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The distance between two convex sets
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Abstract

In this paper we explore the duality relations that characterize least norm problems. The paper starts by
presenting a new Minimum Norm Duality (MND) theorem, one that considers the distance between two
convex sets. Roughly speaking the new theorem says that the shortest distance between the two sets is equal
to the maximal “separation” between the sets, where the term “separation” refers to the distance between a
pair of parallel hyperplanes that separates the two sets.

The second part of the paper brings several examples of applications. The examples teach valuable
lessons about the role of duality in least norm problems, and reveal new features of these problems. One
lesson exposes the polar decomposition which characterizes the “solution” of an inconsistent system of linear
inequalities. Another lesson reveals the close links between the MND theorem, theorems of the alternatives,
steepest descent directions, and constructive optimality conditions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Y be a nonempty closed convex set and let z be some point outside Y. The best approxima-
tion problem is to find a point y∗ ∈ Y which is closest to z among all the points of Y. The interest
in this problem is common to several branches of mathematics, such as Approximation Theory,
Functional Analysis, Convex Analysis, Optimization, Numerical Linear Algebra, Statistics, and

∗ Tel.: +972 26442506; fax: +972 26442529.
E-mail address: dax20@water.gov.il

0024-3795/$ - see front matter ( 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2006.03.022

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82444869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:dax20@water.gov.il


A. Dax / Linear Algebra and its Applications 416 (2006) 184–213 185

Fig. 1. The Nirenberg–Luenberger MND theorem.

other fields. However, the duality properties of this problem are not quite well known behind the
Hahn–Banach theory on bounded linear functionals in normed linear vector spaces. One aim of
this paper is, therefore, to point attention to the elegancy of the duality relations which characterize
the best approximation problem. A second aim is to show that in Rm these results can be derived
from simple geometric arguments, without invoking the Hahn–Banach theorem or the duality
theorems of Lagrange and Fenchel. A third aim of this paper is to establish a new duality theorem,
one that considers the distance between two convex sets.

The Minimum Norm Duality (MND) theorem considers the distance between a point z and
a convex set Y. It says that the shortest distance from z to Y is equal to the maximum of the
distances from z to any hyperplane separating z and Y (see Fig. 1). This fundamental observation
gives rise to several useful duality relations in best approximation problems, linear least norm
problems, and theorems of the alternative. As far as we know, the first statement of the MND
theorem is due to Nirenberg [40], who established this assertion in any normed linear space by
applying the Hahn–Banach theorem. The name “MND theorem” was coined by Luenberger [29],
who also derived the “alignment” relation between primal and dual solutions.

The new MND theorem considers the distance between two convex sets. Roughly speaking it
says that the shortest distance between the two sets is equal to the maximal “separation” between
the sets, where the term “separation” refers to the distance between a pair of parallel hyperplanes
that separates the two sets (see Fig. 2).

In order to distinguish between the two MND theorems we refer to the first one as the Ni-
renberg–Luenberger MND theorem. (Although it is quite possible that the theorem was known
earlier as result of the geometric Hahn–Banach theorem.) It is noted in the last section that the
new MND theorem can be derived from the first one. However, while former proofs of the
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Fig. 2. The new MND theorem.

Nirenberg–Luenberger theorem rely on the Hahn–Banach theorem in a general normed linear
vector space, e.g., [19,20,27,29,40], there are several practical applications which consider convex
sets in Rm. See the second part of the paper. This raises the question of whether we can find a
direct proof that does not rely on the Hahn–Banach theory. A further aim of this paper is, therefore,
to provide an elementary proof which is based on simple geometric ideas. For this purpose the
coming discussion is restricted to convex sets in Rm.

The plan of our paper is as follows. The first part contains necessary background. Section 2
explains the basic facts on dual norms and alignment. Section 3 derives an explicit formula for the
distance between a point and hyperplane. This formula is used to calculate the distance between
two parallel hyperplanes. The necessary facts on support functions and separating hyperplanes
are given in Section 4. The reader who is familiar with these issues may skip to Section 5, in
which the new MND theorem is proved.

The second part of the paper brings several examples of applications. The examples teach
valuable lessons about duality in linear least norm problems, and reveal several new features
of these problems. One lesson exposes the role of the polar decomposition when “solving” an
inconsistent system of linear inequalities. Another lesson reveals the close links between the MND
theorem, theorems of the alternative, steepest descent directions, and constructive optimality
conditions.
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Part 1: A new minimum norm duality theorem

2. Norms and duality

A norm on Rm is a real-valued function ‖ · ‖ which maps each vector x in Rm into a real
number ‖x‖ and satisfies the following three requirements:

(a) ‖x‖ � 0 ∀x ∈ Rm and ‖x‖ = 0 ⇔ x = 0;
(b) ‖x + z‖ � ‖x‖ + ‖z‖ ∀x, z ∈ Rm;
(c) ‖ax‖ = |a| · ‖x‖ ∀a ∈ R, x ∈ Rm.

Recall that ‖x‖ is a convex function while the unit norm ball

B = {x|‖x‖ � 1}
is a closed bounded convex set which contains the origin in its interior; see Refs. [25,49]. The
dual norm to ‖ · ‖ is denoted by ‖ · ‖′. This norm is obtained from ‖ · ‖ in the following way.
Given a vector z ∈ Rm, then ‖z‖′ is defined by the following rule:

‖z‖′ = max‖x‖�1
xTz.

For the sake of clarity we mention that

xTz =
m∑

i=1

xizi for all x = (x1, . . . , xm)T ∈ Rm and z = (z1, . . . , zm)T ∈ Rm.

SinceB is a compact set, the optimal value is attained for some vector x ∈ B. The above definition
implies the general Hölder inequality

|xTz| � ‖x‖‖z‖′, ∀x, z ∈ Rm,

and that ‖ · ‖ is the dual norm to ‖ · ‖′. A pair of vectors that satisfy the equality

xTz = ‖x‖‖z‖′

is said to be aligned with respect to ‖ · ‖ or ‖ · ‖′.
A well known example of dual norms in Rm is related to the �p norm

‖x‖p =
(

m∑
i=1

|xi |p
)1/p

,

where 1 < p < ∞ is a real number. The dual norm is the �q norm

‖z‖q =
(

m∑
i=1

|zi |q
)1/q

,

where q = p/(p − 1). That is, 1/p + 1/q = 1. This pair of dual norms satisfies the Hölder
inequality

m∑
i=1

|xizi | � ‖x‖p‖z‖q,
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and the vectors x and z are aligned if and only if

sign(xi) = sign(zi) and (|xi |/‖x‖p)1/q = (|zi |/‖z‖q)1/p for i = 1, . . . , m,

e.g., [29] or [54]. Similar duality relations hold between the �1 norm

‖x‖1 =
m∑

i=1

|xi |

and the �∞ norm

‖z‖∞ = max
i=1,...,m

|zi |,
but the alignment relations need some corrections. When p = q = 2 we obtain the Euclidean
norm,

‖x‖2 = (xTx)1/2 =
(

m∑
i=1

x2
i

)1/2

,

which is privileged to be its own dual.
Let z be a given point in Rm. Then, x ∈ Rm is a dual vector of z with respect to ‖ · ‖ if it

satisfies ‖x‖ = 1 and xTz = ‖z‖′. The uniqueness of the dual vector is related to the question of
whether ‖ · ‖ is a strictly convex norm. Recall that a norm ‖ · ‖ is said to be strictly convex if the
unit sphere {x|‖x‖ = 1} contains no line segment. Now, one can verify that a norm ‖ · ‖ is strictly
convex if and only if each z ∈ Rm has a unique dual vector.

A norm ‖ · ‖ is called smooth if, at each boundary point of B, there is a unique hyper-
plane that supports B. Of course a smooth norm is not necessarily strictly convex and vice
versa. However, there are interesting links between these properties. Let {u|nT

0 u = nT
0 x0} be a

supporting hyperplane of B at a point x0, ‖x0‖ = 1, with a normal vector n0 ∈ Rm. That is,
nT

0 x � nT
0 x0 ∀x ∈ B. (The existence of a supporting hyperplane is established in Section 4.) The

last inequality means that x0 is a dual vector of n0 with respect to ‖ · ‖. This shows that x0 and n0
are aligned and that n0/‖n0‖′ is a dual vector of x0 with respect to ‖ · ‖′ (see Fig. 3). Therefore,
if there is more than one supporting hyperplane at x0, then the dual vector of x0 with respect to
‖ · ‖′ is not unique. In other words, ‖ · ‖′ is strictly convex if and only if ‖ · ‖ is smooth. It is also
worthwhile mentioning that a norm is smooth if and only if it is continuously differentiable at each
point x /= 0; e.g., [44, pp. 113–118]. For further discussion of dual norms and their properties see
[18,25,26,46,54].

3. The distance between parallel hyperplanes

Let ‖ · ‖ be some arbitrary norm in Rm and let ‖ · ‖′ denote the corresponding dual norm. A
hyperplane in Rm is a set of the form

H = {x|aTx = α},
where a ∈ Rm and α ∈ R. The distance between H and a point z ∈ Rm is defined as

dist(z,H) = inf
x∈H ‖z − x‖.

Assume first that z lies in the positive side of H. That is, aTz > α. In this case one can verify that

dist(z,H) = (aTz − α)/‖a‖′. (3.1)

Otherwise, when z lies in the negative side of H,

dist(z,H) = (α − aTz)/‖a‖′.
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Fig. 3. Alignment relations on a unit norm ball.

See [17] or [34] for detailed proof of these assertions.
Let H1 = {x|aTx = α1} and H2 = {x|aTx = α2} be a pair of parallel hyperplanes such that

α1 < α2. The distance between these sets is defined as

dist(H1,H2) = inf{‖x1 − x2‖|x1 ∈ H1, x2 ∈ H2}.
Using (3.1) we see that

dist(x2,H1) = (aTx2 − α1)/‖a‖′ ∀x2 ∈ H2.

Therefore, since aTx2 = α2 ∀x2 ∈ H2,

dist(H1,H2) = (α2 − α1)/‖a‖′. (3.2)

4. Separating hyperplanes

In this section we mention some useful relations between hyperplanes and convex sets. The
reader is referred to [17,24,41,43–45] or [49], for detailed proofs and discussions of these prop-
erties. Let K be a nonempty convex set in Rm. Here and henceforth K denotes the closure of
K, K◦ denotes the interior of K, and riK denotes the relative interior of K. A hyperplane
H = {x|aTx = α} is said to be a supporting hyperplane of K if
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sup
x∈K

aTx = α.

If, in addition, there exists a point x∗ ∈ K such that aTx∗ = α, then H is said to be a supporting
hyperplane of K at x∗. The function

α(a) = sup
x∈K

aTx

is called the support function of K. (If K is not bounded it is possible to have α(a) = ∞.)

Theorem 1 (The Projection Theorem). Let z be some point of Rm which does not belong to K.

Then there exists a unique point x∗ ∈ K that satisfies the following properties:
‖z − x∗‖2 = inf

x∈K ‖z − x‖2 (4.1)

and

(z − x∗)T(x − x∗) � 0 ∀x ∈ K, (4.2)

where ‖y‖2 = (yTy)1/2 denotes the Euclidean norm.

Corollary 2 (The Separating Hyperplane Theorem). Define

a = z − x∗ and α = aTx∗ = sup
x∈K

aTx.

Then the hyperplane H = {x|aTx = α} separates K and z. More precisely, K is contained
in the negative halfspace H− = {x|aTx � α}, while z satisfies aTz > α. Note also that H is a
supporting hyperplane of K at x∗.

The point x∗ is called the Euclidean projection of z on K. The next theorem considers the
case when z is a boundary point of K. Recall that the boundary of K consists of all the points
z ∈ Rm that have the following property: Every neighborhood of z contains at least one point of
K and one point not in K. Recall also that K and K share the same boundary.

Theorem 3 (The Existence of Supporting Hyperplane). Let z be a boundary point of K. Then
there exists a vector a ∈ Rm such that

sup
x∈K

aTx = aTz

and the hyperplane H = {x|aTx = aTz} supports K at the point z.

Corollary 4. If 0 is a boundary point of K then there exists a nonzero vector a ∈ Rm that
satisfies

aTx � 0 ∀x ∈ K.

Corollary 5. Let Y and Z be two convex sets in Rm such that

riY ∩ riZ = ∅ but Y ∩ Z /= ∅.

Then for any point x∗ ∈ Y ∩ Z there exists a nonzero vector a ∈ Rm such that

sup
y∈Y

aTy = aTx∗ = inf
z∈Z aTz. (4.3)
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5. The distance between two convex sets

Let ‖ · ‖ be some arbitrary norm on Rm and let ‖ · ‖′ denote the corresponding dual norm. Let
Y and Z be two nonempty convex sets in Rm such that Y ∩ Z = ∅. The distance between Y
and Z is defined as

dist(Y,Z) = inf{‖y − z‖|y ∈ Y, z ∈ Z}.
Recall that the difference set,

X = Y − Z = {y − z|y ∈ Y, z ∈ Z}
is convex. Note also that 0 /∈ X and

dist(Y,Z) = dist(0,X) = inf
x∈X ‖x‖.

The motivation behind this formulation lies in the following observations.

Lemma 6. The least norm problem

minimize ‖x‖
subject to x ∈ X

(5.1)

is always solvable. In other words, there exists a point x∗ ∈ X such that ‖x∗‖ � ‖x‖ ∀x ∈ X.

Of course, if ‖ · ‖ is a strictly convex norm then the problem has a unique solution.

Proof. Define B1 = {x|‖x‖ � ‖x1‖} where x1 /= 0 is some point of X. Then the intersection set
X1 = X ∩ B1 is a closed bounded convex set. Therefore, since the objective function f (x) = ‖x‖
is continuous in Rm, it attains a minimizer x∗ on X1, and this point solves (5.1). �

The last assertion ensures the existence of a point x∗ ∈ X such that

dist(Y,Z) = inf
x∈X ‖x‖ = ‖x∗‖.

However, the existence of points y∗ ∈ Y and z∗ ∈ Z such that dist(Y,Z) = ‖y∗ − z∗‖ is not
always guaranteed. Consider for example the case whenY = {(x, y) ∈ R2|y � ex + 1} andZ =
{(x, y) ∈ R2|y � −ex − 1}. Nevertheless, since x∗ ∈ X, we have the following corollary.

Corollary 7. There exist two sequences, yk ∈ Y, k = 1, 2, . . . , and zk ∈ Z, k = 1, 2, . . . , such
that

lim
k→∞(yk − zk) = x∗

and

lim
k→∞ ‖yk − zk‖ = ‖x∗‖ = dist(Y,Z).

Let us turn now to construct the dual problem of (5.1). For this purpose we introduce the
support functions

α(a) = sup
y∈Y

aTy and β(a) = inf
z∈Z aTz, (5.2)

which are well defined for any vector a ∈ Rm. If a /= 0 and α(a) � β(a) then the parallel hyper-
planes
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Hα = {x|aTx = α(a)} and Hβ = {x|aTx = β(a)}
separate Y and Z. Also, as we have seen,

dist(Hβ,Hα) = (β(a) − α(a))/‖a‖′. (5.3)

The existence of separating hyperplanes is ensured by the next assertion.

Lemma 8. Let A denote the set of all the points a ∈ Rm, a /= 0, for which the hyperplanes Hα

and Hβ separate Y and Z. That is,

A = {a ∈ Rm|a /= 0 and α(a) � β(a)}.
Then A is not empty.

Proof. The assumption Y ∩ Z = φ implies that 0 /∈ X. Hence there exists a vector a ∈ Rm,
a /= 0, such that

aTx � 0 ∀x ∈ X.

Consequently

aTy � aTz ∀y ∈ Y, y ∈ Z

and

sup
y∈Y

aTy � inf
z∈Z aTz. �

The maximal separation problem is to find a vector a ∈ A for which dist(Hα,Hβ) attains
maximal value. The value of the distance function (5.3) is not effected by the size of a. Hence
there is no loss of generality in assuming that ‖a‖′ = 1. In this case dist(Hα,Hβ) is given by
the separation function

σ(a) = β(a) − α(a). (5.4)

Observe that σ(a) is a continuous function on A. Consequently it attains a maximum on the
compact set

A′ = {a ∈ A|‖a‖′ � 1}.
Furthermore, since σ(ρa) = ρσ(a) ∀ρ > 0, any maximizer a∗ must satisfy ‖a∗‖′ = 1. The last
equality means that a∗ solves the maximal separation problem, which proves the following con-
clusions.

Lemma 9. The maximal separation problem can be formulated as

maximize σ(a) = β(a) − α(a)

subject to a ∈ A′, (5.5)

and this problem is always solvable. Moreover, let a∗ solve (5.5) then

‖a∗‖′ = 1 and σ(a∗) = sup
a∈A

(β(a) − α(a))/‖a‖′.

The next assertions are aimed to show that (5.1) and (5.5) are dual problems.

Lemma 10. Let x∗ ∈ X solve (5.1), then

σ(a) � ‖x∗‖ ∀a ∈ A′. (5.6)
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Proof. Let a be some vector in A′ and let the hyperplanes Hα and Hβ be as above. Let the
sequences {yk} and {zk} be as in Corollary 7. Then for k = 1, 2, . . . , yk belongs to the halfspace
H−

α = {x|aTx � α(a)} while zk belongs to the halfspace H+
β = {x|aTx � β(a)}. Consequently

the line segment that connects yk with zk crosses the two hyperplanes. Let ŷk and ẑk denote the
corresponding crossing points on Hα and Hβ , respectively. Then, clearly,

σ(a) = dist(Hα,Hβ) � ‖ŷk − ẑk‖ � ‖yk − zk‖.
Thus when passing to the limit we obtain that

σ(a) � ‖x∗‖. �

Lemma 11. Let x∗ ∈ X solve (5.1). Then there exists a vector a∗ ∈ A′ such that

σ(a∗) = ‖x∗‖.
In other words, the maximal separation between Y and Z equals the shortest distance between
these sets.

Proof. Recall that 0 � σ(a) � ‖x∗‖ ∀a ∈ A′. Therefore ‖x∗‖ = 0 implies σ(a) = 0 ∀a ∈ A′.
Hence it is left to consider the case when x∗ /= 0. Define

B = {x|‖x‖ � ‖x∗‖},
then riB = B◦, B◦ ∩ X = ∅ but B ∩ X /= ∅ since x∗ ∈ B ∩ X. Hence by Corollary 5 there
exists a point a ∈ Rm such that

sup
x∈X

aTx = aTx∗ = inf
x∈B aTx.

Define a∗ = a/‖a‖′. Then H = {x|(−a∗)Tx = (−a∗)Tx∗} is a supporting hyperplane of B at the
point x∗. Therefore, since B is a “norm ball”, x∗ and −a∗ are aligned. That is,

(−a∗)Tx∗ = ‖ − a∗‖′‖x∗‖ = ‖x∗‖.
Consequently

sup
x∈X

(a∗)Tx = −‖x∗‖,

(a∗)Ty − (a∗)Tz � −‖x∗‖ ∀y ∈ Y, z ∈ Z,

(a∗)Tz � ‖x∗‖ + (a∗)Ty ∀y ∈ Y, z ∈ Z,

inf
z∈Z(a∗)Tz � ‖x∗‖ + sup

y∈Y
(a∗)Ty,

and

σ(a∗) = inf
z∈Z(a∗)Tz − sup

y∈Y
(a∗)Ty � ‖x∗‖.

On the other hand (5.6) implies σ(a∗) � ‖x∗‖, so σ(a∗) = ‖x∗‖. �

Lemma 12. Let a∗ ∈ A′ be any point that solves (5.5) and let x∗ be any point that solves (5.1).

If x∗ /= 0 then x∗ and −a∗ are aligned. That is,

(−a∗)Tx∗ = ‖ − a∗‖′‖x∗‖ = ‖x∗‖. (5.7)
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Proof. Let a be some vector in A′. Then ‖a‖′ = 1 and

H = {x|aTx = −σ(a)}
is a supporting hyperplane of X which separates between X and the origin point 0. The distance
between 0 and H is σ(a). Hence the same hyperplane

H = {x|(−a)Tx = σ(a)}
supports the norm ball

B = {x|‖x‖ � σ(a)}.
Let us turn now to consider the special case when a∗ ∈ A′ and σ(a∗) = ‖x∗‖. In this case the
hyperplane

H∗ = {x|(a∗)Tx = −‖x∗‖}
supports X, while the same hyperplane

H∗ = {x|(−a∗)Tx = ‖x∗‖}
supports the norm ball

B∗ = {x|‖x‖ � ‖x∗‖}.
Therefore, since x∗ ∈ B∗ ∩ X, x∗ ∈ H∗ and (5.7) holds. �

In practice it is convenient to write the maximal separation problem in the form

maximize σ(a) = inf
z∈Z aTz − sup

y∈Y
aTy

subject to ‖a‖′ � 1.
(5.8)

The justification for replacing (5.5) with (5.8) lies in the definition of A. Recall that a ∈ A
whenever σ(a) � 0, and a /∈ A whenever σ(a) < 0. Consequently any solution of (5.8) solves
(5.5) and vice versa. The next theorem summarizes our results.

Theorem 13 (The new MND theorem). The dual of the least norm problem (5.1) is the maximum
separation problem (5.8) and both problems are solvable. Let x∗ ∈ X solve (5.1) and let a∗ solve
(5.8). Then

‖a∗‖′ = 1 and σ(a∗) = ‖x∗‖ = dist(Y,Z).

Furthermore, if x∗ /= 0 then x∗ and −a∗ are aligned. That is,

(−a∗)Tx∗ = ‖ − a∗‖′‖x∗‖ = ‖x∗‖.

The geometric interpretation of the new MND theorem is quite straightforward. On one hand

‖x∗‖ = dist(Y,Z) = inf{‖y − z‖|y ∈ Y, z ∈ Z},
so ‖x∗‖ equals the shortest distance between Y and X. On the other hand, for ‖a‖′ = 1 the
separation function σ(a) measures the distance between two parallel hyperplanes that separate
Y and Z. The distance between the two hyperplanes is always smaller than dist(Y,Z). Yet the
maximum separation is attained when −a is aligned to x∗, and in this case the maximal separation
equals the shortest distance between Y and Z (see Figs. 2 and 7).



A. Dax / Linear Algebra and its Applications 416 (2006) 184–213 195

The power of the new MND theorem comes from the fact that Y and Z are arbitrary disjoint
convex sets in Rm, while ‖ · ‖ can be any norm in Rm. Of course if ‖ · ‖ is not strictly convex
then the solution of (5.1) is not necessarily unique. Similarly, if ‖ · ‖ is not smooth then the
dual problem (5.8) may have more than one solution. Nevertheless, if ‖ · ‖ is smooth and strictly
convex then both problems have unique solutions. In this case the alignment relation enables us
to retrieve a primal solution from a dual one and vice versa. (See [18] for detailed discussion of
this issue.)

Let us turn now to consider the special case when Z happens to be a singleton. That is, Z
contains only one point, z say. In this case the least norm problem (5.1) is reduced to the form

minimize ‖y − z‖
subject to y ∈ Y,

(5.9)

while (5.8) takes the form

maximize η(a) = aTz − α(a)

subject to ‖a‖′ � 1,
(5.10)

where, as before, α(a) = supy∈Y aTy is the support function of Y. Recall that when ‖a‖′ = 1
the objective function η(a) = aTz − α(a) measures the distance between z and the hyperplane
{x|aTx = α(a)}, which supports Y and separates Y and z. Also, by following the arguments
of Lemma 6, we see that (5.9) is always solvable. These observations result in the following
conclusions.

Theorem 14 (The Nirenberg–Luenberger MND theorem). The dual of the least norm problem
(5.9) is the maximum distance problem (5.10) and both problems are solvable. Let y∗ ∈ Y solve
(5.9) and let a∗ ∈ Rm solve (5.10). Then

‖a∗‖′ = 1 and η(a∗) = ‖y∗ − z‖ = dist(z,Y).

Furthermore, if z /∈ Y then −a∗ and y∗ − z are aligned. That is,

(−a∗)T(y∗ − z) = ‖y∗ − z‖. (5.11)

The geometric interpretation of the last theorem is rather clear: The shortest distance from z to
Y is equal to the maximum of the distances from z to any hyperplane separating z and Y; and any
pair of optimal solutions satisfies the alignment relation (5.11), see Fig. 1. Note that in contrast
to the general case, here there is always an optimal point y∗ ∈ Y such that

‖y∗ − z‖ = dist(z,Y).

Part II: Examples of applications

6. Preliminary remarks

Perhaps the best way to learn is by example, so the second part of the paper brings several
examples of applications. It is shown that the MND principle is a useful tool for studying the
duality features of several least distance problems. Let Y and Z be two distinct closed convex
sets in Rm. Then the primal problem to be solved has the form

minimize {‖y − z‖|y ∈ Y, z ∈ Z}, (6.1)
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where ‖ · ‖ denotes an arbitrary norm on Rm. As before ‖ · ‖′ denotes the corresponding dual
norm. The least distance problems consider various types of convex sets, such as norm-balls,
linear varieties, polyhedral cones, polyhedrons, polytopes, and norm-ellipsoids. The study of
these problems illustrates how the general definition of the dual problem,

maximize σ(a) = inf
z∈Z aTz − sup

y∈Y
aTy

subject to ‖a‖′ � 1,
(6.2)

is casted into a specific maximization problem when Y and Z are specified.
The examples start by considering two distinct sets, where neither Y nor Z is a singleton. Yet,

often the original problem (6.1) can be reformulated as a best approximation problem that seeks
the shortest distance between a certain point and a convex set. This gives the problem a second
geometric interpretation, and enables us to apply the Nirenberg–Luenberger MND theorem. The
transformation of (6.1) into a best approximation problem is not surprising, as the new MND
theorem considers the distance between the origin point and the difference set Y − Z. However,
the new MND theorem has its own merits. Consider for example the distance between two
polytopes, or the distance between two norm-ellipsoids.

7. The distance between two linear varieties

We start by considering the distance between two linear varieties in standard form,

Y = {ỹ + Bu|u ∈ R�1} and Z = {z̃ − Cv|v ∈ R�2},
where ỹ and z̃ are given vectors in Rm, B is a real m × �1 matrix, and C is a real m × �2 matrix.
In this case the least distance problem (6.1) takes the form

minimize f (u, v) = ‖ỹ + Bu − z̃ + Cv‖,
or, simply,

minimize ‖Ax − b‖, (7.1)

where b = z̃ − ỹ, A = [B, C] is an m × n matrix, n = �1 + �2, and x = (uT, vT)T ∈ Rn

denotes the vector of unknowns. The last problem has a new geometric interpretation: It seeks
the shortest distance between a point b and the subspace

W = {
Ax|x ∈ Rn

} = Range(A).

Let W⊥ denote the orthogonal complement of W. That is,

W⊥ = {w ∈ Rm|ATw = 0} = Null(AT).

Then

sup
w∈W

aTw =
{

0 when a ∈ W⊥,

∞ otherwise.

Hence the dual of (7.1) has the form

maximize bTa
subject to ATa = 0 and ‖a‖′ � 1.

(7.2)

Let x∗ ∈ Rn solve (7.1) and let a∗ ∈ Rm solve (7.2). Then

‖Ax∗ − b‖ = bTa∗,
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since the two problems share the same optimal value. The last equality implies the following
conclusion: Either the system Ax = b is solvable, or the system

ATa = 0 and bTa > 0

is solvable, but never both. This conclusion is essentially Gale’s theorem of the alternatives for
linear equalities, e.g., [13,18,32].

Let us consider for a moment the important case when both (7.1) and (7.2) are defined by the
Euclidean norm. In this case the residual vector

r∗ = b − Ax∗

satisfies ATr∗ = 0 and a∗ = r∗/‖r∗‖2. Moreover, the vectors q∗ = Ax∗ and r∗ constitute the
Euclidean projections of b on Range(A) and Null(AT), respectively. Thus, as Fig. 4 shows, every
vector b ∈ Rm has a unique orthogonal decomposition of the form

b = q∗ + r∗, q∗ ∈ Range(A), r∗ ∈ Null(AT). (7.3)

Another important application occurs when solving the �1 problem

minimize‖Ax − b‖1. (7.4)

The need for solving such problems arises in statistical regression, data fitting, and function
approximation, e.g. [3,21,41,51]. The appeal of the �1 norm comes from the observation that �1
solutions are less sensitive to possibly large errors in the data. See [14] or [16]. The dual of (7.4)
is obtained by writing (7.2) with the �∞ norm. This results in the problem

maximize bTa
subject to ATa = 0 and − e � a � e,

(7.5)

Fig. 4. The orthogonal decomposition.
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where e = (1, 1, . . . , 1)T ∈ Rm. The last problem is efficiently solved via the affine scaling
method, e.g., [14,36].

The next example considers the �p problem

maximize ‖Ax − b‖p, (7.6)

where 1 < p < ∞. The dual of this problem has the form

maximize bTa
subject to ATa = 0 and ‖a‖q � 1,

(7.7)

where q = p/(p − 1). This gives rise to “dual methods” which are aimed at solving (7.7), e.g.,
[42,47,48]. It is also instructive to note that the dual of the problem

minimize P(x) = ‖Ax − b‖p
p/p (7.8)

has the form
maximize D(a) = bTa − ‖a‖q

q/q

subject to ATa = 0,
(7.9)

e.g., [12]. Thus, although (7.6) and (7.8) are essentially the same problem, the dual problems
differ substantially.

Finally we consider the �∞ problem

minimize ‖Ax − b‖∞, (7.10)

whose dual has the form
maximize bTa
subject to ATa = 0 and ‖a‖1 � 1.

(7.11)

In this case both problems can be formulated and solved as linear programming problems, e.g.,
[41].

8. The distance between two shifted polyhedral convex cones

In this example both Y and Z are finitely generated cones of the form

Y = {ỹ + Bu|u ∈ R�1 and u � 0}
and

Z = {z̃ − Cv|v ∈ R�2 and v � 0},
where ỹ, z̃ ∈ Rm, B ∈ Rm×�1 , and C ∈ Rm×�2 . Recall that a finitely generated convex cone in
Rm is a closed convex set, e.g., [8] or [41]. To find the shortest distance between Y and Z one
solves the problem

minimize f (u, v) = ‖ỹ + Bu − (z̃ − Cv)‖
subject to u � 0 and v � 0,

which can be rewritten as
minimize f (x) = ‖Ax − b‖
subject to x � 0,

(8.1)

where b = z̃ − ỹ and A = [B, C] is a real m × n matrix, n = �1 + �2. The last problem has the
following geometric interpretation: It seeks the shortest distance between b and the closed convex
cone

K = {Ax|x ∈ Rn and x � 0}.
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Let

K∗ = {a|aTk � 0 ∀k ∈ K} = {a|ATa � 0}
denote the polar cone of K. Then, clearly,

sup
k∈K

aTk =
{

0 when a ∈ K∗
∞ otherwise.

So the dual of (8.1) has the form

maximize bTa
subject to ATa � 0 and ‖a‖′ � 1.

(8.2)

Moreover, since K is a closed convex set in Rm, there exists a point x∗ ∈ Rn that solves (8.1)
and satisfies

‖Ax∗ − b‖ = bTa∗, (8.3)

where a∗ solves (8.2). Let

r∗ = b − Ax∗

denote the corresponding residual vector. Then, clearly, r∗ /= 0 implies bTa∗ > 0. This observa-
tion provides a simple proof of Farkas’ Lemma: Either b ∈ K or b /∈ K but never both. In the
first case the system

Ax = b and x � 0 (8.4)

has a solution x∗ ∈ Rn. In the second case, when b /∈ K, the system

ATa � 0 and bTa > 0 (8.5)

has a solution a∗ ∈ Rm. Yet it is not possible that both systems are solvable.
A further consequence of the MND theorem is that a∗ and r∗ are aligned. This observation

yields the relations

(a∗)T(b − Ax∗) = ‖a∗‖′‖b − Ax∗‖ = ‖b − Ax∗‖ = bTa∗

and

(a∗)T(Ax∗) = 0.

The last equality opens a simple way for establishing the polar decomposition which is associated
with K. For this purpose we consider the special case when both (8.1) and (8.2) are defined
by the Euclidean norm. In this case r∗ points at the same direction as a∗, (r∗)T(Ax∗) = 0, and
a∗ = r∗/‖r∗‖2. Consequently any vector b ∈ Rm has a unique polar decomposition of the form

b = k + r∗, k ∈ K, r∗ ∈ K∗, and (k)Tr∗ = 0, (8.6)

where k = Ax∗ is the Euclidean projection of b on K, and r∗ is the Euclidean projection of b
on K∗ (see Fig. 5). For further discussions of polar cones and their properties see [24,29,38,39,
41,45].

9. The smallest deviation from consistency

In this example Y denotes the set of all the points y ∈ Rm for which the linear system Bu � y
is solvable. That is,
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Fig. 5. The polar decomposition of Farkas’ Lemma.

Y =
{
Bu − p|u ∈ R�1 , p ∈ Rm, and p � 0

}
,

where B is a real m × �1 matrix. The other set is a linear variety in standard form,

Z = {b − Cv|v ∈ R�2},
where b ∈ Rm and C is a real m × �2 matrix. With these definitions of Y and Z the least distance
problem (6.1) takes the form

minimize f (u, v, p) = ‖Bu − p − (b − Cv)‖
subject to p � 0.

The last problem can be rewritten in the form

minimize f (x, p) = ‖Ax − p − b‖
subject to p � 0,

(9.1)

where b ∈ Rm, A = [B, C] is a real m × n matrix, and n = �1 + �2. The unknowns here are
x = (uT, vT)T ∈ Rn and p ∈ Rm. Observe that the set

F = {Ax − p|x ∈ Rn, p ∈ Rm, and p � 0}
consists of all the points f ∈ Rm for which the linear system Ax � f is solvable. This observation
gives (9.1) the following interpretation: Let x∗ and p∗ solve (9.1) and let

r∗ = b − (Ax∗ − p∗)
denote the corresponding residual vector. If r∗ = 0 then x∗ satisfies Ax∗ � b, which means that
the system Ax � b is solvable. Otherwise, when r∗ /= 0, the system Ax � b is inconsistent. Yet
x∗ satisfies Ax∗ � b − r∗, which means that r∗ provides the smallest correction vector. Note also
that r∗ � 0, p∗ � 0 and (r∗)Tp∗ = 0.

Problem (9.1) can be viewed as an extension of the standard least norm problem (7.1) that
handles inequalities instead of equalities: Solving (7.1) provides the smallest correction of b that
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makes the system Ax = b solvable. Similarly, solving (9.1) gives the smallest correction of b that
makes the system Ax � b solvable.

An equivalent way to write F is

F = {Hh|h ∈ Rm+2n and h � 0},
where H = [A, −A, −I ] is a real m × (m + 2n) matrix. This presentation implies that F is a
finitely generated closed convex cone. Consequently

sup
f∈F

aTf =
{

0 when a ∈ F∗
∞ otherwise,

where

F∗ = {a|aTf � 0 ∀f ∈ F}
is the polar cone of F. Moreover, as shown in [15],

F∗ = {a|ATa = 0 and a � 0},
so the dual of (9.1) has the form

maximize bTa
subject to ATa = 0, a � 0, and ‖a‖′ � 1.

(9.2)

Let a∗ solve the dual. Here the primal–dual equality ‖r∗‖ = bTa∗ provides a simple proof of
Gale’s theorem of the alternative: Either r∗ = 0, or r∗ /= 0, but never both. In the first case the
system Ax � b is solvable. In the second case the system

ATa = 0, a � 0, bTa > 0,

is solvable. Yet it is not possible that both systems are solvable at the same time.
Combining the alignment relation

(a∗)T(b − Ax∗ + p∗) = ‖a∗‖′‖b − Ax∗ + p∗‖ = ‖b − Ax∗ + p∗‖
with the primal–dual equality gives

(a∗)T(b − Ax∗ + p∗) = bTa∗

and

(a∗)T(Ax∗ − p∗) = 0.

These relations are sharpened when both (9.1) and (9.2) are defined by the Euclidean norm. In
this case the alignment relation implies that a∗ = r∗/‖r∗‖2. So r∗ satisfies

ATr∗ = 0, r∗ � 0, (r∗)T(Ax∗ − p∗) = 0, and (r∗)Tp∗ = 0.

Consequently b has a unique “polar decomposition” of the form

b = (Ax∗ − p∗) + r∗, Ax∗ − p∗ ∈ F, r∗ ∈ F∗, and (r∗)T(Ax∗ − p∗) = 0. (9.3)

Moreover, as we have seen, Ax∗ − p∗ is the Euclidean projection of b on F, while r∗ is the
Euclidean projection of b on F∗ (see Fig. 6).

At this point it is instructive to compare the geometry of (7.1) with that of (9.1), when both
problems are solved under the Euclidean norm. The traditional least squares approach has a
simple geometric interpretation that is based on orthogonal decomposition of Rm into Range(A)

and Null(AT), see (7.3). Extending the least squares approach to handle an inconsistent system
of linear inequalities, Ax � b, changes the geometry of the problem: Now Range(A) is replaced
by the closed convex cone F, which consists of all the points f ∈ Rm for which the system
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Fig. 6. The polar decomposition of the least deviation problem.

Ax � f is solvable. The subspace Null(AT) is replaced by F∗, the polar cone of F, and the
polar decomposition (9.3) replaces the orthogonal decomposition (7.3). In short, polarity replaces
orthogonality. Compare Fig. 4 with Fig. 6.

Another important application occurs when solving the �1 problem

minimize ‖(b − Ax)+‖1. (9.4)

Recall that (b − Ax)+ is an m-vector whose ith component is max{0, bi − aT
i x}, where aT

i denotes
the ith row of A. This problem is derived from (9.1) when using the �1 norm. The corresponding
dual problem is obtained, therefore, by writing (9.2) with the �∞ norm. The resulting dual problem
has the form

maximize bTa
subject to ATa = 0 and 0 � a � e,

(9.5)

where e = (1, 1, · · · , 1)T ∈ Rm. The last problem is efficiently solved by the affine scaling
method, see [16]. Note the similarity between (9.5) and (7.5).

As mentioned before, when using the �p norm, 1 < p < ∞, there are two ways to pose the
duality relations. The first one regards the problem

minimize ‖(b − Ax)+‖p, (9.6)

whose dual has the form mm

maximize bTa
subject to ATa = 0, a � 0, and ‖a‖q � 1,

(9.7)

where q = p/(p − 1). The second option considers the problem

minimize P(a) = ‖(b − Ax)+‖p
p/p, (9.8)
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whose dual has the form

maximize D(a) = bTa − ‖a‖q
q/q

subject to ATa = 0 and a � 0,
(9.9)

see [15]. Note the analogy between (9.6)–(9.9) and (7.6)–(7.9).
It is also interesting to consider the �∞ problem

minimize ‖(b − Ax)+‖∞, (9.10)

whose dual has the form

maximize bTa
subject to ATa = 0, a � 0, and ‖a‖1 � 1.

(9.11)

Recall that any solution of (9.11) must satisfy ‖a‖1 = 1. Therefore, since a � 0, the last constraint
can be replaced with eTa = 1. This enables us to write (9.11) in the form

maximize bTa
subject to ATa = 0, a � 0, and eTa = 1.

(9.12)

In other words, the dual of (9.10) is essentially a linear programming problem in standard form.

10. The nearest point in a polyhedron

The solution of (9.1) enables us to find a point in the polyhedron {x|Ax � b} when this set is
not empty. The problem considered in this example is to find a point in a polyhedron which is the
closest to a given norm-ball. Let

Y = {ỹ + w|‖w‖ � ρ}
be a norm-ball of radius ρ in Rn, centered at a point ỹ ∈ Rn. Let

Z = {z|Az � b}
be a nonempty polyhedron in Rn. As before, A is a real m × n matrix and b ∈ Rm. The distance
between these sets is achieved by solving the least norm problem

minimize f (w, z) = ‖ỹ + w − z‖
subject to Az � b and ‖w‖ � ρ.

(10.1)

The dual of (10.1) is derived by exploring the set

V = {v|v ∈ Rm, ATv = a, v � 0},
where a is a given point in Rm. Assume first that this set is empty. Then, by Farkas’ lemma, there
exists a vector u ∈ Rn such that Au � 0 and aTu < 0. Hence for any feasible point z ∈ Z the
ray {z + θu|θ � 0} is contained in Z, which means that

inf
z∈Z aTz = −∞.

Otherwise, when V is not empty,

aTz = (ATv)Tz = (Az)Tv � bTv ∀z ∈ Z, v ∈ V.

Hence the objective function of the primal linear programming problem

minimize aTz
subject to Az � b

(10.2)
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is bounded from below, which means that this problem is solvable. (The existence of a point
z∗ ∈ Z that solves (10.2) is easily proved by showing that the active set method terminates in a
finite number of steps, e.g., [9].) A further use of Farkas’ lemma shows that a point z∗ ∈ Z solves
(10.2) if and only if there exists a vector v∗ ∈ V such that

(Az∗ − b)Tv∗ = 0,

and

aTz∗ = bTv∗.
(See Section 13.) In other words, v∗ solves the dual linear programming problem

maximize bTv
subject to ATv = a and v � 0,

(10.3)

which is the dual problem of (10.2).
Summarizing the above two cases we conclude that

inf
z∈Z aTz =

{
sup
v∈V

bTv when V /= ∅,

−∞ when V = ∅,
(10.4)

where ∅ denotes the empty set. The other part of the dual objective function satisfies

sup
y∈Y

aTy = aTỹ + sup
‖w‖�ρ

aTw = aTỹ + ρ‖a‖′ = (ATv)Tỹ + ρ, (10.5)

where the last equality relies on the relations ATv = a and ‖a‖′ = 1. Hence, by combining (10.4)
with (10.5) we conclude that the dual of (10.1) has the form

maximize d(v) = (b − Aỹ)Tv − ρ

subject to ‖ATv‖′ � 1 and v ≥ 0.
(10.6)

Since ρ is a nonnegative constant, the solution of (10.6) is not affected by the value of ρ as long
as Y and Z are distinct sets. This observation indicates that (10.1) can be solved by considering
the distance between ỹ and Z, which brings us to the problem of finding the nearest point in a
polyhedron,

minimize ‖ỹ − z‖
subject to Az � b,

(10.7)

whose dual has the form

maximize (b − Aỹ)Tv
subject to ‖ATv‖′ � 1 and v � 0.

(10.8)

The least distance problems, (9.1) and (10.7) present different approaches for solving the basic
feasibility problem of calculating a point x ∈ Rn that satisfies Ax � b. The solution of (9.1)
guards against the possibility that the feasible region is empty. (In practice this often happens
due to measurements errors in the data vector b.) The other approach lacks this feature, but is
capable of finding the point which is closest to ỹ. The need for solving feasibility problems arises
in several applications. Perhaps the best known one is “Phase-1” of the Simplex method, e.g.,
[22]. Other important applications arise in medical image reconstruction from projections, and in
inverse problems in radiation therapy, e.g., [5–7,23,28].

The duality relations (10.7)–(10.8) extend the results in [12], which concentrate on the �p

norm, 1 < p < ∞. It is also proved in [12] that the dual of the problem
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minimize F(z) = ‖ỹ − z‖p
p/p

subject to Az � b
(10.9)

has the form

maximize D(v) = (b − Aỹ)Tv − ‖ATv‖q
q/q

subject to v � 0,
(10.10)

where q = p/(p − 1), and explicit rules are given for retrieving a primal solution from a dual one.
A further simplification is gained by applying the Euclidean norm. In this case a primal solution
is obtained from a dual one by the rule z∗ = ATv∗. Maximizing the dual objective function by
changing one variable at a time results in effective schemes for solving large sparse feasibility
problems, e.g., [5,7,28].

11. The distance between two convex polytopes

In this example Y and Z are convex polytopes.

Y = {Bw|w ∈ R�, w � 0, eTw = 1}
and

Z = {Cv|v ∈ Rn, v � 0, eTv = 1},
where B ∈ Rm×�, C ∈ Rm×n, and e = (1, 1, . . . , 1)T. The dimension of 0 and e depends on the
context. The primal problem to be solved has, therefore, the form

minimize f (w, v) = ‖Bw − Cv‖
subject to w � 0, v � 0, eTw = 1, eTv = 1.

(11.1)

Here it is easy to verify that

sup
y∈Y

aTy = max
{
bT

1 a, . . . , bT
� a
}

and inf
z∈Z aTz = min

{
cT

1 a, . . . , cT
na
}
,

where b1, . . . , b�, denote the columns of B, and c1, . . . , cn, denote the columns of C. Hence the
dual of (11.1) has the form

maximize σ(a) = min
{
cT

1 a, . . . , cT
na} − max{bT

1 a, . . . , bT
� a
}

subject to ‖a‖′ � 1.
(11.2)

The need for calculating a hyperplane that separates between two given polytopes is a central
problem in the fields of patterns recognition and machine learning, e.g., [2,31,33–35]. The fact
that the maximal separation equals the smallest distance adds new insight into this problem. Note
also that the solution of (11.2) remains meaningful even when the two polytopes are not disjoint.

Let us turn now to consider the case when Y happens to be a singleton, {b} say. In this case
(11.1) is reduced to the least norm problem

minimize ‖Ax‖
subject to eTx = 1 and x � 0,

(11.3)

where A is a real m × n matrix whose columns are aj = cj − b, j = 1, . . . , n. Let x∗ ∈ Rn solve
the last problem. Then, clearly, Cx∗ is a point of Z which is nearest to b. Similarly, r∗ = Ax∗ is
the smallest point of the polytope

P = {Ax|x ∈ Rn, x � 0, eTx = 1}.
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Methods for calculating the nearest (smallest) point in a polytope were proposed by a number
of authors, e.g., [10,37,52,53]. For further discussions of related issues see [4,30,46,50]. Adapting
(11.2) to fit the new problem shows that the dual of (11.3) has the form

maximize σ(u) = min
{
aT

1 u, . . . , aT
n u
}

subject to ‖u‖′ � 1.
(11.4)

Let u∗ solve (11.4), then the primal–dual equality

‖r∗‖ = min
{
aT

1 u∗, . . . , aT
n u∗}

provides a simple proof of Gordan’s theorem of the alternatives: Either r∗ = 0, or r∗ /= 0, but
never both. In the first case the system

Ax = 0, x � 0, eTx = 1, (11.5)

has a solution x∗ ∈ Rn. In the second case the system

aT
j u > 0, j = 1, . . . , n, (11.6)

has a solution u∗ ∈ Rm. Yet it is not possible that both systems are solvable.
The question which of the two systems is solvable can be answered in the following way. Let

Ã denote the (m + 1) × n matrix whose first row is eT and the other rows are those of A. Let
ẽ1 denote the first column of the (m + 1) × (m + 1) identity matrix. Let x̃ ∈ Rn solve the least
squares problem

minimize ‖Ãx − ẽ1‖2
2

subject to x � 0,
(11.7)

and let r̃ = Ax̃ denote the resulting residual vector. Then, as shown in [10],

0 < eTx̃ � 1 (11.8)

and the vector x∗ = x̃/eTx̃ solves the least distance problem

minimize ‖Ax‖2

subject to eTx = 1 and x � 0,
(11.9)

whose dual has the form

maximize σ(u) = min
{
aT

1 u, . . . , aT
n u
}

subject to ‖u‖2 � 1.
(11.10)

Moreover, if r̃ = 0 then x∗ solves (11.5). Otherwise, when r̃ /= 0, the vector u∗ = r̃/‖r̃‖2 solves
(11.10) and satisfies (11.6).

12. The distance between two norm-ellipsoids

The geometry of this problem is illustrated in Figs. 2 and 7. Here

Y = {ỹ + Bw|‖w‖∗ � 1} and Z = {z̃ − Cv|‖v‖† � 1},
where ỹ ∈ Rm, B ∈ Rm×n, ‖ · ‖∗ denotes an arbitrary norm on Rn, z̃ ∈ Rm, C ∈ Rm×�,
and ‖ · ‖† denotes an arbitrary norm on R�. The dual norms of ‖ · ‖∗ and ‖ · ‖† are denoted
by ‖ · ‖′∗ and ‖ · ‖′

†, respectively. The usual definition of an ellipsoid in Rm refers to the case
when ‖ · ‖∗ and‖ · ‖† denote the Euclidean norm, e.g., [1]. For this reason Y and Z are called
“norm-ellipsoids”. The distance between these sets is attained by solving the least norm problem
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Fig. 7. The distance between two convex sets.

minimize ‖ỹ − z̃ + Bw + Cv‖
subject to ‖w‖∗ � 1 and ‖v‖† � 1.

(12.1)

As before, ‖ · ‖ denotes an arbitrary norm on Rm, while ‖ · ‖′ denotes the corresponding dual
norm.

Here one can verify that

inf
z∈Z aTz = aTz̃ + inf‖v‖†�1

aT(−Cv) = aTz̃ − ‖CTa‖′
†

and

sup
y∈Y

aTy = aTỹ + sup
‖w‖∗�1

aTBw = aTỹ + ‖BTa‖′∗.

So the dual of (12.1) has the form
maximize σ(a) = −(ỹ − z̃)Ta − ‖BTa‖′∗ − ‖CTa‖′

†

subject to ‖a‖′ � 1.
(12.2)

Let us turn now to consider the important case when Z happens to be a singleton, {z̃} say. In this
case (12.1) is reduced to a trust region approximation problem

minimize ‖Bw − g‖
subject to ‖w‖∗ � 1,

(12.3)

where g = ỹ − z̃, while the dual of (12.3) has the form

maximize σ(a) = −gTa − ‖BTa‖′∗
subject to ‖a‖′ � 1.

(12.4)
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The trust region problem (12.3) has an independent geometric interpretation: Let w∗ solve this
problem then Bw∗ is a point of the norm-ellipsoid

E = {Bw|‖w‖∗ � 1},
which is closest to g. Let r∗ = Bw∗ − g denote the corresponding residual vector. Then r∗ = 0
if and only if g ∈ E. Moreover, let a∗ solve (12.4) then

gTa∗ + ‖BTa∗‖′∗ = −‖r∗‖ (12.5)

and the vectors a∗ and r∗ are aligned. That is,

(a∗)Tr∗ = ‖a∗‖′‖r∗‖ = ‖r∗‖. (12.6)

The primal–dual equality (12.5) provides a simple proof of Dax’ theorem of the alternatives:
Either the inequality

gTa + ‖BTa‖′∗ < 0 (12.7)

has a solution a∗ ∈ Rm, or the system

Bw = g and ‖w‖∗ � 1, (12.8)

has a solution w∗ ∈ Rn, but never both, e.g., [11,13,18]. The last observation gives constructive
optimality conditions for the �1 problem (7.4). See the next section.

13. Constructive optimality conditions

We have seen that the MND theorem connects theorems of the alternatives to least norm
problems. In this section we illustrate how these relations are used to derive constructive opti-
mality conditions and steepest descent directions. In all the coming examples A is a real m × n

matrix, b = (b1, . . . , bm)T ∈ Rm, and x ∈ Rn denotes the vectors of unknowns. The rows of A

are denoted as aT
i , i = 1, . . . , m.

The first example considers the linear programming problem

minimize cTx
subject to Ax � b,

(13.1)

where c ∈ Rn. Let x̂ ∈ Rn be a given feasible point. That is, Ax̂ � b. Then there is no loss of
generality in assuming that

aT
i x̂ = bi for i = 1, . . . , �,

and

aT
i x̂ > bi for i = � + 1, . . . , m.

Let Â denote the � × n matrix whose rows are aT
i , i = 1, . . . , �. Then, clearly, a vector u ∈ Rn

is a feasible descent direction at x̂ if and only if it satisfies

Âu � 0 and cTu < 0. (13.2)

It follows, therefore, that x̂ solves (13.1) if and only if (13.2) has no solution. This situation is
characterized by Farkas’ lemma, which says that either the system (13.2) is solvable, or the
system

ÂTy = c and y � 0 (13.3)
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is solvable, but never both. Moreover, let ŷ ∈ R� solve (13.3). Then the m-vector v̂ = (ŷ
0

)
satisfies

(Ax̂ − b)Tv̂ = 0 and cTx̂ = bTv̂, which means that v̂ solves the corresponding dual problem

maximize bTv
subject to ATv = c and v � 0.

(13.4)

As shown in Section 8, the question of whether (13.3) is solvable is answered by solving the least
squares problem

minimize ‖ÂTy − c‖2
2

subject to y � 0.
(13.5)

Let ŷ solve (13.5) and let r̂ = ÂTŷ − c denote the corresponding residual vector. If r̂ = 0 then,
clearly, ŷ solves (13.3) and x̂ solves (13.1). Otherwise, when r̂ /= 0, the unit vector û = r̂/‖r̂‖2
solves the steepest descent problem

minimize cTu

subject to Âu � 0 and ‖u‖2 � 1,
(13.6)

and satisfies cTû = −‖r̂‖2. In other words, r̂ points at the steepest descent direction!

The second example considers the �1 problem

minimize f (x) = ‖Ax − b‖1. (13.7)

Let x̂ be a given point in Rn. Here it is assumed for simplicity that

aT
i x̂ = bi for i = 1, . . . , �, and aT

i x̂ /= bi for i = � + 1, . . . , m.

Let Â denote the � × n matrix whose rows are aT
i , i = 1, . . . , �. The other rows of A are used to

define the n-vector

g =
m∑

i=�+1

ai sign(aT
i x̂ − bi).

With these notations at hand one can verify that for any vector u ∈ Rn there exists a positive
constant, α say, such that

f (x̂ + θu) = f (x̂) + θgTu + θ‖Âu‖1 ∀0 � θ � α.

It follows, therefore, that x̂ solves (13.7) if and only if there is no vector u ∈ Rn that satisfies

gTu + ‖Âu‖1 < 0. (13.8)

The existence of a vector u ∈ Rn that solves the last inequality is characterized by Dax’ theorem
of the alternatives, which says that either (13.8) has a solution, or the system

ÂTy = g and ‖y‖∞ � 1 (13.9)

has a solution ŷ ∈ R�, but never both.
The question of whether (13.9) is solvable is answered by solving the least squares problem

minimize ‖ÂTy − g‖2
2

subject to −e � y � e,
(13.10)

where e = (1, 1, . . . , 1)T ∈ R�. Let ŷ solve (13.10) and let r̂ = Âŷ − g denote the resulting
residual vector. If r̂ = 0 then, clearly, ŷ solves (13.9), and x̂ solves (13.7). Otherwise, when
r̂ /= 0, the unit vector û = r̂/‖r̂‖2 satisfies
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gTû + ‖Âû‖1 = −‖r̂‖2 < 0,

and solves the steepest descent problem

minimize gTu + ‖Âu‖1

subject to ‖u‖2 � 1.
(13.11)

That is, û is the steepest descent direction at x̂.

The third example considers the �∞ problem

minimize f (x) = ‖Ax − b‖∞. (13.12)

Let x̂ be a given point in Rn. If ‖Ax̂ − b‖∞ = 0 then, clearly, x̂ solves (13.12). Hence there is no
loss of generality in assuming that x̂ satisfies ‖Ax̂ − b‖∞ > 0,

|aT
i x̂ − bi | = ‖Ax − b‖∞ for i = 1, . . . , �, and

|aT
i x̂ − bi | < ‖Ax̂ − b‖∞ for i = � + 1, . . . , m.

Define âi = ai sign(aT
i x̂ − bi), i = 1, . . . , �, and let Â denote the � × n matrix whose rows are

âT
i , i = 1, . . . , �. Then for any vector u ∈ Rn there exists a positive constant, α say, such that

f (x̂ + θu) = f (x̂) + θ max{âT
1 u, . . . , âT

� u} ∀0 � θ � α.

It follows, therefore, that x̂ solves (13.12) if and only if there is no vector u ∈ Rn that satisfies

Âu < e, (13.13)

where e = (1, 1, . . . , 1)T ∈ R�. The last condition is characterized by Gordan’s theorem of the
alternatives, which says that either (13.13) is solvable, or the system

ÂTy = 0, y � 0, eTy = 1, (13.14)

is solvable, but never both. See Section 11. The question which system is solvable is answered
by solving the least squares problem

minimize ‖ÃTy − ẽ1‖2
2

subject to y � 0,
(13.15)

where ẽ1 = (1, 0, 0, . . . , 0) ∈ Rn+1 and Ã = [e, Â] ∈ R�×(n+1). Let ỹ solve (13.15) and let r̂ =
ÂTỹ denote the resulting residual vector. If r̂ = 0 then ỹ solves (13.14). Otherwise, when r̂ /= 0,
the unit vector û = −r̂/‖r̂‖2 satisfies

max{âT
1 û, . . . , âT

� û} = −‖r̂‖ < 0,

and solves the steepest descent problem

minimize σ(u) = max{âT
1 u, . . . , âT

� u}
subject to ‖u‖2 � 1.

(13.16)

Similar constructive optimality conditions exist in several other problems. The ability to com-
pute a steepest descent direction provides an effective way to resolve degeneracy (cycling) in
active set methods and in algorithms for solving multifacility location problems. See [9,13,18]
and the references therein.
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14. Concluding remarks

The traditional “best approximation” theory concentrates on the distance between a point and a
convex set. This is, perhaps, the reason that the new MND theorem has not been observed before.
Extending the MND theorem to consider the distance between two convex sets enables it to handle
a larger range of problems. Consider for example the distance between two polytopes. The need
for calculating a hyperplane that separates two given polytopes is a central problem in the fields
of patterns recognition and machine learning. The observation that the maximal separation equals
the smallest distance adds new insight into this problem.

The examples described in this paper reveal the double role of duality in least norm problems.
On one hand each least norm problem has its dual problem. For example, the dual of (7.4)
is (7.5), and so forth. This paves the way for “dual methods” which are aimed at solving the
corresponding dual problem. On the other hand, the question of whether a given point, x̂, solves
the primal problem defines a second type of duality relation: The existence of a feasible descent
direction at x̂ is connected to a certain theorem of the alternative, and a “secondary” least norm
problem. To find a feasible descent direction we solve the secondary least norm problem and
compute the resulting residual vector, r̂. If r̂ = 0 then x̂ solves the primal problem. Otherwise r̂
points at the steepest descent direction at x̂.

It is true that the MND theorem is not as general as the duality theorems of Fenchel and
Lagrange. Nevertheless, the MND theorem enjoys a number of pedagogical merits. First it has
a simple geometric interpretation that visually illustrates the basic principles of duality. The
representation of theorems by simple pictures makes them easier to understand and recall. Indeed,
Figs. 1, 2 and 7 may convey the “duality principle” to a broad audience, including high school
students and non-mathematicians. Second, as this paper shows, the MND theorem has a simple
elementary proof which relies on pure geometric arguments. Third, in spite of its simplicity, the
MND theorem applies to a large family of problems. Fourth, it is a useful tool for introducing and
demonstrating several important concepts, such as polar decompositions, optimality conditions,
steepest descent directions, theorems of the alternatives, etc.

The new MND theorem is valid in any finite dimensional real Hilbert space, H, with inner
product 〈x, y〉. The modification of the current proof to handle this setting is rather simple: Rm

is replaced by H, the Euclidean inner product xTy is replaced by 〈x, y〉, the Euclidean norm is
replaced by ‖x‖ = (〈x, x〉)1/2, and so forth. Using the geometric Hahn–Banach theorem one can
prove the Nirenberg–Luenberger MND theorem in any real (or complex) normed linear space,
e.g., [19,20,27,29,40]. This observation suggests that the new MND theorem shares this property.
One way to prove this assertion is by showing that the new MND theorem can be derived from
the Nirenberg–Luenberger theorem in any normed linear space. (As before define X = Y − Z
and consider the distance between 0 and X.) However, this issue is beyond the scope of our
paper.
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