Three-dimensional super-resolution microscopy methods such as interferometric photoactivated localization microscopy (iPALM) can localize individual proteins of interest at high resolution (20 nm in XY and 8 nm in Z). These images, however, lack the structural context that could be provided by other imaging methods including electron microscopy. Here, we develop a method that combines iPALM and 3D tomographic transmission electron microscopy (TEM). First, we use iPALM to localize fluorescently-tagged endocytic proteins on the inner plasma membrane of PC12 cells in three dimensions. Next, platinum replicas of these same membranes are imaged with transmission electron microscopy to create tomograms. Finally, both images are combined to create a map of the nanometer scale location of these proteins within their three dimensional cellular context. This technique has the power to build ultra high resolution 3D topographic maps of molecular structures in the context of their native cellular environment.


dSTORM of Synaptic Proteins
Markus Sauer1, Sebastian van de Linde1, Thorge Holm1, Sarah Aufmkolk1, Nadine Ehmann1, Robert Blum1, Dana Bar-On2, Amit Alon2, Uri Ashery2, Dimitrij Ljašchenko1, Manfred Heckmann1, Robert Kittel1, University Wuerzburg, Wuerzburg, Germany, 1University Tel Aviv, Tel Aviv, Israel.

Synapses are specialized cell-cell junctions of several hundred nanometers in size that serve as junctions/contact points through which nerve cells send signals to other nerve cells, to muscle cells, or to hormone-secreting cells. Efficient synaptic transmission relies on the precise and specific interaction of synaptic proteins and vesicle fusion and changes in protein dynamics and expression are thought to allow synaptic plasticity. Unfortunately, our understanding of the exact nanoscopic distribution of individual proteins, their absolute numbers and interactions, and changes occurring during learning and memory, and in neurodegenerative disorders is still in its infancy. This is due to difficulties to study sub-synaptic structures e.g. by fluorescence microscopy due to the small size of synapses, which is near the diffraction-limited resolution of light microscopy and the limitation to visualize single synaptic protein localization and dynamics in the synapse.

We demonstrate how super-resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM) can be used advantageously to study the distribution of synaptic proteins with an optical resolution of 15-20 nm in the imaging plane using standard, commercially available fluorescence probes. We demonstrate the potential of dSTORM by resolving the distribution and clustering of presynaptic proteins as well as postsynaptic receptors and postsynaptic junctional folds.

FTSZ-Ring by ZapA and ZapB
Jackson A. Buss, Carla Coltharp, Chris Pohlmeyer, Jie Xiao.

The first step in E. coli cell division is the localization of the FtsZ protein at midcell, where it polymerizes into a ring-like structure called the Z-ring. FtsZ is widely conserved throughout bacteria and is a structural homolog of eukaryotic tubulin. Understanding the organization of the Z-ring will provide insight into the force generation mechanism of bacterial cell division.

In our previous work we used a super-resolution imaging method, photoactivated localization microscopy (PALM), to characterize the arrangement of FtsZ protofilaments inside the Z-ring.1 We showed that the Z-ring is likely composed of a loose association of protofilaments overlapping in both the circumferential and radial direction of the Z-ring. Given that FtsZ protofilaments exhibit a low intrinsic self-interaction, how they are associated in vivo remains unknown.

Recently a family of Z-ring associated proteins (Zap) have been shown to promote FtsZ polymerization in vitro and Z-ring formation in vivo. In this study, we investigated how ZapA and ZapB affect the organization of the Z-ring. We used live-cell PALM imaging to characterize the structure of the Z-ring in the absence of ZapA or ZapB. We found that in the absence of ZapA or ZapB, FtsZ adopts a variety of non-native structures characterized by a fractured appearance containing dispersed clusters of FtsZ. Similar FtsZ clusters have been observed to precede wild-type Z-ring assembly and are likely composed of multiple FtsZ protofilaments. Comparison of the FtsZ clusters observed in ΔzapA and ΔzapB to those observed in wild-type suggest that ZapA and ZapB may function to promote Z-ring assembly by corralling and consolidating higher-ordered FtsZ groupings.

References
1. GA Barabin, MO Platt, and DK Kaul, Annual Review of Biomedical Engineering 12, 345 (2010).
2. YK Park, CA Best, K Badizadegan et al., Proceedings of the National Academy of Sciences 107 (15), 6731 (2010).

High Resolution Imaging of Living Cells with Microsecond Force Spectroscopy
Nicola Mandriota, Ozgur Sahin.

Columbia University, New York, NY, USA.