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D Three orthogonal memoing techniques for deterministic logic programs 
are introduced and evaluated on the basis of their empirical performance. 
They share the same basic idea: efficient memoing is achieved by losing 
information gracefully, i.e., memoing benefits from a form of abstraction. 

Abstract answers are most general computed answers of deterministic 
logic programs obtained through repeated applications of a simple clause 
composition operator. After describing a meta-interpreter returning ab- 
stract answers, we derive a class of program transformations that compute 
abstract answers more efficiently: they are ideal lemmas due to their 
goal-independent nature. For this reason, their “hit rate” is usually higher 
than in the case of conventional memoing. 

Indexing by structural properties of terms is an effective way to speed up 
the retrieval of lemmas, especially in the case of simple programs using 
linear recursion. 

Delphi lemmas add a self-adjusting control mechanism on the amount of 
memoing. Answers are memoized only by acquiescence of an oracle. We 
show that random oracles perform surprisingly well as Delphi lemmas tend 
naturally to cover the “hot spots” of the program. 

*This paper is a revised version of the paper “Memoing with Abstract Answers and Delphi 
Lemmas” presented at the LOPSTR’93 Workshop [26]. 
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A subset of our memoing techniques has been incorporated in BinPro- 
log 5.00 with a declaration-based preprocessor. 0 Elsevier Science Inc., 
1997 a 

1. INTRODUCTION 

Memoing techniques have been an important research topic in logic programming 
and deductive databases (see [21, 271). Various practical tools for memoing exist 
from programmer-defined assert-based mechanisms (see [17]) and extension 
tables as in XSB-Prolog to dedicated interpreters like [19, 20, 281. Without 
minimizing the merits of the memoing facilities previously mentioned (which 
support execution of left-recursive rules and ensure termination’ of Datalog 
programs [16, 27]), we have noticed that some of their weaknesses lead to the 
following symptoms/problems: 

l static configuration: a fixed memoing algorithm is used instead of a self- 
adjusting mechanism; 

l overmemoing: they do not try to get a small set of high “hit rate” lemmas 
with minimal computational resources; 

l lack of abstraction: atoms obtained in the course of resolution are goal- 
dependent. 

This paper tries to solve these problems in a simple and radical way. First, 
instead of memoing actual instances of answers created during the resolution 
process, we memo their more general instances such that, while preserving sound- 
ness, we can ensure the best possible future reuse. We show that most of the 
overhead of abstract answer computation can be compiled away by using program 
transformations. 

Second, we abolish the usual predictability of what is memoized and when by 
delegating it to an oracle external to the resolution process. Due to statistical 
properties of execution traces, this is surprisingly better with a random-but 
tunable-oracle than with conventional fixed algorithm memoing approaches, 
especially when the programmer has explicit control of the amount of memoing. 
The use of such an oracle will henceforth be called the Delphi principle. 

Finally, in order to limit the amount of searching in the list of lemmas, we 
propose indexing by structural properties. For programs using linear recursion, it is 
fairly easy to find a property that can be used for indexing. For list processing 
predicates, the most evident property is the list length. Indexing allows us to access 
any lemma in constant time. 

The paper is organized as follows. Section 2 proposes abstract answers, and a 
number of ways of computing them. Section 3 proposes the Delphi principle, gives 
some examples, and proposes performance results. The paper ends with some 
directions of future work and a conclusion. 

‘Improving termination properties is an important use of memoing in the deductive dataoase and 
nonmonotonic reasoning communities. In contrast, in this paper, memoing is seen as a means to 
optimize execution time with a minimal impact on space consumption. 
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2. MEMOING WITH ABSTRACT ANSWERS 

2.1. Deriua tions with Clause Compositions 

Although classical texts on SLD and SLDNF resolution (see [l] and [13]) do explain 
well the basic logical mechanisms behind Prolog engines, one aspect is neglected in 
all but some partial evaluation-oriented papers like [9] and [1412: the resolvent is 
seen as a conjunction of literals instead of being seen as a logical implication. For 
instance, in the case of SLD resolution, starting from a goal ? -G hides the fact that 
we are actually looking for a computed answer starting from something like 
answer(X):- G. In that case, we do not have to think about resolution as a 
“refutation” procedure. Clearly, we can start from the tautologically true clause 
G: -G, and simply unfold clauses until a fact A: - true is eventually reached. 

This reformulation of resolution theory is an instance of resultant-based descrip- 
tions as found in [9, 14, 24, 251 and S-semantics [8] and is beyond the scope of this 
paper. We will specialize these results to Prolog’s computation rule by introducing 
a composition operation @ that combines clauses by unfolding the leftmost 
body-goal of the first argument with the second clause. 

Dejinition 2.1. Let A, : -A, , A,, . . . ,4, and B, : - B, , . . . , B, be two clauses (sup- 
pose n > 0, m 2 0). We define 

(Ao:-A,,A,,...,h) CD (B,:-B,,...,B,) 

=(Ao:-B1,...,Bm,AZ,...,h)O 

with 0 = mgu (A,, B, ) . If the atoms A, and B, do not unify, the result of the 
composition is denoted as _L .3 

Furthermore, as usual, we consider A, : - true, A,, . . . ,4, to be equivalent to 
A,:-A,, . . . , A,, and for any clause C, I 61 c = c @ I = I . We suppose that the 
two operands are standardized apart, and that a mgu is selected unambiguously (as 
in Prolog) through variable ordering or similar means. 

Repeated clause compositions can be used to describe a “Prolog-like” inference 
rule called LD resolution. Note also that clause composition is an associative4 
operation, and therefore a “sequence” of such compositions is well defined. 

Definition 2.2. An LD derivation is a sequence of clauses C,, . . . , C, such that the 
result of their composition C, @ ... 6~ C, is different from I . 

Let P be a definite program, and let G be an atomic definite goal. We can then 
construct the clause G : -G . which is a logical tautology. Derivations starting with 
G: -G are of special interest as they can be used to produce computed answers for 
G and P by applying 6~ to it with clauses from P. 

‘In [9], a definition of most general resultants is given, which are seen as logical implications 
beyeen conjunctions. 

We suppose that an (implementation defined) choice is made for the mgu. To keep things simple, 
we will also work with terms instead of equivalence classes of terms up to a renaming, and refer to [2, 
11, 141 for a more precise formal description. In terms of [14], this can be seen as an instance of GSLD 
resolution (see Lemmas 4.1 and 4.2). 

4This follows from the’associativity application [13], and in particular, that of mgus. 
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2.2. Standard versus Abstract Answers 

We will now describe two useful instances of derivations and answers: standard and 
abstract answers. 

Dejkition 2.3. Let P be a program of G an atomic goal. A derivation starting with 
G : - G and resulting from a fact A : - true occurring in P is called a standard LD 
derivation. A derivation starting with a clause of P and resulting in a fact is 
called an abstract LD derivation. A standard resp. abstract answer is the result of 
the composition of the clauses occurring in a standard resp. abstract LD 
derivation. 

Composing arbitrary clauses of a program is not practical without some guid- 
ance from goal-dependent computations. Fortunately, for each standard derivation, 
there is a corresponding abstract deviation obtained by dropping its first element 
G : - G . Clearly, such a derivation still gives a resultant of the form G ': - true, i.e., 
it computes an abstract answer of the program. Due to the associativity of clause 
composition, the original goal-dependent standard answer is obtainable in one step 
from this abstract answer as T : - G 63 G ': - true. 

Also, every abstract answer can be obtained as a standard answer by starting the 
LD derivation with G : -G where the arguments of G are independent variables. 
This observation will be used when implementing the computation of an abstract 
answer guided by the computation of a standard answer. 

The following example shows how an abstract answer can be composed from 
clauses of the program on top of a standard derivation which works as a “path- 
finder” for the corresponding abstract derivation. 

Example 2.1. Let us consider the program 

(Cl) plus(O,Y,Y) :-true. 

(C2) 1 plus(s(X),Y,s(Z)):-plus(X,Y,Z). 

and G:-G= 

plus(s(O),s(O),R):-plus(s(O),s(O),R). 

We obtain, as the result of (G : -G) @ C,, 

plus(s(o),s(o),s(zl)):-plus(o,s(o~,zl~. 

Then, by computing with (Cl), the expression (G: -G) CB C, @ C, is equal to the 
standard answer: 

plus(s(O),s(O),s(s(O~~~ :-true. 

The corresponding abstract answer (C, @ C,), obtained by omitting the first com- 
position 

plus(s(O),A,S(A)) :-true. 

contains the useful generalization that “(the successor of 0) plus A is the successor 
of A." 

Note that working with clause compositions ensures that each step of a deriva- 
tion corresponds to a logical consequence of the program. For a detailed discussion 
of this topic, we refer to [2, 4, 111. 

In the examples that follow, we will often use G instead of G: -true for 
convenience. 
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2.3. A Meta-Interpreter for Abstract Answers 

The following code (working on definite programs) is obtained from the “vanilla” 
meta-interpreter, but its extension to more sophisticated meta-interpreters dealing 
with cut, negation, and system predicates can be done with well-known meta-inter- 
pretation techniques. 

% demo(G,AbsG) is true if AbsG is an abstract answer of P 

riven by "clause/3 ” 

!,demo(A,AbsA),demo(B,AbsB). 

% the clauses of P being g 

demo(true,true):- !. 

demo((A,B),(AbsA,AbsB)):- 

demo(H,AbsH):- 

clause(H,B,Ref), 

demo(B,AbsB), 

instance(Ref,(AbsH:-AbsB)). 

The interpreter uses two system predicates available on Prolog systems clause 

/ 3 which returns a database reference Ref and instance / 2 which returns a new 
variant of the clause referred to by Ref. Note that instance/2 is only called after 
demo/2, so that its expensive copy operation is only performed for successful 
branches. 

Example 2.2. If P = 

app( [l,Ys,Ys) 

app( [AIXal,Ys,[AIZs]) :-app(Xs,Ys,Zs). 

nrev(F1, [I). 

nrev([XlXsl,R):-nrev(Xs,T), app(T,[X],R). 

and 

G=nrev([a,b,c],X) 

we obtain in the query 

?-G=nrev([a,b,cl,X),demo(G,Abstract). 

the following abstract answer: 

Abstract=nrev([A,B,C],[C,B,A]). 

2.4. Computing Abstract Answers with a Program Transformation 

We can obtain the same result without meta-interpretation by constructing a 
transformed program. We will define a general program transformation scheme, 
and then study three of its instances, each specified by a different transforma- 
tion 4. 

For simplicity, we will restrict ourselves to the case of definite programs. 
However, some built-ins and cut can be accommodated easily in this framework by 
adding rules to the transformation #L 
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Definition 2.4. Let ABS(+, P) be the program obtained by replacing each clause 
A,,:-A . . ., 4, of the program P by$(A,,A’O) :-c$(A,,A~~), . . . ,~(%,ZA’,), 
where $:-Al, . . . , A,, is a standardized apart variant of A,, : -A,, . . . , h. 

Note that this class of transformations can be easily derived by partial evalua- 
tion of the meta-interpreter presented before. Using the program transformation 
ABS(+, P) is not only an order of magnitude more efficient than meta-interpreta- 
tion of P, but also conserves the operational meaning of programs containing cut 
or system predicates provided they are left unchanged by ABS(4, P). 

We will now present three possible instances of the transformation 4. 

2.4.1. Basic Transformation. Let us define +(a(x,, . . . ,&,) ,a(y,, . . . ,Y,) ) 
astheatomp(a(X,, . . . . x,,),~(Y,, . . . . Y,,) ) , where p / 2 is a new fixed predi- 
cate symbol. 

Example 2.3. ABS(basic, P) = 

p(append([l,Ys,Ys) ,append([l ,Ysl,Ysl)) . 

p(append( [AIXsl,Ys, [AlZsl),append( [AlIXsll ,Ysl, 

[AllZsl])):- 

p(append(Xs,Ys,Zs),append(xsl,Ysl,Zsl)). 

p(nrev([l. [l),nrev([l, [I)). 

p(nrev([XIXs],R),nrev([XllXsl],Rl)); 

p(nrev(Xs,T),nrev(Xsl,Tl)), 

p(append(T,[Xl,R),append(Tl, [Xll,Rl)). 

The query 

?-p(nrev([a,b,c],_),Abstract). 

returns the abstract answer 

Abstract-nrev([A,B,C],[C,B,A] ). 

2.4.2. Indexed Transformation. We can define C#I (a ( X, , . . . , X, ) , a ( Y, , 
. . . . y,)) as a(X,, . . ..&.a(Y,, . . . . Y,,) ) preserving the usual first argument 
indexing of the original program. 

Example 2.4. ABS(indexed, P) = 

append([l,ys,Ys,append([],ysl,ysl)). 

append([AIXs],Ys,[AlZs],append([AllXsl],Ysl, 

[AlIZsl])):- 

append(Xs,ys,Zs,append(xsl,Ysl,Zsl)). 

nrev([l, [I,nrev([l, [I)). 

nrev([XIXs],R,nrev([XllXsl],Rl)):- 

nrev(Xs,T,nrev(Xsl,Tl)), 

append(T,[Xl,R,append(Tl,~Xll,R1)). 
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The query 

?-nrev( [a,b,c],_,Abstract). 

returns the abstract answer 

Abstract=nrev( [A,B,C] , [C,B,A] ) . 

2.4.3. Flat Transformation. Finally, by defining +(a (x, , . . . , X, ) , a (Y, , 
. . . , Y,) ) as being simply a (X,, . . ,&,Y~, . . . , Y,) , we can avoid the construc- 
tion of useless structures. 

Example 2.5. ABS(flat, P) = 

append( [I ,Ys,Ys, [I ,Ysl,Ysl). 

append([AIXs],Ys, [AIZs], [AlIXsl],Ysl, [AllZsll):- 

append(Xs,Ys,Zs,Xsl,Ysl,Zsl). 

nrev( [I, [I, [I, [I). 
nrev([XIXs],R,[X1IXsl],Rl):- 

nrev(Xs,T,Xsl,Tl), 

append(T, [Xl ,R,Tl, [X11 ,Rl) . 

The query 

?-nrev([a,b,c],_,X,Y), Abstract=nrev(X,Y). 

returns the abstract answer 

Abstract=nrev( [A,B,C], [C,B,A]). 

The transformed program generates precisely the same standard answers as the 
original program while computing the associated abstract answers too. 

Note that the basic, indexed, and flat transformations compute abstract answers 
together with standard answers within a constant factor from computing only the 
standard answers for P. This follows immediately from the fact that terms involved 
in the computation of standard answers are always more specific than those used to 
compute abstract answers, for each derivation step. Therefore, the computational 
effort for an abstract solution is at most as large as the effort spent in the 
computation of the standard solution.5 

The execution speeds are given in Table 1. It shows that the program transfor- 
mation is much faster than the meta-interpreter, and that in the case of naive 
reverse, the overheads of the computation of an abstract answer using our best 
transformation flat is limited to 57% w.r.t. direct execution. 

‘In practice, some low-level issues (register availability, locality of data and code, etc.) can influence 
the constant factor adversely. 

TABLE 1. Execution speeds for the program transformations on a Sparcstation ELC 
with SICStus Prolog 2.1 compact code 

Version Runtime ( pus) Slow Down w.r.t. nrev 

Original nrev 105 1.00 
Demo 3174 30.22 
Basic 374 3.56 
Index 208 1.98 
Flat 165 1.57 
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2.5. Abstract Answers as Lemmas 

Abstract answers are good candidates for reusable lemmmas. By accumulating an 
abstract answer s : -true, the equivalent of the search for an entire LD refutation 
can be replaced with the composition of the clause G : -G for a given atomic goal G 
and a memoized abstract answer s : - true.h 

Notice the nontrivial nature of lemmas obtained from abstract answers as they 
replace possibly infinite sets of standard answers. Compared to memoing of 
standard answers, memoing of abstract answers is more appropriate as the general- 
ity of the saved computation allows a better hit rate. Soundness is ensured as they 
are logical consequences of the program. 

The computational overhead of this kind of lemma generation is minimized as 
the computation of abstract answers can be “compiled” through the program 
transformation P + ABS( f$, P). 

However, as is also the case with usual lemma generation, the actual gain in 
efficiency depends on the indexing of dynamic code and programmer-defined 
“pragmas” specifying what is worth being memoized. More precisely, lemmas will 
turn out to be useful only if 

One-execution > lemma-use 

+ (one-execution-with-overhead + lemma-creation) / 

number-of-uses. 

Note that this is an approximation of what actually can happen due to interaction 
with contextual factors. For instance, generating an abstract answer has the same 
or lower cost than the standard one; but the extra cost of the transformed program 
-which is supported to use the lemma-is more than in the generation cf the 
abstract answer; we also have to take account of the fact that every predicate is 
preceded by a test as to whether a lemma can be used. Also, in the case of abstract 
lemmas, we have to put in the right side execution times for the transformed 
program, which are, as we noted earlier, at most twice as long as the execution 
times for the original program (i.e., one-execution-with-overhead < 2*one- 
execution). 

The effect of memoing abstract answers instead of standard answers can be seen 
nicely from a benchmark which executes many times nrev/ 2 with lists of the 
same length, but with random values in the list: a Prolog system that memos 
standard answers will memo, e.g., nrev([12,13,1,5,9],[9,5,1,13,121), 
and will not be able to use this lemma for a later call like 
nrev ( [ 1,2,3,4, 5 ] , x) . On the other hand, memoing the abstract answer 
nrev([~,~,~,~,~],[~,~,~,~,~])allowsustoreusethelemmamanytimes. 

2.6. Indexing 

Asserting abstract answers is the easiest way to use abstract answers as lemmas. 
However, the performance may suffer from the creation of too many lemmas that 
eventually force a sequential search. This performance problem can be alleviated 
by using indexing on a structural property. The basic idea is to use some simple 

6Clearly, this is allowed because clause composition is associative. 
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measure defined on a structural property of a class of expressions (like the length 
of a list or the depth/path of a tree) as a key for a hashing-based indexing scheme 

or by mapping it directly to the underlying (first/multi)-argument indexing of the 
Prolog system. An example of this technique for nrev / 2 is given in Section 3.3. 

It ensures constant time access to the only relevant lemma, and is enough to 
achieve O(N) performances on the benchmark. Note that such size-related param- 
eters can be found relatively easily as shown, for instance, by research on the 
automatic inference of norms for termination analysis [7]. However, this step 
cannot be automated in the general case. Alternatively, indexing methods like 
matching trees or decision graphs [12, 291 can be used if provided by the underlying 
Prolog implementation. 

3. DELPHI LEMMAS 

Delphi lemmas are intended to reduce the time and the space spent for relatively 
useless memoing. The basic idea is that, very often, lemmas are only useful for the 
hot spots of the execution trace of the program. 

3.1. Straightforward Delphi Lemmas 

Suppose we consult an oracle before each decision to generate a lemma. A very 
smart (say human) oracle can decide for the naive reverse program for a list of 
length 100 iterated 50 times that the only lemma that is really worth generating is 

nrev([Al,...,lOO], [AlOO,...,Al]). 

This ensures a hit for each call and no search. How can we get close to this 
automatically? A surprisingly simple answer is to use a random oracle with a 
sufficiently low probability of answering yes to the question 

Should this goal create a lemma after finishing its computation? 

This means that the probability of generating lemmas will only be high for the 
“hot spots” of the program. However, a programmer’s hint on which predicates are 
subject to Delphi memoing (quadratic nrev / 2 in this case instead of the already 
linear append/ 3) can definitely help. As we will show in the next section, the key 
property that makes Delphi lemmas effective is the presence of attractors: entry 
points to spots in the program where long sequences of “regular” repetitive 
computations start. In practice, the choice of the predicates and probabilities will 
give the programmer enough control to empirically fine-tune lemma generation 
and focus the action of the Delphi principle on the entry points of the actual hot 
spots of the program. 

Here is the code (SICStus Prolog 2.1): 

nrev_lemma(Xs,Ys,Xsl,Ysl):- 

nrev_fact(Xs,Ys,Xsl,Ysl), !. 
nrev_lemma(Xs,Ys,Xsl,Ysl):- 

nrev(Xs,Ys,Xsl,Ysl), 

make_nrev_lemma(Xsl,Ysl) . 
make_nrev_lemma(Xsl,Ysl):-random(X), X>O.O4,!. 

make_nrev_lemma(Xsl,Ysl);- 

copy_term(Xs+Ysl,Xs2+Ys2), 

assert(nrev_fact(Xsl,Ysl,Xs2,Ys2)). 
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app([AIXsl,Ys, [AlZsl,[A1IXsll,Ysl,[Allzsll):- 

app(Xs,Ys,Zs,Xsl,Ysl,Zsl). 

nrev([l,[l, [I, [I). 

nrev([XIXs],R,[XlIXsl],Rl):- 

enrev_lemma(Xs,T,Xsl,Tl), 

app(T,[Xl,R,Tl,[Xll,Rl). 
nrev(Xs,Ys):- 

nrev(Xs,"Ys,_Xsl,_Ysl). 

Note that this example exhibits a combination of the Delphi principle and 
abstract answers. copy-term is used to standardize apart the component which 
computes abstract answers. For length 2, the nrev_f ac t / 4 to be memoized looks 
like 

nrev_fact([AO,Al],[Al,AO],[A2,A3],[A3,A2]). 

When the lemma is used, the first two arguments will reverse the actual goal- 
dependent list, while the last two arguments will perform a resolution step which 
incrementally computes the next abstract answer. 

Note also that random/ 1 (see 1 ibrary (random) in SICStus 2.x) generates a 
uniformly distributed float value between 0 and 1.7 Clearly, this transformation is 
correct only for deterministic programs. The cut is needed to choose between using 
a lemma and doing a computation. 

The execution speed of the nrev / 2 programs using Delphi lemmas w.r.t. the 
probability is depicted in Figure 1. Although LIPS are inappropriate as they count 
inferences we actually spare, we keep using them because, as a popular metric for 
nrev/ 2, they give a familiar intuition about the amount of performance increase. 
There is a clear performance peak for small Delphi probabilities, followed by a 
gradual performance decrease for increasing Delphi probabilities. As we do not use 
indexing to search for lemmas, the cost of finding a lemma is proportional to the 
number of lemmas in the database. As can be seen from Figure 2, the number of 
lemmas rapidly increases with the Delphi probability. That is why the execution 
speed decreases nearly linearly. 

‘This has been speeded up in the BinProlog 5.00 built-in Delphi lemma preprocessor by transform- 
ing it to equivalent but faster integer-only arithmetics. 

B 2000 

3 1500 
P 
Q 1000 

5 P $ 500 

I3 0 

0.00 0.20 0.40 0.60 0.60 1 .oo 

delphi probabilii 

FIGURE 1. Execution speed w.r.t. the Delphi probability for nrev / 2, length = 100. 
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1/ / 1 FIGURE 2. Lemma probability versus Delphi probability. 
o.oo , , , , , , , 

0.00 0.50 1.00 

delphi probability 

Note that obtaining a variant with Delphi lemmas from a program P is a fully 
automatic operation after inserting a Delphi declaration in the program 

:-delphi nrev/2-4. 

specifying the predicates to be memoized and the probability (4/100) of lemma 
generation for each of them. 

3.2. Optimal Delphi Probability 

Figure 2 shows the probability that a particular lemma is memoized w.r.t. the 
Delphi probability for repeated executions of nrev/ 2 with list length = 100. It 
turns out that the number of lemmas generated rapidly increases from small 
Delphi values, e.g., for Delphi = 0.1, 40% of all possible lemmas is already 
generated. 

Given the relationship of Figure 2, we can find the optimal value for the Delphi 
probability for nrev / 2 and for a given list length. We assume that there is no 
lemma indexing such that adding one extra lemma increases the cost of using a 
lemma. For list lengths varying between 0 and 100, the optimal Delphi probability 
turns out to lie between 0 and 0.08 as depicted in Figure 3. 

3.3. Indexed Delphi Lemmas 

By combining Delphi lemmas with length indexing, we can see a cumulative 
positive speed-up. Computing the length can be partially evaluated away as a small 

List length 

FIGURE 3. Optimal Delphi probability versus list length in nrev / 2. 
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extra effort for the host predicate. Here the code obtained for nrev/ 2: 

nrev_lemma(Xs,Ys,Xsl,Ysl,L):- 

nrev_fact(L,Xs,Ys,Xsl,Ysl), !. 

nrev_lenuna(Xs,Ys,Xsl,Ysl,L):- 

nrev(Xs,Ys,Xsl,Ysl,L), 

make_nrev_lemma(L,Xsl,Ysl). 

make_nrev_lemma(L,Xsl,Ysl):-random(X), X>O.O4,!. 

make_nrev_lemma(L,Xsl,Ysl):- 

copy_term(Xsl+Ysl,Xs2+Ys2), 

assert(nrev_fact(L,Xsl,Ysl,Xs2,Ys2)). 

app( [I ,Ys,Ys, [I ,Ysl,Ysl) . 

app([AIXs],Ys,[AIZs], [AllXsll,Ysl,[AllZsll):- 

app(Xs,Ys,Zs,Xsl,Ysl,Zsl). 

nrev( [I, [I, [I, [I ,O) . 

nrev([XIXs],R,[X1IXsl],Rl,N):-Nl is N-l, 

nrev_ler@ma(Xs,T,Xsl,Tl,Nl), 

app(T, [Xl ,R,Tl, [X11 ,Rl). 

nrev(Xs,Ys):- 

length(Xs,L), 

nrev(Xs,Ys,_Xsl,_Ysl,L). 

Note that by using a genetic assert operation in the implementation instead of 
asserta or assertz, we can count on the implementation to use a more 
sophisticated indexing mechanism which may not be order preserving (for instance, 
some form of hashing using structural information on ground/nonground terms). 

3.4. Performance of Various Memoing Techniques 

The execution speeds for the various lemma generation techniques are given in 
Table 2 normalized from 200 executions on random lists of length 100 with 
probability 0.04 of Delphi-lemma generation. Although LIPS have no meaning in 
terms of counting logical inferences (mostly avoided by using the lemmas), we have 
kept them simply to express the speed-up in familiar terms. 

TABLE 2. Execution speeds for the abstract lemma techniques on a Sparcstation ELC 
with SICStus Prolog 2.1 compact code 

Type of lemmas Speed #CLIPS) Speed-Up 

Original nrev 145 1.0 
Straightforward abstract 358 2.5 
Length-indexed 1272 8.8 
Delphi 1515 10.4 
Indexed Delphi 1689 11.6 
Delphi oracle static code 2525 17.4 
Human oracle static code 11841 81.7 
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The last two lines are obtained by writing the lemmas to a file and then adding 
them to the program as static code. They give an idea of the maximum speed-up 
that can be obtained. This is, in a sense, comparable to profile-based optimizations 
that are common in contemporary state-of-the art optimizing compilers. 

3.5. Distribution of the Generated Delphi Lemmas 

It turns out that the Delphi algorithm tends to generate the most efficient lemmas, 
i.e., the more “complex” ones in our case, with a very high probability. The 
explanation is basically that a lemma of complexity 22’ ensures that no simpler 
lemmas are generated, while it cannot prevent the generation of more complex 
ones. 

Applied to the case of nrev / 2, this means that whenever we have a lemma for 
a list of length N, a goal with list length greater than N will not generate lemmas 
with list lengths smaller than N. Hence, after a sufficiently large number of runs, 
the lemma for the initial goal will be generated. This effect can be experimentally 
observed, and can also be theoretically modeled. 

The experimental distribution is compared with the theoretical distribution p(n) 
that denotes the probability of having lemma n (0 < IZ <M) in Figure 4. To 
compute p(n), we start by defining an auxiliary distribution pi(n) denoting the 
probability of having lemma n after the ith run. It is expressed as being the sum of 
the probability of having a lemma in the previous run plus the probability of 
generating a lemma in the current run. The latter probability is given by p times 
the probability that no lemma was hit while recursing down to II. Initially, 
pa(n) =p, e.g., all goals have the same probability of being memoized. The 
distribution p(n) is the limit for i going to a: 

p,(n) =pi-l(n) 'Pl?i (1 -P,-,(d) 
j=n 

The empirical and theoretical distributions are given in Figure 4. The darker curve 
is the empirical distribution. 

FIGURE 4. Comparison between theoretical and empirical distribution of lemmas. 
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3.6. Delphi Lemmas for Predicates with Irregular Behavior 

The Delphi principle succeeds in finding the hot spots in the very regular naive 
reverse benchmark. We have also applied the Delphi principle to an arithmetic 
function known to have a highly irregular behavior. The timings show that Delphi 
lemmas are superior to full memoing (more than 50% faster), which in turn is 
superior to no memoing. The function we consider is 

true, ifi=l 

f(i) = 

( 

f(i/2), if i is even 

f( 3i + 1)) otherwise. 

The program after the Delphi transformation becomes 

f-lemma(N) :-f-fact(N), !. 
f-lemma(N) :- f-real(N). 

f-real(l). 

f-real(N) :- N mod 2 =:= 0, Nl is N//2, f(Nl), 

make-f-lemma( N ) . 

f-real(N) :- Nl is 3*N+l, f(Nl), make-f-lemma(N). 

make-f-lemma(N) :- random (X), X>O.O4, !. 

make-f-lemma (N) :- asserta(f_fact(N)). 

f(N) :- F-lemma(N). 

Two experiments have been done with this function. Calling f ( 10 0 ) repeatedly, 
gives rise to the lemma distribution of Figure 5. This behavior is completely similar 
to the behavior of nrev/ 2 in Figure 4 after reordering the recursive calls in the 
order in which they occur (100,50,26,76,38,19,. . .I. The most efficient lemma is 
f ( 10 0 ) , and it is eventually generated with probability 1.0. 

Figure 6 gives a different view. Now, f is evaluated for 100 different values 
(f(l)... f ( 100 ) ) . Due to the rather irregular behavior of the function, the 

distribution seems to be strange, but even in this case, the Delphi principle 
succeeds in finding the hot spots, namely, the function calls with small arguments. 
Indeed, whenever the function is defined, it will eventually enter a decreasing 
sequence of powers of 2, ending in f ( 1) . 

The conclusion is that, even for very irregular predicates, the Delphi principle 
succeeds in detecting and memoing the hot spots in the program. Note that despite 
their irregular behavior, most programs exhibit attractors (the sequence 1,2,4,8,. . . 

function argument 

FIGURE 5. Distribution of lemmas for repeated execution of f(lO0). 
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0 i I I I 
0 3000 

function argument 

FIGURE 6. Distribution of lemmas for repeated execution of f ( 1) . . . f ( 10 0 ) . 

in this example), i.e., a set of data objects which occur in most computations.’ 
Delphi lemmas naturally tend to find these attractors and to speed up their 
computation by memoing them. An interesting feature of Delphi lemmas is that 
the programmer does not have to search for attractors. If they are present, the 
Delphi principle will find them automatically. Even if there is more than one 
attractor, the Delphi principle we find them all. 

4. BENCHMARKS 

Delphi lemmas have been added as a standard extension of BinProlog 5.00 [23] 
with a declaration-based preprocessor. At this time, only memoing of deterministic 
predicates with indexing on an arbitrary number of arguments of the top-level 
functor is supported. However, their impact on some well-known benchmarks is 
quite dramatic. 

A directive like : - delphi tak / 4 - 10 / [ 1,2,3 ] (used for the tak bench- 
mark) is interpreted as follows: use Delphi memoing with probability lo/100 while 
indexing by hashing on the first three arguments. A directive like : - delphi 
rewrite / 2 - 2 0 (used for the boyer benchmark) is interpreted as follows: use 
Delphi memoing with (default) indexing on first argument. In this case, in the 
actual benchmark, each call of the form rewrite (A, B) is replaced with 
delphi_call_l(r~rite(A,B),2O,A). This operation is done at compile 
time. The generic delphi_call-1 predicate looks as follows: 

delph_call_l(P,_X):-membq(X,P,P),!. % already memoed 

delphi_call_l(P,Delphi,X) :- 

random(R),Luck is R mod lOO,Delphi>Luck, !, 

P,!, 
addq(X,P,P). % memoing now 

delphi_call_l(P,_;_):-P,!. % call as usual 

*Intuitively, an attractor is a value such that once a specific argument of a literal has this (input) 
value, termination is ensured, and moreover, (many) terminating derivations will eventually hit this 
value. The value that matches the base case of a recursive predicate is the attractor par excellence. In 
the more complex situation of our arithmetic example, the values 2” are attractors because they show 
up more in derivations than, say, 17. That is why in Delphi memoing, the facts for 2” are memoed more 
likely. Since programs usually terminate in a way that is less dependent on their data than on their 
structure, it is reasonable to believe that most terminating programs indeed exhibit attractors. 
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Benchmark No memoing Delphi 5/100 Delphi 20/100 Full memoing 

Fibo 2660 20 10 10 

Tak 1130 390 180 90 

Boyer 4660 880 480 420 

FIGURE 7. Delphi memoing (user time in ms). 

Note that membq / 3 and addq / 3 both use BinProlog’s efficient blackboard [22, 
231 with hasing on its first two arguments and the memoed value in the third. 
Further speed-up can be obtained by specializing this generic predicate to each of 
its uses, known at compile time, i.e., to something like delphi_call_l_ 

rewrite(A,B) instead of delphi_call_l(rewrite@,B),20,A). Even 
without this optimization, performance turned out to be unusually good, as shown 
in Figures 7 and 8. 

We have executed the benchmarks on a one-user Sparcstation lo-20 with 32 
Mbytes of memory. Delphi results are geometric means of ten different runs. The 
use of lemmas is optimized by avoiding assert. As the generated lemmas are 
known to be ground, BinProlog’s blackboard can and does avoid the usual copying 
that happens if assert is used for memoing.’ 

This also explains why on second runs, all benchmarks give execution times 
under 100 ms. The sharing of ground lemmas also contributes to the dramatic 
decrease of heap consumption due to memoing. We have noticed that our lemmas 
are particularly effective on binarization-based compilers like BinProlog which 
have large heap consumption and AND-intensive functional-style programs like 
boyer or tak. Good performance on boyer is explained by the fact that on a 
total of 95,016 calls to the memoized predicate rewrite / 2, only 200 are different. 
The memoized calls function as attractors which avoid iterated uses of r ewr i t e / 2. 
The relatively small number of attractors for predicates like tak / 4 or f ibo / 2 
explains the speed-up on these two benchmarks. 

Although on these benchmarks full memoing is still faster than Delphi memoing 
(due to the overhead of the source-level implementation of the random oracle), the 
ability of fine-tune the space-time tradeoff is in itself enough to make them useful 
in practice. 

Note that the techniques are general purpose, and we have measured similar 
speed-ups for a modified version of ProLog-by-BIM, a native code compiler which 
uses a traditional WAM model. Moreover, in that case, we have observed that, e.g., 
20% Delphi-memoing is 50% faster than full memoing, due to the relatively lower 
computation/memoing ratio of ProLog-by-BIM. 

‘Direct unification with ground terms is safe even on failure as it will always generate “well- 
directed” bindings (from heap variables to the blackboard). 

Benchmark No memoing Delphi 5/100 Delphi 20/100 fill memoing 

Fibo 51132+0 96+360 96+520 96+680 

Tak 1017852+0 287992+5272 128384+7336 68660+13528 
Boyer 4774920+0 244112+9344 113932+15404 77092+21888 

FIGURE 8. Delphi memoing (space used: heap + blackboard). 
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5. CONCLUSION AND FUTURE DIRECTIONS 

The techniques developed in this paper are partially motivated by current Prolog 
systems, with their particular strengths and limitations (e.g., their built-ins and 
indexing techniques). 

We have studied the case of a well-known definite deterministic program as 
being the simplest instance of this memoing technique. This case covers, however, 
the complete class of committed choice logic programming languages [5, 101. 
Delphi lemmas, as shown in the previous examples, have the same domain of 
applicability and limitations as ordinary lemmas. Note, however, that the Delphi 
principle is itself orthogonal to the type of program to which memoing is applied. 
With some care, they can be used in the context of full Prolog, specified as we have 
suggested by a programmer-controlled directive. The practicality of the special case 
of ground, multiargument-indexed Delphi lemmas has convinced us to add them as 
a standard extension to the BinProlog compiler, starting from version 5.00 (avail- 
able by ftp from clement.info.umoncton.ca). 

Delphi lemmas have also served as inspiration for BinProlog 5.00’s dynamic 
recompilation scheme, which moves “hot spots” of nonvolatile interpreted code to 
compiled code on the fly, based on update versus call statistics [231. 

Indexing in the case of nonground answers in general can improve potential 
performance problems with abstract answers. The techniques described in [18] as 
well as the idea of using tries instead of hashing, as done in the latest version of 

XSB, can be adapted for this purpose. 
The program transformations we used can be modified in the case of nondeter- 

ministic programs to avoid interference between lemma-related pruning and the 
program’s control structure. More work is needed on how this can be done in 
general, and on what are the limitations of tradeoffs. The latest version of the XSB 
system successfully deals with SLG resolution, which is fairly realistic subset of 
Prolog including nondeterminism and a restricted form of negation as failure. We 
plan to apply some of the techniques of XSB (like memoing of multiple answer 
substitutions) to extend Delphi lemmas beyond definite programs. 

Nevertheless, we consider our techniques useful for “real” programmers as it 
can accelerate the most critical parts of a program in a significant way, and also 
because they can be fully automated. Delphi lemmas can be also complement 
existing systems with memoing facilities having objectives that are orthogonal to 
ours, as [28]. Future work is planned to port Delphi lemmas to the latest version of 
XSB Prolog. 

We do not know about something similar to Delphi lemmas in functional or 
procedural languages, but the concept can be easily adapted. Although it is a 
probabilistic concept in the same sense as hashing or Ethernet collision avoidance, 
it gives very good performances for mostly the same reasons, especially in combi- 
nation with the use of abstract answers. As our benchmark data on boyer show, 
the technique looks particularly beneficial for lemma-intensive theorem-proving 
systems. 

Future work will focus on the design of a set of high-level pragmas for specifying 
memoization and on safe conditions when lemma generation can be automated. 
This direction involves both static analysis techniques and trace analysis. This 
paper has showed the empirical utility of considering memoing as a possibly 
expensive computational resource, not only as an obvious space-for-time trade-in. 
More theoretical work, possibly on a subset of linear logic, is needed to formalize 
resource-conscious memoing techniques in a uniform framework. 
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