
NORTH-HOLLAND

TECHNICAL NOTE

ON DELPHI LEMMAS AND OTHER MEMOING
TECHNIQUES FOR DETERMINISTIC

LOGIC PROGRAMS*

PAUL TARAU, KOEN DE BOSSCHERE, AND BART DEMOEN
-

D Three orthogonal memoing techniques for deterministic logic programs
are introduced and evaluated on the basis of their empirical performance.
They share the same basic idea: efficient memoing is achieved by losing
information gracefully, i.e., memoing benefits from a form of abstraction.

Abstract answers are most general computed answers of deterministic
logic programs obtained through repeated applications of a simple clause
composition operator. After describing a meta-interpreter returning ab-
stract answers, we derive a class of program transformations that compute
abstract answers more efficiently: they are ideal lemmas due to their
goal-independent nature. For this reason, their “hit rate” is usually higher
than in the case of conventional memoing.

Indexing by structural properties of terms is an effective way to speed up
the retrieval of lemmas, especially in the case of simple programs using
linear recursion.

Delphi lemmas add a self-adjusting control mechanism on the amount of
memoing. Answers are memoized only by acquiescence of an oracle. We
show that random oracles perform surprisingly well as Delphi lemmas tend
naturally to cover the “hot spots” of the program.

*This paper is a revised version of the paper “Memoing with Abstract Answers and Delphi
Lemmas” presented at the LOPSTR’93 Workshop [26].

Address correspondence to Paul Tarau, DCpartement d’hrformatique, Universitt de Moncton, Monc-
ton, N.B. EIA-2E9, Canada, E-mail: tarau@info .umoncton.ca; Koen De Bosschere, Vakgroep
Elektronica en Informatiesystemen, Universiteit Gent, Gent, Belgium, E-mail: kdb@elis . rug. ac . be;
Bart Demoen, Department of Computer Science, Katholieke Universiteit Leuven, Lcuven, Belgium,
E-mail: bimbart@cs . kuleuven . ac . be.

Received November 1995; accepted August 1996.

THE JOURNAL OF LOGIC PROGRAMMING
0 Elsevier Science Inc., 1997
655 Avenue of the Americas, New York, NY 10010

0743-1066/97/$17.00
PI1 SO743-1066(96)00105-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82444875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

146 P. TARAU ET AL.

A subset of our memoing techniques has been incorporated in BinPro-
log 5.00 with a declaration-based preprocessor. 0 Elsevier Science Inc.,
1997 a

1. INTRODUCTION

Memoing techniques have been an important research topic in logic programming
and deductive databases (see [21, 271). Various practical tools for memoing exist
from programmer-defined assert-based mechanisms (see [17]) and extension
tables as in XSB-Prolog to dedicated interpreters like [19, 20, 281. Without
minimizing the merits of the memoing facilities previously mentioned (which
support execution of left-recursive rules and ensure termination’ of Datalog
programs [16, 27]), we have noticed that some of their weaknesses lead to the
following symptoms/problems:

l static configuration: a fixed memoing algorithm is used instead of a self-
adjusting mechanism;

l overmemoing: they do not try to get a small set of high “hit rate” lemmas
with minimal computational resources;

l lack of abstraction: atoms obtained in the course of resolution are goal-
dependent.

This paper tries to solve these problems in a simple and radical way. First,
instead of memoing actual instances of answers created during the resolution
process, we memo their more general instances such that, while preserving sound-
ness, we can ensure the best possible future reuse. We show that most of the
overhead of abstract answer computation can be compiled away by using program
transformations.

Second, we abolish the usual predictability of what is memoized and when by
delegating it to an oracle external to the resolution process. Due to statistical
properties of execution traces, this is surprisingly better with a random-but
tunable-oracle than with conventional fixed algorithm memoing approaches,
especially when the programmer has explicit control of the amount of memoing.
The use of such an oracle will henceforth be called the Delphi principle.

Finally, in order to limit the amount of searching in the list of lemmas, we
propose indexing by structural properties. For programs using linear recursion, it is
fairly easy to find a property that can be used for indexing. For list processing
predicates, the most evident property is the list length. Indexing allows us to access
any lemma in constant time.

The paper is organized as follows. Section 2 proposes abstract answers, and a
number of ways of computing them. Section 3 proposes the Delphi principle, gives
some examples, and proposes performance results. The paper ends with some
directions of future work and a conclusion.

‘Improving termination properties is an important use of memoing in the deductive dataoase and
nonmonotonic reasoning communities. In contrast, in this paper, memoing is seen as a means to
optimize execution time with a minimal impact on space consumption.

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 147

2. MEMOING WITH ABSTRACT ANSWERS

2.1. Deriua tions with Clause Compositions

Although classical texts on SLD and SLDNF resolution (see [l] and [13]) do explain
well the basic logical mechanisms behind Prolog engines, one aspect is neglected in
all but some partial evaluation-oriented papers like [9] and [1412: the resolvent is
seen as a conjunction of literals instead of being seen as a logical implication. For
instance, in the case of SLD resolution, starting from a goal ? -G hides the fact that
we are actually looking for a computed answer starting from something like
answer(X):- G. In that case, we do not have to think about resolution as a
“refutation” procedure. Clearly, we can start from the tautologically true clause
G: -G, and simply unfold clauses until a fact A: - true is eventually reached.

This reformulation of resolution theory is an instance of resultant-based descrip-
tions as found in [9, 14, 24, 251 and S-semantics [8] and is beyond the scope of this
paper. We will specialize these results to Prolog’s computation rule by introducing
a composition operation @ that combines clauses by unfolding the leftmost
body-goal of the first argument with the second clause.

Dejinition 2.1. Let A, : -A, , A,, . . . ,4, and B, : - B, , . . . , B, be two clauses (sup-
pose n > 0, m 2 0). We define

(Ao:-A,,A,,...,h) CD (B,:-B,,...,B,)

=(Ao:-B1,...,Bm,AZ,...,h)O

with 0 = mgu (A,, B,) . If the atoms A, and B, do not unify, the result of the
composition is denoted as _L .3

Furthermore, as usual, we consider A, : - true, A,, . . . ,4, to be equivalent to
A,:-A,, . . . , A,, and for any clause C, I 61 c = c @ I = I . We suppose that the
two operands are standardized apart, and that a mgu is selected unambiguously (as
in Prolog) through variable ordering or similar means.

Repeated clause compositions can be used to describe a “Prolog-like” inference
rule called LD resolution. Note also that clause composition is an associative4
operation, and therefore a “sequence” of such compositions is well defined.

Definition 2.2. An LD derivation is a sequence of clauses C,, . . . , C, such that the
result of their composition C, @ ... 6~ C, is different from I .

Let P be a definite program, and let G be an atomic definite goal. We can then
construct the clause G : -G . which is a logical tautology. Derivations starting with
G: -G are of special interest as they can be used to produce computed answers for
G and P by applying 6~ to it with clauses from P.

‘In [9], a definition of most general resultants is given, which are seen as logical implications
beyeen conjunctions.

We suppose that an (implementation defined) choice is made for the mgu. To keep things simple,
we will also work with terms instead of equivalence classes of terms up to a renaming, and refer to [2,
11, 141 for a more precise formal description. In terms of [14], this can be seen as an instance of GSLD
resolution (see Lemmas 4.1 and 4.2).

4This follows from the’associativity application [13], and in particular, that of mgus.

148 P. TARAU ET AL.

2.2. Standard versus Abstract Answers

We will now describe two useful instances of derivations and answers: standard and
abstract answers.

Dejkition 2.3. Let P be a program of G an atomic goal. A derivation starting with
G : - G and resulting from a fact A : - true occurring in P is called a standard LD
derivation. A derivation starting with a clause of P and resulting in a fact is
called an abstract LD derivation. A standard resp. abstract answer is the result of
the composition of the clauses occurring in a standard resp. abstract LD
derivation.

Composing arbitrary clauses of a program is not practical without some guid-
ance from goal-dependent computations. Fortunately, for each standard derivation,
there is a corresponding abstract deviation obtained by dropping its first element
G : - G . Clearly, such a derivation still gives a resultant of the form G ': - true, i.e.,
it computes an abstract answer of the program. Due to the associativity of clause
composition, the original goal-dependent standard answer is obtainable in one step
from this abstract answer as T : - G 63 G ': - true.

Also, every abstract answer can be obtained as a standard answer by starting the
LD derivation with G : -G where the arguments of G are independent variables.
This observation will be used when implementing the computation of an abstract
answer guided by the computation of a standard answer.

The following example shows how an abstract answer can be composed from
clauses of the program on top of a standard derivation which works as a “path-
finder” for the corresponding abstract derivation.

Example 2.1. Let us consider the program

(Cl) plus(O,Y,Y) :-true.

(C2) 1 plus(s(X),Y,s(Z)):-plus(X,Y,Z).

and G:-G=

plus(s(O),s(O),R):-plus(s(O),s(O),R).

We obtain, as the result of (G : -G) @ C,,

plus(s(o),s(o),s(zl)):-plus(o,s(o~,zl~.

Then, by computing with (Cl), the expression (G: -G) CB C, @ C, is equal to the
standard answer:

plus(s(O),s(O),s(s(O~~~ :-true.

The corresponding abstract answer (C, @ C,), obtained by omitting the first com-
position

plus(s(O),A,S(A)) :-true.

contains the useful generalization that “(the successor of 0) plus A is the successor
of A."

Note that working with clause compositions ensures that each step of a deriva-
tion corresponds to a logical consequence of the program. For a detailed discussion
of this topic, we refer to [2, 4, 111.

In the examples that follow, we will often use G instead of G: -true for
convenience.

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 149

2.3. A Meta-Interpreter for Abstract Answers

The following code (working on definite programs) is obtained from the “vanilla”
meta-interpreter, but its extension to more sophisticated meta-interpreters dealing
with cut, negation, and system predicates can be done with well-known meta-inter-
pretation techniques.

% demo(G,AbsG) is true if AbsG is an abstract answer of P

riven by "clause/3 ”

!,demo(A,AbsA),demo(B,AbsB).

% the clauses of P being g

demo(true,true):- !.

demo((A,B),(AbsA,AbsB)):-

demo(H,AbsH):-

clause(H,B,Ref),

demo(B,AbsB),

instance(Ref,(AbsH:-AbsB)).

The interpreter uses two system predicates available on Prolog systems clause

/ 3 which returns a database reference Ref and instance / 2 which returns a new
variant of the clause referred to by Ref. Note that instance/2 is only called after
demo/2, so that its expensive copy operation is only performed for successful
branches.

Example 2.2. If P =

app([l,Ys,Ys)

app([AIXal,Ys,[AIZs]) :-app(Xs,Ys,Zs).

nrev(F1, [I).

nrev([XlXsl,R):-nrev(Xs,T), app(T,[X],R).

and

G=nrev([a,b,c],X)

we obtain in the query

?-G=nrev([a,b,cl,X),demo(G,Abstract).

the following abstract answer:

Abstract=nrev([A,B,C],[C,B,A]).

2.4. Computing Abstract Answers with a Program Transformation

We can obtain the same result without meta-interpretation by constructing a
transformed program. We will define a general program transformation scheme,
and then study three of its instances, each specified by a different transforma-
tion 4.

For simplicity, we will restrict ourselves to the case of definite programs.
However, some built-ins and cut can be accommodated easily in this framework by
adding rules to the transformation #L

150 P. TAFCAU ET AL.

Definition 2.4. Let ABS(+, P) be the program obtained by replacing each clause
A,,:-A . . ., 4, of the program P by$(A,,A’O) :-c$(A,,A~~), . . . ,~(%,ZA’,),
where $:-Al, . . . , A,, is a standardized apart variant of A,, : -A,, . . . , h.

Note that this class of transformations can be easily derived by partial evalua-
tion of the meta-interpreter presented before. Using the program transformation
ABS(+, P) is not only an order of magnitude more efficient than meta-interpreta-
tion of P, but also conserves the operational meaning of programs containing cut
or system predicates provided they are left unchanged by ABS(4, P).

We will now present three possible instances of the transformation 4.

2.4.1. Basic Transformation. Let us define +(a(x,, . . . ,&,) ,a(y,, . . . ,Y,))
astheatomp(a(X,, x,,),~(Y,, Y,,)) , where p / 2 is a new fixed predi-
cate symbol.

Example 2.3. ABS(basic, P) =

p(append([l,Ys,Ys) ,append([l ,Ysl,Ysl)) .

p(append([AIXsl,Ys, [AlZsl),append([AlIXsll ,Ysl,

[AllZsl])):-

p(append(Xs,Ys,Zs),append(xsl,Ysl,Zsl)).

p(nrev([l. [l),nrev([l, [I)).

p(nrev([XIXs],R),nrev([XllXsl],Rl));

p(nrev(Xs,T),nrev(Xsl,Tl)),

p(append(T,[Xl,R),append(Tl, [Xll,Rl)).

The query

?-p(nrev([a,b,c],_),Abstract).

returns the abstract answer

Abstract-nrev([A,B,C],[C,B,A]).

2.4.2. Indexed Transformation. We can define C#I (a (X, , . . . , X,) , a (Y, ,
. . . . y,)) as a(X,,&.a(Y,, Y,,)) preserving the usual first argument
indexing of the original program.

Example 2.4. ABS(indexed, P) =

append([l,ys,Ys,append([],ysl,ysl)).

append([AIXs],Ys,[AlZs],append([AllXsl],Ysl,

[AlIZsl])):-

append(Xs,ys,Zs,append(xsl,Ysl,Zsl)).

nrev([l, [I,nrev([l, [I)).

nrev([XIXs],R,nrev([XllXsl],Rl)):-

nrev(Xs,T,nrev(Xsl,Tl)),

append(T,[Xl,R,append(Tl,~Xll,R1)).

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 151

The query

?-nrev([a,b,c],_,Abstract).

returns the abstract answer

Abstract=nrev([A,B,C] , [C,B,A]) .

2.4.3. Flat Transformation. Finally, by defining +(a (x, , . . . , X,) , a (Y, ,
. . . , Y,)) as being simply a (X,, . . ,&,Y~, . . . , Y,) , we can avoid the construc-
tion of useless structures.

Example 2.5. ABS(flat, P) =

append([I ,Ys,Ys, [I ,Ysl,Ysl).

append([AIXs],Ys, [AIZs], [AlIXsl],Ysl, [AllZsll):-

append(Xs,Ys,Zs,Xsl,Ysl,Zsl).

nrev([I, [I, [I, [I).
nrev([XIXs],R,[X1IXsl],Rl):-

nrev(Xs,T,Xsl,Tl),

append(T, [Xl ,R,Tl, [X11 ,Rl) .

The query

?-nrev([a,b,c],_,X,Y), Abstract=nrev(X,Y).

returns the abstract answer

Abstract=nrev([A,B,C], [C,B,A]).

The transformed program generates precisely the same standard answers as the
original program while computing the associated abstract answers too.

Note that the basic, indexed, and flat transformations compute abstract answers
together with standard answers within a constant factor from computing only the
standard answers for P. This follows immediately from the fact that terms involved
in the computation of standard answers are always more specific than those used to
compute abstract answers, for each derivation step. Therefore, the computational
effort for an abstract solution is at most as large as the effort spent in the
computation of the standard solution.5

The execution speeds are given in Table 1. It shows that the program transfor-
mation is much faster than the meta-interpreter, and that in the case of naive
reverse, the overheads of the computation of an abstract answer using our best
transformation flat is limited to 57% w.r.t. direct execution.

‘In practice, some low-level issues (register availability, locality of data and code, etc.) can influence
the constant factor adversely.

TABLE 1. Execution speeds for the program transformations on a Sparcstation ELC
with SICStus Prolog 2.1 compact code

Version Runtime (pus) Slow Down w.r.t. nrev

Original nrev 105 1.00
Demo 3174 30.22
Basic 374 3.56
Index 208 1.98
Flat 165 1.57

152 I’. TARAU ET AL.

2.5. Abstract Answers as Lemmas

Abstract answers are good candidates for reusable lemmmas. By accumulating an
abstract answer s : -true, the equivalent of the search for an entire LD refutation
can be replaced with the composition of the clause G : -G for a given atomic goal G
and a memoized abstract answer s : - true.h

Notice the nontrivial nature of lemmas obtained from abstract answers as they
replace possibly infinite sets of standard answers. Compared to memoing of
standard answers, memoing of abstract answers is more appropriate as the general-
ity of the saved computation allows a better hit rate. Soundness is ensured as they
are logical consequences of the program.

The computational overhead of this kind of lemma generation is minimized as
the computation of abstract answers can be “compiled” through the program
transformation P + ABS(f$, P).

However, as is also the case with usual lemma generation, the actual gain in
efficiency depends on the indexing of dynamic code and programmer-defined
“pragmas” specifying what is worth being memoized. More precisely, lemmas will
turn out to be useful only if

One-execution > lemma-use

+ (one-execution-with-overhead + lemma-creation) /

number-of-uses.

Note that this is an approximation of what actually can happen due to interaction
with contextual factors. For instance, generating an abstract answer has the same
or lower cost than the standard one; but the extra cost of the transformed program
-which is supported to use the lemma-is more than in the generation cf the
abstract answer; we also have to take account of the fact that every predicate is
preceded by a test as to whether a lemma can be used. Also, in the case of abstract
lemmas, we have to put in the right side execution times for the transformed
program, which are, as we noted earlier, at most twice as long as the execution
times for the original program (i.e., one-execution-with-overhead < 2*one-
execution).

The effect of memoing abstract answers instead of standard answers can be seen
nicely from a benchmark which executes many times nrev/ 2 with lists of the
same length, but with random values in the list: a Prolog system that memos
standard answers will memo, e.g., nrev([12,13,1,5,9],[9,5,1,13,121),
and will not be able to use this lemma for a later call like
nrev ([1,2,3,4, 5] , x) . On the other hand, memoing the abstract answer
nrev([~,~,~,~,~],[~,~,~,~,~])allowsustoreusethelemmamanytimes.

2.6. Indexing

Asserting abstract answers is the easiest way to use abstract answers as lemmas.
However, the performance may suffer from the creation of too many lemmas that
eventually force a sequential search. This performance problem can be alleviated
by using indexing on a structural property. The basic idea is to use some simple

6Clearly, this is allowed because clause composition is associative.

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 153

measure defined on a structural property of a class of expressions (like the length
of a list or the depth/path of a tree) as a key for a hashing-based indexing scheme

or by mapping it directly to the underlying (first/multi)-argument indexing of the
Prolog system. An example of this technique for nrev / 2 is given in Section 3.3.

It ensures constant time access to the only relevant lemma, and is enough to
achieve O(N) performances on the benchmark. Note that such size-related param-
eters can be found relatively easily as shown, for instance, by research on the
automatic inference of norms for termination analysis [7]. However, this step
cannot be automated in the general case. Alternatively, indexing methods like
matching trees or decision graphs [12, 291 can be used if provided by the underlying
Prolog implementation.

3. DELPHI LEMMAS

Delphi lemmas are intended to reduce the time and the space spent for relatively
useless memoing. The basic idea is that, very often, lemmas are only useful for the
hot spots of the execution trace of the program.

3.1. Straightforward Delphi Lemmas

Suppose we consult an oracle before each decision to generate a lemma. A very
smart (say human) oracle can decide for the naive reverse program for a list of
length 100 iterated 50 times that the only lemma that is really worth generating is

nrev([Al,...,lOO], [AlOO,...,Al]).

This ensures a hit for each call and no search. How can we get close to this
automatically? A surprisingly simple answer is to use a random oracle with a
sufficiently low probability of answering yes to the question

Should this goal create a lemma after finishing its computation?

This means that the probability of generating lemmas will only be high for the
“hot spots” of the program. However, a programmer’s hint on which predicates are
subject to Delphi memoing (quadratic nrev / 2 in this case instead of the already
linear append/ 3) can definitely help. As we will show in the next section, the key
property that makes Delphi lemmas effective is the presence of attractors: entry
points to spots in the program where long sequences of “regular” repetitive
computations start. In practice, the choice of the predicates and probabilities will
give the programmer enough control to empirically fine-tune lemma generation
and focus the action of the Delphi principle on the entry points of the actual hot
spots of the program.

Here is the code (SICStus Prolog 2.1):

nrev_lemma(Xs,Ys,Xsl,Ysl):-

nrev_fact(Xs,Ys,Xsl,Ysl), !.
nrev_lemma(Xs,Ys,Xsl,Ysl):-

nrev(Xs,Ys,Xsl,Ysl),

make_nrev_lemma(Xsl,Ysl) .
make_nrev_lemma(Xsl,Ysl):-random(X), X>O.O4,!.

make_nrev_lemma(Xsl,Ysl);-

copy_term(Xs+Ysl,Xs2+Ys2),

assert(nrev_fact(Xsl,Ysl,Xs2,Ys2)).

154 P. TARAU ET AL.

app([AIXsl,Ys, [AlZsl,[A1IXsll,Ysl,[Allzsll):-

app(Xs,Ys,Zs,Xsl,Ysl,Zsl).

nrev([l,[l, [I, [I).

nrev([XIXs],R,[XlIXsl],Rl):-

enrev_lemma(Xs,T,Xsl,Tl),

app(T,[Xl,R,Tl,[Xll,Rl).
nrev(Xs,Ys):-

nrev(Xs,"Ys,_Xsl,_Ysl).

Note that this example exhibits a combination of the Delphi principle and
abstract answers. copy-term is used to standardize apart the component which
computes abstract answers. For length 2, the nrev_f ac t / 4 to be memoized looks
like

nrev_fact([AO,Al],[Al,AO],[A2,A3],[A3,A2]).

When the lemma is used, the first two arguments will reverse the actual goal-
dependent list, while the last two arguments will perform a resolution step which
incrementally computes the next abstract answer.

Note also that random/ 1 (see 1 ibrary (random) in SICStus 2.x) generates a
uniformly distributed float value between 0 and 1.7 Clearly, this transformation is
correct only for deterministic programs. The cut is needed to choose between using
a lemma and doing a computation.

The execution speed of the nrev / 2 programs using Delphi lemmas w.r.t. the
probability is depicted in Figure 1. Although LIPS are inappropriate as they count
inferences we actually spare, we keep using them because, as a popular metric for
nrev/ 2, they give a familiar intuition about the amount of performance increase.
There is a clear performance peak for small Delphi probabilities, followed by a
gradual performance decrease for increasing Delphi probabilities. As we do not use
indexing to search for lemmas, the cost of finding a lemma is proportional to the
number of lemmas in the database. As can be seen from Figure 2, the number of
lemmas rapidly increases with the Delphi probability. That is why the execution
speed decreases nearly linearly.

‘This has been speeded up in the BinProlog 5.00 built-in Delphi lemma preprocessor by transform-
ing it to equivalent but faster integer-only arithmetics.

B 2000

3 1500
P
Q 1000

5 P $ 500

I3 0

0.00 0.20 0.40 0.60 0.60 1 .oo

delphi probabilii

FIGURE 1. Execution speed w.r.t. the Delphi probability for nrev / 2, length = 100.

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 155

1/ / 1 FIGURE 2. Lemma probability versus Delphi probability.
o.oo , , , , , , ,

0.00 0.50 1.00

delphi probability

Note that obtaining a variant with Delphi lemmas from a program P is a fully
automatic operation after inserting a Delphi declaration in the program

:-delphi nrev/2-4.

specifying the predicates to be memoized and the probability (4/100) of lemma
generation for each of them.

3.2. Optimal Delphi Probability

Figure 2 shows the probability that a particular lemma is memoized w.r.t. the
Delphi probability for repeated executions of nrev/ 2 with list length = 100. It
turns out that the number of lemmas generated rapidly increases from small
Delphi values, e.g., for Delphi = 0.1, 40% of all possible lemmas is already
generated.

Given the relationship of Figure 2, we can find the optimal value for the Delphi
probability for nrev / 2 and for a given list length. We assume that there is no
lemma indexing such that adding one extra lemma increases the cost of using a
lemma. For list lengths varying between 0 and 100, the optimal Delphi probability
turns out to lie between 0 and 0.08 as depicted in Figure 3.

3.3. Indexed Delphi Lemmas

By combining Delphi lemmas with length indexing, we can see a cumulative
positive speed-up. Computing the length can be partially evaluated away as a small

List length

FIGURE 3. Optimal Delphi probability versus list length in nrev / 2.

156 P. TARAU ET AI..

extra effort for the host predicate. Here the code obtained for nrev/ 2:

nrev_lemma(Xs,Ys,Xsl,Ysl,L):-

nrev_fact(L,Xs,Ys,Xsl,Ysl), !.

nrev_lenuna(Xs,Ys,Xsl,Ysl,L):-

nrev(Xs,Ys,Xsl,Ysl,L),

make_nrev_lemma(L,Xsl,Ysl).

make_nrev_lemma(L,Xsl,Ysl):-random(X), X>O.O4,!.

make_nrev_lemma(L,Xsl,Ysl):-

copy_term(Xsl+Ysl,Xs2+Ys2),

assert(nrev_fact(L,Xsl,Ysl,Xs2,Ys2)).

app([I ,Ys,Ys, [I ,Ysl,Ysl) .

app([AIXs],Ys,[AIZs], [AllXsll,Ysl,[AllZsll):-

app(Xs,Ys,Zs,Xsl,Ysl,Zsl).

nrev([I, [I, [I, [I ,O) .

nrev([XIXs],R,[X1IXsl],Rl,N):-Nl is N-l,

nrev_ler@ma(Xs,T,Xsl,Tl,Nl),

app(T, [Xl ,R,Tl, [X11 ,Rl).

nrev(Xs,Ys):-

length(Xs,L),

nrev(Xs,Ys,_Xsl,_Ysl,L).

Note that by using a genetic assert operation in the implementation instead of
asserta or assertz, we can count on the implementation to use a more
sophisticated indexing mechanism which may not be order preserving (for instance,
some form of hashing using structural information on ground/nonground terms).

3.4. Performance of Various Memoing Techniques

The execution speeds for the various lemma generation techniques are given in
Table 2 normalized from 200 executions on random lists of length 100 with
probability 0.04 of Delphi-lemma generation. Although LIPS have no meaning in
terms of counting logical inferences (mostly avoided by using the lemmas), we have
kept them simply to express the speed-up in familiar terms.

TABLE 2. Execution speeds for the abstract lemma techniques on a Sparcstation ELC
with SICStus Prolog 2.1 compact code

Type of lemmas Speed #CLIPS) Speed-Up

Original nrev 145 1.0
Straightforward abstract 358 2.5
Length-indexed 1272 8.8
Delphi 1515 10.4
Indexed Delphi 1689 11.6
Delphi oracle static code 2525 17.4
Human oracle static code 11841 81.7

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 157

The last two lines are obtained by writing the lemmas to a file and then adding
them to the program as static code. They give an idea of the maximum speed-up
that can be obtained. This is, in a sense, comparable to profile-based optimizations
that are common in contemporary state-of-the art optimizing compilers.

3.5. Distribution of the Generated Delphi Lemmas

It turns out that the Delphi algorithm tends to generate the most efficient lemmas,
i.e., the more “complex” ones in our case, with a very high probability. The
explanation is basically that a lemma of complexity 22’ ensures that no simpler
lemmas are generated, while it cannot prevent the generation of more complex
ones.

Applied to the case of nrev / 2, this means that whenever we have a lemma for
a list of length N, a goal with list length greater than N will not generate lemmas
with list lengths smaller than N. Hence, after a sufficiently large number of runs,
the lemma for the initial goal will be generated. This effect can be experimentally
observed, and can also be theoretically modeled.

The experimental distribution is compared with the theoretical distribution p(n)
that denotes the probability of having lemma n (0 < IZ <M) in Figure 4. To
compute p(n), we start by defining an auxiliary distribution pi(n) denoting the
probability of having lemma n after the ith run. It is expressed as being the sum of
the probability of having a lemma in the previous run plus the probability of
generating a lemma in the current run. The latter probability is given by p times
the probability that no lemma was hit while recursing down to II. Initially,
pa(n) =p, e.g., all goals have the same probability of being memoized. The
distribution p(n) is the limit for i going to a:

p,(n) =pi-l(n) 'Pl?i (1 -P,-,(d)
j=n

The empirical and theoretical distributions are given in Figure 4. The darker curve
is the empirical distribution.

FIGURE 4. Comparison between theoretical and empirical distribution of lemmas.

1.58 P. TARAU ET AL.

3.6. Delphi Lemmas for Predicates with Irregular Behavior

The Delphi principle succeeds in finding the hot spots in the very regular naive
reverse benchmark. We have also applied the Delphi principle to an arithmetic
function known to have a highly irregular behavior. The timings show that Delphi
lemmas are superior to full memoing (more than 50% faster), which in turn is
superior to no memoing. The function we consider is

true, ifi=l

f(i) =

(

f(i/2), if i is even

f(3i + 1)) otherwise.

The program after the Delphi transformation becomes

f-lemma(N) :-f-fact(N), !.
f-lemma(N) :- f-real(N).

f-real(l).

f-real(N) :- N mod 2 =:= 0, Nl is N//2, f(Nl),

make-f-lemma(N) .

f-real(N) :- Nl is 3*N+l, f(Nl), make-f-lemma(N).

make-f-lemma(N) :- random (X), X>O.O4, !.

make-f-lemma (N) :- asserta(f_fact(N)).

f(N) :- F-lemma(N).

Two experiments have been done with this function. Calling f (10 0) repeatedly,
gives rise to the lemma distribution of Figure 5. This behavior is completely similar
to the behavior of nrev/ 2 in Figure 4 after reordering the recursive calls in the
order in which they occur (100,50,26,76,38,19,. . .I. The most efficient lemma is
f (10 0) , and it is eventually generated with probability 1.0.

Figure 6 gives a different view. Now, f is evaluated for 100 different values
(f(l)... f (100)) . Due to the rather irregular behavior of the function, the

distribution seems to be strange, but even in this case, the Delphi principle
succeeds in finding the hot spots, namely, the function calls with small arguments.
Indeed, whenever the function is defined, it will eventually enter a decreasing
sequence of powers of 2, ending in f (1) .

The conclusion is that, even for very irregular predicates, the Delphi principle
succeeds in detecting and memoing the hot spots in the program. Note that despite
their irregular behavior, most programs exhibit attractors (the sequence 1,2,4,8,. . .

function argument

FIGURE 5. Distribution of lemmas for repeated execution of f(lO0).

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 159

0 i I I I
0 3000

function argument

FIGURE 6. Distribution of lemmas for repeated execution of f (1) . . . f (10 0) .

in this example), i.e., a set of data objects which occur in most computations.’
Delphi lemmas naturally tend to find these attractors and to speed up their
computation by memoing them. An interesting feature of Delphi lemmas is that
the programmer does not have to search for attractors. If they are present, the
Delphi principle will find them automatically. Even if there is more than one
attractor, the Delphi principle we find them all.

4. BENCHMARKS

Delphi lemmas have been added as a standard extension of BinProlog 5.00 [23]
with a declaration-based preprocessor. At this time, only memoing of deterministic
predicates with indexing on an arbitrary number of arguments of the top-level
functor is supported. However, their impact on some well-known benchmarks is
quite dramatic.

A directive like : - delphi tak / 4 - 10 / [1,2,3] (used for the tak bench-
mark) is interpreted as follows: use Delphi memoing with probability lo/100 while
indexing by hashing on the first three arguments. A directive like : - delphi
rewrite / 2 - 2 0 (used for the boyer benchmark) is interpreted as follows: use
Delphi memoing with (default) indexing on first argument. In this case, in the
actual benchmark, each call of the form rewrite (A, B) is replaced with
delphi_call_l(r~rite(A,B),2O,A). This operation is done at compile
time. The generic delphi_call-1 predicate looks as follows:

delph_call_l(P,_X):-membq(X,P,P),!. % already memoed

delphi_call_l(P,Delphi,X) :-

random(R),Luck is R mod lOO,Delphi>Luck, !,

P,!,
addq(X,P,P). % memoing now

delphi_call_l(P,_;_):-P,!. % call as usual

*Intuitively, an attractor is a value such that once a specific argument of a literal has this (input)
value, termination is ensured, and moreover, (many) terminating derivations will eventually hit this
value. The value that matches the base case of a recursive predicate is the attractor par excellence. In
the more complex situation of our arithmetic example, the values 2” are attractors because they show
up more in derivations than, say, 17. That is why in Delphi memoing, the facts for 2” are memoed more
likely. Since programs usually terminate in a way that is less dependent on their data than on their
structure, it is reasonable to believe that most terminating programs indeed exhibit attractors.

160 P. TARAU ET AL.

Benchmark No memoing Delphi 5/100 Delphi 20/100 Full memoing

Fibo 2660 20 10 10

Tak 1130 390 180 90

Boyer 4660 880 480 420

FIGURE 7. Delphi memoing (user time in ms).

Note that membq / 3 and addq / 3 both use BinProlog’s efficient blackboard [22,
231 with hasing on its first two arguments and the memoed value in the third.
Further speed-up can be obtained by specializing this generic predicate to each of
its uses, known at compile time, i.e., to something like delphi_call_l_

rewrite(A,B) instead of delphi_call_l(rewrite@,B),20,A). Even
without this optimization, performance turned out to be unusually good, as shown
in Figures 7 and 8.

We have executed the benchmarks on a one-user Sparcstation lo-20 with 32
Mbytes of memory. Delphi results are geometric means of ten different runs. The
use of lemmas is optimized by avoiding assert. As the generated lemmas are
known to be ground, BinProlog’s blackboard can and does avoid the usual copying
that happens if assert is used for memoing.’

This also explains why on second runs, all benchmarks give execution times
under 100 ms. The sharing of ground lemmas also contributes to the dramatic
decrease of heap consumption due to memoing. We have noticed that our lemmas
are particularly effective on binarization-based compilers like BinProlog which
have large heap consumption and AND-intensive functional-style programs like
boyer or tak. Good performance on boyer is explained by the fact that on a
total of 95,016 calls to the memoized predicate rewrite / 2, only 200 are different.
The memoized calls function as attractors which avoid iterated uses of r ewr i t e / 2.
The relatively small number of attractors for predicates like tak / 4 or f ibo / 2
explains the speed-up on these two benchmarks.

Although on these benchmarks full memoing is still faster than Delphi memoing
(due to the overhead of the source-level implementation of the random oracle), the
ability of fine-tune the space-time tradeoff is in itself enough to make them useful
in practice.

Note that the techniques are general purpose, and we have measured similar
speed-ups for a modified version of ProLog-by-BIM, a native code compiler which
uses a traditional WAM model. Moreover, in that case, we have observed that, e.g.,
20% Delphi-memoing is 50% faster than full memoing, due to the relatively lower
computation/memoing ratio of ProLog-by-BIM.

‘Direct unification with ground terms is safe even on failure as it will always generate “well-
directed” bindings (from heap variables to the blackboard).

Benchmark No memoing Delphi 5/100 Delphi 20/100 fill memoing

Fibo 51132+0 96+360 96+520 96+680

Tak 1017852+0 287992+5272 128384+7336 68660+13528
Boyer 4774920+0 244112+9344 113932+15404 77092+21888

FIGURE 8. Delphi memoing (space used: heap + blackboard).

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 161

5. CONCLUSION AND FUTURE DIRECTIONS

The techniques developed in this paper are partially motivated by current Prolog
systems, with their particular strengths and limitations (e.g., their built-ins and
indexing techniques).

We have studied the case of a well-known definite deterministic program as
being the simplest instance of this memoing technique. This case covers, however,
the complete class of committed choice logic programming languages [5, 101.
Delphi lemmas, as shown in the previous examples, have the same domain of
applicability and limitations as ordinary lemmas. Note, however, that the Delphi
principle is itself orthogonal to the type of program to which memoing is applied.
With some care, they can be used in the context of full Prolog, specified as we have
suggested by a programmer-controlled directive. The practicality of the special case
of ground, multiargument-indexed Delphi lemmas has convinced us to add them as
a standard extension to the BinProlog compiler, starting from version 5.00 (avail-
able by ftp from clement.info.umoncton.ca).

Delphi lemmas have also served as inspiration for BinProlog 5.00’s dynamic
recompilation scheme, which moves “hot spots” of nonvolatile interpreted code to
compiled code on the fly, based on update versus call statistics [231.

Indexing in the case of nonground answers in general can improve potential
performance problems with abstract answers. The techniques described in [18] as
well as the idea of using tries instead of hashing, as done in the latest version of

XSB, can be adapted for this purpose.
The program transformations we used can be modified in the case of nondeter-

ministic programs to avoid interference between lemma-related pruning and the
program’s control structure. More work is needed on how this can be done in
general, and on what are the limitations of tradeoffs. The latest version of the XSB
system successfully deals with SLG resolution, which is fairly realistic subset of
Prolog including nondeterminism and a restricted form of negation as failure. We
plan to apply some of the techniques of XSB (like memoing of multiple answer
substitutions) to extend Delphi lemmas beyond definite programs.

Nevertheless, we consider our techniques useful for “real” programmers as it
can accelerate the most critical parts of a program in a significant way, and also
because they can be fully automated. Delphi lemmas can be also complement
existing systems with memoing facilities having objectives that are orthogonal to
ours, as [28]. Future work is planned to port Delphi lemmas to the latest version of
XSB Prolog.

We do not know about something similar to Delphi lemmas in functional or
procedural languages, but the concept can be easily adapted. Although it is a
probabilistic concept in the same sense as hashing or Ethernet collision avoidance,
it gives very good performances for mostly the same reasons, especially in combi-
nation with the use of abstract answers. As our benchmark data on boyer show,
the technique looks particularly beneficial for lemma-intensive theorem-proving
systems.

Future work will focus on the design of a set of high-level pragmas for specifying
memoization and on safe conditions when lemma generation can be automated.
This direction involves both static analysis techniques and trace analysis. This
paper has showed the empirical utility of considering memoing as a possibly
expensive computational resource, not only as an obvious space-for-time trade-in.
More theoretical work, possibly on a subset of linear logic, is needed to formalize
resource-conscious memoing techniques in a uniform framework.

162 P. TARAU ET AL.

REFERENCES

1. Apt, K., Logic Programming, in: J. van Leeuwen (ed.), Handbook of Theoretical Com-
puter Science, Elsevier, North-Holland, 1990, Vol. B, pp. 493-574.

2. Benkerimi, K. and Lloyd, J. W., A Partial Evaluation Procedure for Logic Programs, in:
[6], pp. 343-358.

3. Bruynooghe, M. (ed.), Logic Programming-Proc. 1994 Int. Symp., Massachusetts Insti-
tute of Technology, MIT Press, 1994.

4. Cheng, M. H. M., van Emden, M. H., and Strooper, P. A., Complete Sets of Frontiers in
Logic-Based Program Transformation, in: J. W. Lloyd (ed.), Proc. Workshop on Metu-
Programming in Logic Programming, MIT Press Series in Logic Programming, Cam-
bridge, MA, London, England, MIT Press, 1988, pp. 213-225.

5. De Bosschere, K., DeBray, S., Gudeman, D., and Kannan, S., Call Forwarding: A Simple
Interprocedural Optimization Technique for Dynamically Typed Languages, in: Proc.
21st ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL),
Portland, Jan. 1994, pp. 409-420.

6. Debray, S. and Hermenegildo, M. (eds.), Proc. 1990 North American Conf. on Logic
Programming, Cambridge, MA, London, England, MIT Press, 1990.

7. Decorte, S., DeSchreye, D., and Fabris, M., Automatic Inference of Norms: A Missing
Link in Automatic Termination Analysis, in: [15], pp. 420-436.

8. Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., A New Declarative Semantics
for Logic Languages, in: R. A. Kowalsksi and K. A. Bowen (eds.), Proc. 5th Int. Conf.
and Symp. on Logic Programming, MIT Press, 1988, pp. 993-1005.

9. Gallagher, J. and Bruynooghe, M., The Derivation of an Algorithm for Program
Specialisation, New Generation Computing 9 (1991).

10. Gudeman, D., De Bosschere, K., and Debray, S., jc: An Efficient and Portable
Sequential Implementation of Janus, in: K. Apt (ed.), Joint Int. Conf. and Symp. on
Logic Programming, Washington, DC, MIT Press, Nov. 1992, pp. 399-413.

11. Kemp, R. S. and Ringwood, G. A., An Algebraic Framework for Abstract Interpretation
of Definite Programs, in: [6], pp. 506-530.

12. Kliger, S. and Shapiro, E., From Decision Trees to Decision Graphs, in: [6], pp. 97-116.

13. Lloyd, J., Foundations of Logic Programming, 2nd edition (Symbolic Computation-
Artificial Intelligence), Springer-Verlag, Berlin, 1987.

14. Lloyd, J. W. and Shepherdson, J. C., Partial Evaluation in Logic Programming, JLP91
11(3/4) (1991).

15. Miller, D. (ed.), Logic Programming-Proc. 1993 Znt. Symp., Vancouver, Canada, MIT
Press, 1993.

16. Ramakrishnan, I. V., Rao, P., Sagonas, K. F., Swift, T., and Warren, D. S., Efficient
Tabling Mechanisms for Logic Programs, in: L. Sterling (ed.), Logic Programming-Proc.
12th Int. Conf. on Logic Programming, Massachusetts Institute of Technology, MIT
Press, 1995, pp. 697-711.

17. Sterling, L. and Shapiro, E., The Art of Prolog, MIT Press, 1986.

18. Sudarshan, S. and Ramakrishnan, R., Optimizations of Bottom-Up Evaluation with
Non-Ground Terms, in: [15], pp. 557-574.

19. Swift, T. and Warren, D. S., An Abstract Machine for SLG Resolution: Definite
Programs, in: [3], pp. 633-652.

20. Swift, T. and Warren, D. S., Analysis of SLG-WAM Evaluation of Definite Programs, in:
[3], pp. 219-235.

21. Tamaki, H. and Sato, T., OLD Resolution with Tabulation, in: E. Shapiro (ed.), Proc.
3rd Int. Conf. on Logic Programming, Lecture Notes in Computer Science, London,
Springer-Verlag, 1986, pp. 84-98.

22. Tarau, P., Language Issues and Programming Techniques in Bin Prolog, in: D. Sacca
(ed.), Proc. GULP’93 Conf., Gizzeria Lido, Italy, June 1993.

DELPHI LEMMAS AND OTHER MEMOING TECHNIQUES 163

23. Tarau, P., BinProlog 5.00 User Guide, Technical Report 96-1, Dtpartement d’Informa-
tique, Universite de Moncton, Canada, Apr. 1996. Available from http://
clement.info.umoncton.ca//BinProlog.

24. Tarau, P. and Boyer, M., Elementary Logic Programs, in: P. Deransart and J.
Maluszynski (eds.), Proc. Programming Language Implementation and Logic Program-
ming, no. 456 in Lecture Notes in Computer Science, Springer, Aug. 1990, pp. 159-173.

25. Tarau, P. and Boyer, M., Nonstandard Answers of Elementary Logic Programs, in:
J. Jacquet (ed.), Constructing Logic Programs, Wiley, 1993, pp. 279-300.

26. Tarau, P. and De Bosschere, K., Memoing with Abstract Answers and Delphi Lemmas,
in: Y. Deville (ed.), Logic Program Synthesis and Transformation, Louvain-la-Neuve,
Springer-Verlag, Workshops in Computing, July 1993, pp. 196-209.

27. Warren, D. S., Memoing for Logic Programming, Commun. ACM 35(3):37-48 (1992).
28. Warren, D. S., The XOLDT System, Technical Report, SUNY Stony Brook, NY,

electronic document: ftp sbcs.sunysb.edu, 1992.

29. Zhou, N.-F., Takagi, T., and Ushijima, K., A Matching Tree Oriented Abstract Machine
for Prolog, in: D. H. D. Warren and P. Szeredi (eds.), Proc. 7th ht. Conf. on Logic
Programming, Cambridge, MA, London, England, MIT Press, 1990, pp. 159-173.

