neutrino oscillation data.
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Eq. (8) explicitly reveals that the first row is real, while the sec-
ond row and the third row are complex conjugates of each other. 
We call this feature the “row conjugation equality” (RCE). It is 
easy to see that the reverse is also true: holding RCE will result 
in (|δ|, θ23) =

(
π
2 , π

4

)
. Even though we have demonstrated RCE 

by using the standard parametrization (5) [12], we stress that the 
RCE form should be independent of parametrizations (up to triv-
ial rephasing). We can use any other parametrizations [16,17] and 
maximize Jarlskog invariant under the same constraint as in Defi-
nition 1. Then, we find that the mixing matrix always exhibits the 
RCE form, up to a trivial rephasing. In fact, we see that any spe-
cific RCE form does obey |Uμ j | = |Uτ j | as in our parametrization-
independent general solution (4) of the CMCPV.

For later usage, let us introduce the following lemma on the 
RCE.

Lemma (O(3) invariance of RCE). If a unitary matrix V has the form 
of RCE, then after a right-handed real transformation V → V ′ = V R, 
the matrix V ′ should still have the form of RCE, where R ∈ O(3) is an 
arbitrary orthogonal matrix.

The proof of this statement is delegated to Appendix B.1.
Another interesting feature of RCE concerns leptonic unitarity 

triangles (LUTs) of the PMNS matrix U , in connection to its column 
orthogonality,

U∗
ei Uej + U∗

μi Uμ j + U∗
τ i Uτ j = 0 , (9)

where the column indices i �= j. We call these unitarity triangles 
the column triangles. It is evident that if U has the form of RCE, 
then all column triangles should be isosceles triangles because un-
der the RCE the two sides U∗

μi Uμ j and U∗
τ i Uτ j have equal length, 

|U∗
μi Uμ j | = |U∗

τ i Uτ j|.
Unitarity triangles are intrinsically connected to CP violation 

because all these triangles have the same area, which equals half of 
the absolute value of Jarlskog invariant J . The LUTs are less stud-
ied than the unitarity triangles in quark sector since measuring the 
LUTs and thus the leptonic CP violation is much harder. Neverthe-
less, the LUTs can be directly measured in principle via oscillation 
experiments [18]. Furthermore, the LUTs can provide a geometrical 
formulation of the CMCPV. Since we define CMCPV as J reaching 
its maximum under certain constraints, it also means that the area 
of the LUT reaches its maximum under those constraints. How do 
these constraints appear in our current geometrical picture? The 
constraint in our Definition 1 is that the first row of U is fixed, 
namely, |U∗

e1Ue2|, |U∗
e2Ue3| and |U∗

e3Ue1| are fixed, which means 
that the e-sides of the column triangles are fixed. Hence, Defini-
tion 1 is equivalent to saying that each column triangle reaches 
its maximal area with its e-side fixed. This provides a geometrical 
formulation of the CMCPV.

Note that for a triangle with its e-side fixed and its perimeter 
(the sum of the lengths of its three sides) bounded from above, its 
area reaches the maximum if and only if it is an isosceles triangle. 
This is clear from geometrical intuition. In Ref. [19], we proved 
that a unitarity triangle must always have its perimeter equal or 
less than 1. This is a necessary and sufficient condition for a tri-
angle to be unitarity triangle, and requires the perimeter of each 
unitarity triangle to be bounded from above, which ensures the 
area of each unitarity triangle to have a maximum. With these, we 
give a geometrical formulation of the CMCPV: it corresponds to the 
maximal area of the LUT by fixing its e-side, and such LUT is an 
isosceles triangle.

Finally, we summarize the analysis of this section into the fol-
lowing theorem.
Theorem 1 (Equivalent definitions of CMCPV). For the PMNS mixing ma-
trix U , the following statements are equivalent:

(a). it has the CMCPV (cf. Definition 1);
(b). for any parametrization of U , the general condition (4) holds;
(c). in the standard parametrization, (|δ|, θ23) =

(
π
2 , π

4

)
holds;

(d). it has the form of RCE (up to rephasing);
(e). each column triangle reaches the maximal area with its e-side fixed;
(f). each column triangle is an isosceles triangle.

After setting up the above preliminaries, we are ready to study 
the origin of CMCPV in flavor symmetry in the next section.

3. Origin of constrained maximal CP violation

In this section, we will trace CMCPV to the “residual symme-
tries”, i.e., the subgroups of the original flavor symmetry group 
that remain intact after the full group is broken.

Consider that the flavor symmetry group G is broken down to 
two residual symmetries Gν and G� for neutrinos and charged lep-
tons, respectively. They are defined as follows,

G →
⎧⎨
⎩

Gν : {S | S T Mν S = Mν};
G� : {T | T †M�M†

�T = M�M†
�};

(10)

where Mν is the Majorana mass matrix of neutrinos, and M�M†
�

is the effective mass matrix of left-handed charged leptons. Thus, 
the mixing matrices Uν and U� (which diagonalize Mν and M�M†

� , 
respectively) are directly determined by S and T [20],

U †
ν S Uν = D S ,

U †
� T U� = DT .

(11)

Here the matrices D S and DT are diagonal matrices. Since Eq. (11)
demonstrates a direct connection between flavor symmetry and 
lepton mixings, it also attracted extensive studies [21–24] via the 
approach of symmetry and group theory, without resorting to ex-
plicit mass matrices or a fundamental Lagrangian. With this general 
mass-independent approach, we will analyze the origin of CMCPV.

Roughly speaking, our theorem states that the CMCPV can be 
realized if the residual symmetries are real. In rigorous manner, 
we formulate this theorem in the following form.

Theorem 2 (Origin of CMCPV). If the residual flavor symmetries in the 
lepton sector (including charged leptons and neutrinos) are real and fully 
determine the mixing pattern, then the CMCPV always holds, up to a few 
minor exceptions:

(i). one of the three mixing angles in the PMNS matrix is zero;
(ii). neutrinos are not Majorana fermions;

(iii). the residual symmetry for charged leptons is a Klein group, i.e., 
G� = Z2 ⊗ Z2 .

It is clear that exception (i) is already excluded by current os-
cillation data, and exception (ii) is not a concern for most neutrino 
theories. Exception (iii) is less trivial, but can be easily evaded in 
model-buildings. Besides, in Theorem 2, for the residual symme-
tries being real, we mean that there always exists a basis under 
which these symmetries become real.

To illustrate this theorem explicitly, we first consider a simple 
(unrealistic) example. A rotation of 120◦ around the axis (1, 1, 1)T

can be represented by
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R =
⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ . (12)

Suppose that this R corresponds to the residual symmetry
group G� . Thus, we have

U †
W R U W = diag(1, ω, ω2) , (13)

where U W is the Wolfenstein mixing matrix defined in Eq. (1). 
According to the relation (11), we have U� = U W , which shows 
that U †

� exhibits RCE. If we further assume that the neutrino mass 
matrix is diagonal (and thus Uν = I), then the PMNS matrix U =
U †

�Uν gives, (|δ|, θ23) = ( π
2 , π4 ), because Theorem 1 states that the 

RCE always leads to CMCPV.
Two remarks are in order for this example. One is that both 

residual symmetries are real. This is explicit for G� . The form of Gν

is, Gν ⊃ {diag(1, 1, −1), diag(1, −1, 1)}, since neutrino mass matrix 
is taken to be diagonal. The other point is that U †

� exhibits RCE.
In general, the validity of Theorem 2 (excluding its exceptions) 

implies the following important points:

1). real Gν leads to real Uν , which will be explicitly proven in 
Appendix B.2;

2). real G� leads to RCE in U †
� , which will be explicitly proven in 

Appendix B.3;
3). if U †

� has RCE and Uν is real, then the PMNS matrix U = U †
�Uν

has RCE.

The three points above are combined to prove Theorem 2. The last 
point is just based on the lemma given above Eq. (9), and the first 
two points can be understood by the following reasoning. (We del-
egate the mathematical proofs to Appendix B.) Since both G� and 
Gν contain only real transformations, they can be geometrically 
regarded as rotations in 3-dimensional Euclidean space. (Here a 
trivial minus sign between the determinants of SO(3) and O(3) 
does not matter.) For such a rotation represented by a matrix R , 
the rotation axis is one of its eigenvectors with the correspond-
ing eigenvalue equal to 1. The remaining two eigenvectors must 
be complex conjugate to each other, which is a general property 
of SO(3) matrices. (The explicit forms of the two eigenvectors are 
given in Appendix B.3.) Hence, if R ∈ G� , then the eigenvectors of 
R are the columns of U� , which implies two columns in U� are 
conjugate to each other, and thus U †

� has RCE.
There are differences in the neutrino sector, because we con-

sider the neutrinos as Majorana particles here. Hence, the residual 
symmetry has to be constructed with Z2’s, i.e., Gν = Z2 ⊗ Z2, 
which geometrically correspond to two rotations of 180◦ . These 
are special rotations in the sense that only such rotations may 
commute with rotations around different axes. For rotations of 
180◦ , the eigenvalues are (1, −1, −1), cf. Eq. (B.7). Due to a par-
tial degeneracy of the eigenvalues, the neutrino mass matrix Mν

should be determined by two Z2-rotations with orthogonal axes. 
Each axis determines one column of Uν , so Uν only contains real 
column vectors. This in turn implies that G� cannot be Z2 ⊗ Z2, 
which is the exceptional case (iii) pointed out in Theorem 2: if 
G� = Z2 ⊗ Z2, then U� will be real and no CP violation exists. Now, 
it is also easy to understand why Theorem 2 requires neutrinos to 
be Majorana fermions, since the symmetries Z2 ⊗ Z2 are needed 
for Gν .

Theorem 2 further leads to a series of corollaries which we will 
discuss as follows.

Corollary A (O(3) subgroups). If an O(3) subgroup G contains sufficient 
residual symmetries that can fully determine a mixing matrix, then it 
leads to the CMCPV after avoiding the three exceptions listed in Theo-
rem 2.

This is manifest because the constraint which requires the 
residual symmetries to be subgroups of O(3) makes G� and Gν

automatically real. According to Theorem 2, this leads to CMCPV. 
Examples of such residual symmetries include popular groups like 
A4, S4, and A5, corresponding to tetrahedral, octahedral, and icosa-
hedral symmetries, respectively.

We should comment on the phrase “sufficient residual sym-
metries” in Corollary A. As is well-known, the maximal resid-
ual symmetries in the charged lepton and neutrino sectors are 
U (1) ⊗ U (1) ⊗ U (1) and Z2 ⊗ Z2 ⊗ Z2, respectively [20]. But when 
seeking flavor groups to unify the residual symmetries, it is not 
necessary to cover those large groups. For charged leptons, the 
minimal choice is to take a Z3 subgroup from those U (1)’s, which 
is in fact sufficient to determine the mixing U� . For the neutrino 
sector, the minimal sufficient residual symmetry should be Z2 ⊗ Z2. 
So, this smaller set of residual symmetries should be included in 
the O(3) subgroup for Corollary A.

However, in some models, especially those based on A4, some-
times the flavor group does not contain sufficient residual symme-
tries, and the so-called accidental symmetries are present to fully 
determine the mixings. Those accidental symmetries depend on 
the detailed dynamics of the model (instead of the flavor group), 
so Corollary A does not apply. But, if the accidental symmetry is a 
real symmetry, then Theorem 2 applies and there is still CMCPV.

Corollary B (Real Mν ). If G� is real and Mν is real or Mν can be written 
as Mν = z1I + z2M̃ν , where M̃ν and I are real and identity matrices, 
respectively, and (z1, z2) are complex numbers, then there is CMCPV, 
after evading the three exceptions listed in Theorem 2.

We first consider the case that Mν is real. Then, as a real 
symmetric matrix, Mν can be diagonalized by a real orthogonal 
matrix, which implies Uν and Gν are real. Hence, according to 
Theorem 2, we have CMCPV. Multiplying Mν by an overall com-
plex phase will not change Uν . Thus, if Mν = z2M̃ν with real 
M̃ν , then this means that Mν is essentially real, up to an over-
all complex phase factor. Hence, this case also leads to CMCPV. 
Next, consider Mν = z1I + M̃ν with real M̃ν . This means that 
Mν is real up to subtracting a constant from all diagonal ele-
ments. In this case, for S (∈ Gν) satisfying S T M̃ν S = M̃ν , we have 
S T Mν S = S T (z1I+ M̃ν)S = z1I+ M̃ν , which shows that Mν is also 
invariant under S . Hence, Mν has invariance under real Gν and 
there is CMCPV. Finally, combining the two cases above, we have 
thus proven Corollary B for the general form Mν = z1I + z2 M̃ν .

The form Mν = z1I+z2 M̃ν has important applications in model 
buildings for CMCPV. Typically, for building flavor symmetry mod-
els, at least one flavon φ is introduced to couple with neutrinos 
ν and forms a Yukawa term ννφ, which contributes to neutrino 
masses if the vacuum expectation values (VEV) 〈φ〉 �= 0, where φ is 
a scalar field acting as a multiplet under the flavor symmetry. Neu-
trinos are commonly considered as flavor triplets in many models, 
so a νν term or νν ξ term will usually show up, where ξ is a fla-
vor singlet. These terms will contribute to Mν as a diagonal mass 
term z1I , where z1 is complex because the coefficients (Yukawa 
couplings) of these terms are complex in general. The ννφ term 
will contribute in a form of z2 M̃ν if 〈φ〉 is real (up to an overall 
complex phase) and the Clebsch–Gordan (CG) coefficients for the 
term are real.

Note that here we only consider the case with all 3 generations 
of neutrinos unified into a triplet of the flavor group. Otherwise, 
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the νν term would not be diagonal.3 The flavon φ can be in any 
non-trivial representation. We should point out that both real 〈φ〉
and real CG coefficients are very common in many groups. For 
instance, in the 3-dimensional representation of A4, the CG co-
efficients for 3 ⊗ 3 ⊗ 3 → 1 are real in both the real basis (used 
for example in [25]) and the complex basis (used for example in 
[26]). This corollary does not apply to groups with inherent com-
plex CG coefficients, like T ′ [27] or �(27) [28]. As for real 〈φ〉, 
if φ is a real scalar field by definition, then 〈φ〉 is real. If φ has 
to be a complex field, then as known from minimization of scalar 
potentials in many models, it is still common to have VEV align-
ment according to 〈φ〉 ∝ (1, 1, 1), (1, 0, 0), etc., which is real. If 〈φ〉
is however complex, then in general CMCPV does not follow. For 
those “real ννφ models”, where only the ννφ term makes a non-
trivial contribution (not proportional to the unit matrix) to Mν , we 
have the following corollary.

Corollary C (Real ννφ models). Real ννφ models always lead to CMCPV, 
if the three minor exceptions listed in Theorem 2 do not happen.

For a demonstration of the above general discussion, we will 
build a simple “real ννφ model” in the following Section 4.3.

4. Applications

In this section, we apply our theorems and corollaries to various 
situations and understand why CMCPV is realized in certain cases. 
We will illustrate how to achieve the CMCPV in model buildings. 
There are extensive recent literature [29] studying specific models 
of (|δ|, θ23) = ( π

2 , π4 ).

4.1. μ–τ reflection symmetry

The μ–τ reflection symmetry was studied before [7–10], which 
is sometimes also called the generalized μ–τ symmetry. This sym-
metry is defined in the flavor eigenbasis (with M� diagonal),

νe → ν∗
e , νμ → ν∗

τ , ντ → ν∗
μ . (14)

Imposing this symmetry leads to the following form of the neu-
trino and lepton mass matrices,

M̃ν =
⎛
⎝ r1 z1 z∗

1
. z2 r2
. . z∗

2

⎞
⎠ , M̃2

� =
⎛
⎝ m2

e
m2

μ

m2
τ

⎞
⎠ , (15)

where M̃ν is symmetric and M̃2
� ≡ M̃�M̃†

� is diagonal. Note that 
the elements r1,2 are real, but z1,2 are complex in general. The 
operation (14) will transform νT M̃ν ν to its Hermitian conjugate. 
We can directly check that the Lagrangian term, L ⊃ νT M̃νν + h.c., 
is invariant under the transformation (14) if and only if M̃ν takes 
the form of Eq. (15).

Let us make a transformation,

Mν = U�M̃νU T
� , M2

� = U�M̃2
� U †

� , (16)

with

3 For certain groups, such as �(3n2) or �(3n3) with n � 3, two triplets cannot 
form a singlet. Those are certain subgroups of SU(3), to be precise, subgroups with 
faithful irreducible 3-dimensional representation whose determinant equals 1, that 
have complex representations and are not subgroups of SO(3). In this case, the νν
term is absent, which means that in the general form Mν = z1 I + z2 M̃ν only z2 M̃ν

exists. So the problem becomes simpler.
U� =
⎛
⎜⎝

1 0 0

0 1√
2

1√
2

0 − i√
2

i√
2

⎞
⎟⎠ . (17)

Thus, we derive

Mν =
⎛
⎝ r1

√
2 z11

√
2 z12

. r2 + z21 z22

. . r2 − z21

⎞
⎠ ,

M2
� =

⎛
⎝ a 0 0

0 b+ i b−
0 −i b− b+

⎞
⎠ , (18)

where we have defined notations, z j ≡ z j1 + iz j2 ( j = 1, 2), and 
a ≡ m2

e , b± ≡ 1
2 (m2

μ ± m2
τ ). The quantities (z j1, z j2) and (a, b±)

are all real. Note that Mν is a real matrix, and the charged lepton 
sector has an SO(2) residual symmetry,

R =
⎛
⎝ 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎞
⎠ . (19)

This is because RM2
� R† = M2

� holds for θ ∈ [0, 2π). Since Mν and 
G� are all real, this will lead to CMCPV according to our Corol-
lary B. Note that real Mν implies that Gν is real.

The μ–τ reflection symmetry is certainly not the only possi-
bility to generate CMCPV. From Eq. (18), we see that Mν is real, 
while Corollary B shows that Mν can have a more general form 
including complex numbers. Hence, the μ–τ reflection symmetry 
is just a special case of real residual symmetries, although this is 
not manifest before the transformation of basis in Eq. (16).

4.2. CMCPV from geometrical symmetry breaking

As another example illustrating our theorem, we revisit a model 
from Ref. [23], which predicted |δ| = π

2 and θ23 = π
4 (as well as 

θ13 � π
4 − θ12). We will show that this model fulfills the criteria 

for CMCPV.
This model identifies a Z4 rotation around the x-axis as G� , 

and the product reflections Z2 ⊗ Z2 as Gν , where one Z2 reflects 
y → −y and the other Z2 transforms (x, z) → −(z, x). These ro-
tations are subgroups of the octahedral symmetry O h , and can be 
shown by simple geometrical picture. This group setting generates 
the bimaximal mixing, θ12 = θ23 = π

4 and θ13 = 0. The necessary 
deviation from this leading order scheme was generated by slightly 
tilting the axis of Z4 rotation by a small angle (defined as 

√
2ε) 

that turns out to be related to nonzero θ13. We also verified that 
this geometrical symmetry breaking can arise from certain flavon 
models. For example, we may set up a concrete realization, where 
a flavor triplet φ is responsible for mass-generation of the charged 
leptons and the Yukawa terms involving φ are SO(3) symmetric in 
the 3-dimensional flavor space. With these, the geometrical break-
ing is connected to the VEV misalignment of flavons. After the axis 
tilt, the residual symmetry of charged lepton mass matrix is repre-
sented by [23],

R� =
⎛
⎝ 1 −2ε 0

0 0 −1
2ε 1 0

⎞
⎠ +O(ε2) . (20)

The neutrino mass matrix is still invariant under the original re-
flections Z2 ⊗ Z2, as represented by [23],

Rν1 =
⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠ , Rν2 =

⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠ . (21)
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Since all the residual symmetries are real, Theorem 2 applies and 
the model should realize CMCPV. This is indeed the case, as found 
in Ref. [23].

4.3. A real ννφ model

As stated in Corollary C, the real ννφ models should always 
produce CMCPV. In the following, we will build such a model as 
an explicit illustration.

We use A4 ⊗ Z2 as flavor symmetry group and introduce two 
scalar fields φ� and φν , in addition to the SM Higgs doublet H . The 
relevant particle content of this model is summarized in Table 1. 
The Lagrangian for the lepton–neutrino sector contains,

L ⊃ ye(Lφ�)Hec + yμ(Lφ�)′Hμc + yτ (Lφ�)′′Hτ c

+ yν1(LL)H H + yν2(φ
ν LL)H H + h.c., (22)

where L stands for the left-handed lepton doublet of SU(2)L and H
is the Higgs doublet. Since φ� and φν do not have any charge other 
than the Z2 assignment, they can be real fields. Consider that they 
acquire the following alignment of VEVs,

〈φν〉 ∝ (1, ε2, ε3) , 〈φ�〉 ∝ (1,1,1) , (23)

where similar to [30], we have introduced a small perturbation 
on the usual VEV alignment in 〈φν〉, with ε2, ε3 � 1. Similar VEV 
alignment was already considered in the literature [30], but its fur-
ther elaboration is irrelevant to the current illustration purpose 
of realizing CMCPV on the ground of residual symmetries [20]; 
it is also fully beyond the main goal of this short Letter. For 
ε2 = ε3 = 0, one would obtain the tri-bimaximal mixing; and the 
small (ε2, ε3) should produce the necessary corrections [30]. Note 
that for ε2 = ε3 = 0, although 〈φν〉 is real as required by our def-
inition of real ννφ models, one of the mixing angles, θ13, is zero, 
which just matches exception (i) of our Theorem 2. Hence, CMCPV
does not follow in this case. For ε2,3 �= 0, the charged leptons and 
neutrinos acquire masses as follows,

M� ∝
⎛
⎝ a b c

a b ω2 c ω

a b ω c ω2

⎞
⎠ , Mν ∝

⎛
⎝ d ε3 ε2

ε3 d 1
ε2 1 d

⎞
⎠ , (24)

where the mass parameters (a, b, c, d) are complex in general. 
This type of lepton and neutrino mass matrices are often stud-
ied in the literature [31]. For instance, diagonalizing the lepton 
mass matrix M†

�M� gives the mass-eigenvalues (me, mμ, mτ ) ∝
(|a|, |b|, |c|). [This also shows that using the observed mass values 
(me, mμ, mτ ) does not fully fix the parameters (a, b, c) them-
selves; while inputting the model parameters (a, b, c) can fully 
accommodate the observed lepton masses.] The focus of our paper 
is on the origin of leptonic mixings from flavor symmetry. Thus, 
by diagonalizing M� and Mν , we derive the following lepton and 
neutrino mixing matrices,

Uν �

⎛
⎜⎜⎝

ε2+ε3√
2

1 −ε2+ε3√
2

1√
2

−ε2 − 1√
2

1√
2

−ε3
1√
2

⎞
⎟⎟⎠ , (25)

and

U� = 1√
3

⎛
⎝ 1 1 1

1 ω2 ω

1 ω ω2

⎞
⎠ . (26)

From U = U †
�Uν , it is straightforward to extract the PMNS param-

eters in the standard parametrization,
Table 1
Particle content of the A4 ⊗ Z2 model.

Groups L (ec , μc, τ c) φ� φν H

A4 3 (1, 1′′, 1′) 3 3 1
Z2 −1 1 −1 1 1
SU(2)L 2 1 1 1 2

θ23 = π

4
, |δ| = π

2
, (27a)

sin θ13 � ε3 − ε2√
6

, tan θ12 �
√

2(1 − ε2 − ε3)

2 + ε2 + ε3
. (27b)

These results show that, apart from model-specific deviations 
of (θ13, θ12) from their tri-bimaximal values, we have realized 
the CMCPV, as expected from Corollary C. From Eq. (27b), we 
can determine the perturbative parameters (ε2, ε3) in terms of 
(sin θ13, tan θ12) via

ε2 = −
√

3

2
sin θ13 + 1 − √

2 tan θ12

2 + √
2 tan θ12

,

ε3 =
√

3

2
sin θ13 + 1 − √

2 tan θ12

2 + √
2 tan θ12

. (28)

Taking θ13 � 9◦ and θ12 � 34◦ , we derive (ε2, ε3) � (−0.18, 0.21).
In general, we can extend the real ννφ models to type-I neu-

trino seesaw. In this case, we may introduce three right-handed 
neutrinos νR in the 3-dimensional representation of A4. Thus, the 
neutrino Dirac mass matrix will be proportional to unit matrix, 
mD ∝ I , while the heavy Majorana mass matrix MR shares simi-
lar structure with Mν in Eq. (24). Hence, we find that the seesaw 
mass matrix of light neutrinos Mν ∝ M−1

R .

5. Conclusions

In this work, we stressed that a general parametrization-
independent definition of the maximal CP violation should be 
constructed in terms of Jarlskog invariant J , rather than the CP 
angle δ (which is rephasing non-invariant). We pointed out that 
naively maximizing J without constraint is already excluded by 
oscillation data. We further demonstrated the crucial importance 
of introducing the new concept of constrained maximal CP viola-
tion (CMCPV) for studying the viable maximal CP violation. For this 
purpose, we constructed CMCPV in Definition 1, and formulated it 
by a set of equivalent ways, as summarized in Theorem 1 (Sec-
tion 2). We derived the parametrization-independent realization of 
the CMCPV via solution (4), which was proven to be the maximum 
of Jarlskog invariant under a minimal constraint on the PMNS ma-
trix U (Section 2 and Appendix A). We found that the CMCPV just 
corresponds to (|δ|, θ23) = ( π

2 , π4 ) in the standard parametriza-
tion of the PMNS matrix (5). In Section 3 and Appendix B, we 
proved Theorem 2, stating that if the residual symmetries of neu-
trinos and charged leptons are real, then the CMCPV should be 
realized, up to a few minor exceptions. It was shown that the con-
ditions for CMCPV are actually quite common, and we presented 
several sample models in Section 4, demonstrating that in particu-
lar the often considered μ–τ reflection symmetry is a special case 
of our theorem. We also note that the current formulation cannot 
be naively applied to the quark sector. The reason is that our The-
orem 1 proves RCE to be essential for the CMCPV, but RCE cannot 
hold for the CKM mixing matrix due to experimental data. Namely, 
any two rows (or columns) in the CKM matrix cannot be conjugate 
to each other (up to rephasing).

If indeed the values of δ � −π
2 and θ23 � π

4 continue to be 
favored by neutrino data, our general theorems and corollaries of 
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CMCPV should be important, and provide strong guidelines for the 
model buildings with flavor symmetry.

Note added

While we were finalizing the present paper, Ref. [32] appeared 
on arXiv, which has some partial overlap. It was also pointed out 
there that μ–τ reflection symmetry can be generated by discrete 
residual subgroups of O(3). In Section 4.1, we explicitly showed 
that with a proper basis transformation the μ–τ reflection symme-
try is actually a real symmetry. Our general theorems are indepen-
dent and complementary to [32], and we presented a set of equiv-
alent formulations for the CMCPV as well as its parametrization-
independent realization.
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Appendix A. Parametrization-independent solution of CMCPV

In this appendix, we derive the general solution of CMCPV by 
using the manifestly parametrization-independent formula of Jarl-
skog invariant (3).

Following our Definition 1 for CMCPV, we can use Eq. (3b)
to derive the extremal conditions of Jarlskog invariant respect to 
|Uμ1| and |Uμ3| by fixing |Ue1| and |Ue3|. Thus, we have

∂ J 2

∂ z
= xyw − 1

2
(1 − y) [(1 − y) z + (1 − x) w − (1 − x − y)]

= 0 , (A.1a)

∂ J 2

∂ w
= xyz − 1

2
(1 − x) [(1 − y) z + (1 − x) w − (1 − x − y)]

= 0 , (A.1b)

where for convenience we have used the notations, (x, y, z, w) ≡
(|Ue1|2, |Ue3|2, |Uμ1|2, |Uμ3|2). From the extremal conditions
(A.1a)–(A.1b), we deduce the solutions,

z = 1

2
(1 − x) , w = 1

2
(1 − y) . (A.2)

Hence, we have

∣∣Uμ j
∣∣2 = 1

2

(
1 − |Uej|2

)
( j = 1,2,3) , (A.3)

where we have used the unitarity condition for the second row, 
3∑

j=1

|Uμ j |2 = 1. With Eq. (A.3) and making use of the unitarity con-

ditions for each column of the mixing matrix U , we further deduce

∣∣Uτ j
∣∣2 = 1

2

(
1 − |Uej|2

)
( j = 1,2,3) . (A.4)

Finally, comparing Eqs. (A.3) and (A.4), we arrive at

∣∣Uμ j
∣∣2 = ∣∣Uτ j

∣∣2 = 1

2

(
1 − |Uej|2

)
( j = 1,2,3) . (A.5)

This just reproduces Eq. (4), which we presented in the text.
Next, we prove that the above extremal solution (A.2) or (A.3)
indeed corresponds to a maximum of Jarlskog invariant. For this 
purpose, we compute the second derivatives of the squared Jarl-
skog invariant respect to (z, w),

( J 2)′′zz = −1

2
(1 − y)2, ( J 2)′′w w = −1

2
(1 − x)2,

( J 2)′′zw = ( J 2)′′wz = −1

2
(1 − x − y − xy) . (A.6)

Then, we inspect the eigenvalues of the 2 × 2 matrix {( J 2)′′}, 
whose elements are given by Eq. (A.6). The eigenvalues {λ1, λ2}
satisfy the following quadratic eigenvalue equation,

λ2 − Bλ + C = 0 , (A.7a)

B = ( J 2)′′zz + ( J 2)′′w w = −1

2

[
(1 − x)2 + (1 − y)2

]
< 0 , (A.7b)

C = ( J 2)′′zz( J 2)′′w w − [( J 2)′′zw ]2 = xy (1 − x − y) > 0 , (A.7c)

where we have, 1 − x − y = 1 − |Ue1|2 − |Ue3|2 = |Ue2|2 > 0, due 
to the unitarity condition on the first row. Thus, we have the two 
eigenvalues obey λ1 + λ2 = B < 0 and λ1λ2 = C > 0. This means 
that the two eigenvalues of {( J 2)′′} are both negative, λ1, λ2 < 0. 
Hence, we conclude that the extremal solution (A.2) or (A.3) is 
indeed the maximum of the Jarlskog invariant (under the con-
straint on the first row of U ), and provides the parametrization-
independent realization of the CMCPV as given in our Definition 1.

Finally, using the parametrization-independent solution (A.5) or 
(4) of CMCPV, we can readily derive the explicit realization of CM-
CPV under the standard parametrization (5). From the first equality 
of Eq. (A.5), we have two independent conditions |Uμ1| = |Uτ1|
and |Uμ3| = |Uτ3|, which take the following forms under the stan-
dard parametrization (5),∣∣∣s12c23 + c12s23s13eiδ

∣∣∣ =
∣∣∣s12s23 − c12c23s13eiδ

∣∣∣ , (A.8a)

|s23c13| = |c23c13| . (A.8b)

The condition (A.8b) leads to s23 = c23 and thus θ23 = π
4 . Given 

this, we can rewrite (A.8a) as∣∣∣s12 + c12s13eiδ
∣∣∣ =

∣∣∣s12 − c12s13eiδ
∣∣∣ . (A.9)

Since c12s13 �= 0, this must require cos δ = 0, i.e., |δ| = π
2 . Hence, 

the explicit realization of our CMCPV under the standard parame-
trization (5) just gives (|δ|, θ23) = ( π

2 , π4 ), which we mentioned in 
the text above Eq. (5).

Appendix B. Proofs

In this appendix, we present proofs that are needed to establish 
the lemma given after Eq. (8) and the main Theorem 2 given in 
Section 3.

B.1. RCE is invariant under right-handed real transformations

For a unitary matrix V with the form of “row conjugation 
equality” (RCE) and a real orthogonal matrix R , we need to prove 
that V ′ = V R still has RCE. The proof is straightforward. Defining 
the elements of these matrices,

V = (uij), R = (ri j), V ′ = (u′
i j), (B.1)

we have

u′
i j =

∑
uikrkj . (B.2)
k
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Note that the matrix elements (u1k) and (rkj) (k, j = 1, 2, 3) are 
real numbers from the start. The RCE feature of matrix V gives, 
(u2 j)

∗ = u3 j for j = 1, 2, 3. This implies

u′
1 j =

∑
k

u1krkj = real numbers , (B.3)

and

(u′
2 j)

∗ =
∑

k

u∗
2krkj =

∑
k

u3krkj = u′
3 j . (B.4)

We have thus proven explicitly that RCE is invariant under right-
handed real transformations.

B.2. Real Gν leads to real Uν

Consider Majorana neutrinos with residual symmetry Gν =
Z2 ⊗ Z2. In the following, we will prove that a real Gν leads to 
real Uν , and vice versa.

Let us set S to be a 3 × 3 unitary matrix, which is real and 
is a Z2 transformation (i.e., S2 = I). As S is real, it follows that 
S† = S T , and the unitarity condition S S† = I implies that the real 
matrix S is orthogonal, S S T = I . Without losing generality, we set 
S ∈ SO(3). So, S is a rotation in 3-dimensional Euclidean space. 
Furthermore, since S2 = I , it must be a 180◦-rotation.

For Gν = Z2 ⊗ Z2, we may use S1 and S2 to represent the trans-
formations of the two Z2’s, respectively. Thus, [S1, S2] = 0 should 
hold, which implies that their rotation axes must be orthogonal. 
Hence, geometrically Gν contains two 180◦-rotations with orthog-
onal axes. These two axes can be represented by two normalized 
real vectors v1 and v2 with

S1 v1 = v1 , S1 v2 = −v2 ,

S2 v1 = −v1 , S2 v2 = v2 ,
(B.5)

where v1 and v2 are column vectors, of the 3 × 1 matrix form. 
Taking v3 = v1 × v2 and Uν = (v1, v2, v3), we see that Uν is a 
real matrix and can diagonalize S1 and S2 simultaneously in the 
way given by Eq. (11).

Therefore, if Gν ⊃ {S1, S2} contains only real matrices, then Uν

is real. The converse proposition that a real Uν leads to real Gν is 
also true, and can be readily proven.

B.3. Real G� leads to complex U †
� with RCE

We need to prove that any SO(3) matrix R can be diagonalized 
by U †

R R U R , where the unitary matrix U R contains one real column 
and two other columns which are complex conjugate to each other. 
This can be explicitly proven as below.

The most general rotation in 3d Euclidean space which rotates 
the space around an axis n = (n1, n2, n3)

T by an angle φ is [24],

R(n, φ)

=
⎛
⎝ n2

1 + c
(
n2

2 + n2
3

)
(1 − c)n1n2 + sn3 −sn2 + (1 − c)n1n3

(1 − c)n1n2 − sn3 c + n2
2 − cn2

2 sn1 + (1 − c)n2n3

sn2 + (1 − c)n1n3 −sn1 + (1 − c)n2n3 c + n2
3 − cn2

3

⎞
⎠,

(B.6)

where n.n = 1 and (s, c) = (sin φ, cosφ). We can directly verify 
that this matrix is diagonalized as

U †
R R U R =

⎛
⎝ 1 0 0

0 c + i s 0
0 0 c − i s

⎞
⎠ , (B.7)
where

U R =

⎛
⎜⎜⎜⎜⎜⎜⎝

n1 −
√

1−n2
1√

2
−

√
1−n2

1√
2

n2
n1n2−i n3√

2(1−n2
1)

n1n2+i n3√
2(1−n2

1)

n3
n1n3+i n2√

2(1−n2
1)

n1n3−i n2√
2(1−n2

1)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B.8)

We see explicitly that the first column of U R is real, and the sec-
ond and third columns are conjugate to each other, i.e., U †

R has 
RCE. Hence, if R ∈ G� , then U †

� = U †
R has RCE.
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