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A b s t r a c t - - I n  this paper, we consider a queueing system with postservice activity. During the 
time when the server is engaged in the postservice activity (wrap-up time), the waiting customer, if 
any, cannot receive his or her service. This type of queueing system has been used to model automatic 
call distribution (ACD) systems. We consider the waiting time distribution of the queueing system. 
Using the Markovian point process that  can be expressed by the so-called Markovian arrival process 
(MAP), we derive the waiting time distribution in terms of the representing matrices of a particular 
MAP. Then we apply the Baker-Hausdorff lemma to the matrices and derive the conditional waiting 
time distribution in closed form by exploiting the specific structure of the matrices. As a byproduct, 
we give an explicit solution of the number of arrivals for the MAP. @ 2006 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - A u t o m a t i c  call distribution (ACD), Waiting time distribution, Markovian point pro- 
cess, Baker-Hausdorff lemma, Closed-form solution. 

1, I N T R O D U C T I O N  

Suppose tha t  we have a multiserver queueing system. The queueing system has a single queue 
with finite capacity. Customers are served according to the first-come first-served (FCFS) way. 
After completing the service, the customer leaves from the system and the server must finish the 
additional job (postservice). During the time in which the server is engaged in the postservice 
activity, the waiting customer, if any, cannot be served. 

This type of queueing system is employed to model the automatic  call distribution (ACD) 
systems and has been analyzed extensively so far [1-7]. The ACD systems are used by call 
centers in, e.g., the travel, banking, insurance companies to handle large volumes of incoming 
calls on inquiry efficiently. For the literature on the introduction to the queueing models of call 
centers, see [8]. 

One of the interesting aspects in the ACD systems is tha t  a server (agent) is required to finish 
the additional job such as entering or updating data  into the customer database after completing 
the service, while the customer leaves the system, which implies tha t  the telephone line used by 
the customer is released. During this time, a new incoming call can occupy the released line, 
and hence, the call is not lost. However, the server cannot begin the service of the new call 
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until  the  server finishes the addi t ional  job  of the  previous call. This  ex t ra  t ime  spent  on the 
postservice ac t iv i ty  is often called the  wrap-up  time. To our best  knowledge, a small  number  of 

authors  [1,6] focused on the effects of the  wrap-up  t ime on the  performance measures such as the  

loss probabi l i ty  and wait ing t ime dis t r ibut ion.  
In this  paper ,  we consider the  queueing system with postservice ac t iv i ty  in the  framework of 

the  Markovian model ing approach employed by Jolley and Harr is  [1]. Our  contr ibut ion  is to 

obta in  an explici t  closed-form solution on the wait ing dis t r ibut ion.  The  brief summary  of our 
approach is as follows. Firs t ,  focusing on the case where customers  must  wait  at  their  arrival 
epochs, we model  the  t ime between two successive delayed customers  by the Markovian point  
process, or Markovian arrival  process (MAP) [9], and const ruct  the  represent ing matr ices  of a 

par t icu lar  MAP. Secondly, we express the wait ing t ime d is t r ibut ion  of the  queueing system by 
using the represent ing matr ices  of the MAP. Finally, we apply  the  Baker-Hausdorff  l emma [13] to 

the matrices represent ing the MAP. The  specific s t ruc ture  of the  matr ices  allows us to calculate 
mat r ix  products  in the  condi t ional  wait ing t ime dis t r ibut ion in closed form. As a byproduct ,  we 

give an explici t  solut ion of the number  of arrivals for the  MAP. The  detai ls  of the  analysis  are 
described in Section 3. 

The  paper  is organized as follows. In Section 2, we describe the  model  of the  queueing system. 

Section 3 presents the  detai led analysis of the  wait ing t ime dis t r ibut ion.  Section 4 shows some 

analyt ica l  examples  of our closed-form solution. Finally, we summarize  our results  in Section 5. 

2 .  M O D E L  D E S C R I P T I O N  

Let us consider a queueing system with postservice activity. The  sys tem capaci ty  is denoted 

by K which represents  the  maximum number of customers (including customers  being served) 
tha t  can be accommoda ted  in the  queueing system. The  system has c (<  K )  identical  servers. The 

service t ime of a customer  is assumed to be exponent ia l ly  d i s t r ibu ted  with  pa rame te r  #. We also 
assume tha t  the  amount  of t ime tha t  a server spends in the postservice ac t iv i ty  is exponent ia l ly  

d i s t r ibu ted  with pa ramete r  ~. We call the  addi t ional  working t ime the wrap-up  t ime.  The  service 

and wrap-up  t ime dis t r ibut ions  are assumed to be mutua l ly  independent .  Hence, each server has 

three states:  

(1) the  busy state, in which the customer  is receiving the service from the  server; 
(2) the  wrap-up state, in which the  server is being engaged in the  postservice act ivi ty  after 

complet ing the  service; and 

(3) the  idle state, in which the server is idle. 

Note tha t  customers  cannot  receive their  service from the servers who are engaged in the post- 

service activity.  
Suppose t ha t  customers arrive according to a Poisson process with ra te  A. Let  7r(i,j) (0 <_ 

i <_ K,  0 <_ j <_ c) be the s t eady-s ta te  probabi l i ty  tha t  there  are i customers  in the  system includ- 

ing customers  being served and the  number  of servers in the  wrap-up  s ta te  is j .  Fur thermore ,  we 

introduce the s t eady-s t a t e  probabi l i ty  vector 7r~ defined by 

~ =~ (~(i, 0), ~(i, 1) , . . . ,  ~(i, c)), (1) 

for 0 < i < K.  Then it follows tha t  the  s teady-s ta te  probabi l i ty  can be ob ta ined  by solving the 

system of equations 

0 = 7roAo + 7riD1, (2) 

0 = l r i - l B ~ _ l  + 7r~Ai + l r~+lDi+l ,  1 < i < K -  1, (3) 

0 = 7rK_IBK_ I + IrKAK , (4) 

where 0 is the  row vector  of order  c + 1  whose elements are all zero. The  ma t r ix  B~ (0 < i < K -  1) 
represents the  (upward) t rans i t ion  from i to i + 1  customers in the sys tem and is given by B~ = hi;  
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where I denotes  the ident i ty  matr ix .  The  mat r ix  Dt  (1 < i < K)  represents  the  (downward) 
t rans i t ion  from i to i -  1 customers  in the  system. If we denote  by {D~} . . . .  e lement  (rn, n) of D~ 

for m, n E {0, 1 , . . . ,  c}, then it follows tha t  

{D,}m,~ = (i A (c - rn))#Sm,~- l ,  (5) 

where x A y -- min(x,  y) and 5m,n is the  Kronecker delta. The  mat r ix  At  (0 < i < K )  represents 
the  t rans i t ion  within i customers in the system. The  element (rn, n) of At  for rn, n c {0, 1 , . . . ,  c} 

is given by 

{AiIrn,~ = -a~)5,~,n + 7/t~t~rn,n+l, (6) 

where 
{ ~ + r n { ,  i = 0 ,  

a ~  ) = s  l < i < K - 1 ,  (7) 

m~ + (c - m)~,  i = K. 

Using numerical  a lgori thms [10], the system of equations can be solved numerical ly  wi th  the  

normal iza t ion condi t ion v ' K  zr i n. 1, where I n- is the  column vector of order  c + 1 whose Z-~i=0 i 

elements are all one. 

REMARK. Note t ha t  the  downward t rans i t ion  caused by the customer  depar tu re  from the system 

occurs when the server finishes service, not  postservice activity. Hence, every nonzero element of 
the mat r ix  D ,  (1 < i < K )  should be wri t ten  in terms of #, not  ~. If we t r ea t  the  entire service 

t ime as the  convolution of exponent ia l  d is t r ibut ions  with pa ramete r s  # and ~, which corresponds 
to the  generalized Erlang dis t r ibut ion,  then the elements of D~ should be related with  ~. Hence, 

the s t eady-s ta te  probabi l i ty  of the convolution model  is different from our s t eady-s ta te  probabil i ty.  

3 .  W A I T I N G  T I M E  A N A L Y S I S  

Suppose tha t  an arriving cus tomer  is accepted by the  system and finds no wait ing customers 
at his or her arrival  t ime. Fur thermore ,  we assume tha t  i servers are in the  wrap-up  s ta te  and the 
remaining c - i servers are in the  busy s ta te  at  the arrival t ime. We consider possible t ransi t ions  

in terms of s ta tes  of the  servers. Recalling tha t  the  service and wrap-up  t imes are exponent ia l ly  
d i s t r ibu ted  with parameters  # and ~, respectively, we have two cases: 

1. The  number  of servers in the  busy s ta te  decreases by one with ra te  (c - i)#.  
2. The  number  of servers in the  wrap-up s ta te  decreases by one with rate  i~. 

The  first case accompanies  the  depar tu re  of a customer  being served by a server and puts  the  

server in the  wrap-up  state ,  result ing in the increment  of the  number  of servers in the  wrap-up 

state.  The  wait ing customer to be served next, however, cannot  immedia te ly  receive his or her 

service after the  t ransi t ion.  Hence, the  wait ing customer remains in the  queue and the number  of 
wait ing customers  does not  decrease. The  second c ~ e  corresponds to the  s i tua t ion  in which one 
of the servers in the wrap-up  s ta te  finishes the  postservice ac t iv i ty  and immedia te ly  continues 

with the  service for the  customer  wait ing in the  queue. Thus,  the  number  of wai t ing customers 
in the  queue decreases by one, the s ta te  of the  server changes from the  wrap-up  s ta te  to the  busy 

state ,  and hence the  number  of servers in the  wrap-up s ta te  decreases by one. 
Observing these t ransi t ions ,  we can construct  the  mat r ix  of the  probabi l i ty  densi ty  of the 

wait ing t ime difference between two successive delayed customers.  I t  is clear t ha t  the  t ime 

between two events at  which the number  of wrap-up servers decreases by one provides such 

wait ing t ime difference. In order  to express the  d is t r ibut ion  of the  t ime by using the Markovian 

arrival process [9], let us consider two matr ices  C and D of order c +  1. If we set up the  matrices C 

and D by 

{c}+ ,~  = (e - i ) ~ , j _ l  - [(c - i ) ~  + i ~ ] ~ , j ,  ( s )  

{D}t,j  = i~Si,j+l, (9) 
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then we can show tha t  these matr ices  fulfill the  condit ions for a MAP. It  is well known tha t  
e lement  (i, j )  of the  mat r ix  eCtD gives the  probabi l i ty  densi ty  tha t  an arr ival  event occurs, and 

tha t  the s ta te  of the  M A P  is j at  t ime t, given tha t  the  process has s t a r t ed  from s ta te  i [12]. For 

our queueing system, it can be viewed as the  probabi l i ty  densi ty  tha t  the  wait ing t ime difference 

between two successive delayed customers  is t and j servers are in the  wrap-up  s ta te ,  given tha t  

there  were i servers in the  wrap-up  state .  
We move on now to derive the mat r ix  expression of the  wait ing t ime dis t r ibut ion.  Let us 

denote by 7r*(i, j )  the  probabi l i ty  tha t  an accepted customer who finds the  sys tem in the  s ta te  

(i,j) upon arr ival  for 0 < i < K - 1, 0 < j _< e. Then it follows tha t  [11] 

~*(i,j) = ~(4J )  (lO) 
1 - E r ( K ,  k) 

k=O 

We can then show the following proposi t ion.  

PROPOSITION 3.1. Let us define l~+ a_ [0, +oo) and introduce gtk,t as 

ak,t = {( t l , t2 , . . .  ,tk) C IRk+; 0 < tl < t2 < ' "  < tk <: t} .  (Ii) 

For a given t E R+, let M k ( t )  be the matrix defined by 

M k ( t ) ~ f a  (eCt~De -ct:)  (ect2De-ct~) . . . ( ec tkDe  -ctk)  dQ dt2. . .dtk,  
k , t  

(12) 

for k > 1 and M0(t )  ~ I. Then, the complement of the waiting time distribution We(x) can be 
expressed by 

K - 1  k 

We(x)  = E Pk E M n ( x ) e C Z l : '  (13) 
k = 0  n = 0  

where Pk is the row vector defined by 

a { ( r* (k+c ,O) ,Tr*(k+c- l ,1 ) , . . . , I r* (k , c ) ) ,  O < k < K - l - c ,  (14) 

P k =  ( O , O , . . . , z r * ( K - l , k + e - K + l ) , . . . , T c * ( k , c ) ) ,  K - l - c < k < _ K - 1 .  

PROOF. Let Wk,t be the  condi t ional  wait ing t ime of an arr iving customer  who finds k wait ing 
customers and l servers are in the  wrap-up  s ta te  at his or her arrival  epoch. Denote  by w(t I k, l) 
the condi t ional  probabi l i ty  densi ty  function defined by 

d W w(t l k, 1) a_ _~ pr[ k,z_<t]. (15) 

Let t, be the  beginning of a service for the  ira customer (i = 1, 2 , . . . ,  k) from the head of the  

queue. We then have the const ra int  0 (=  to) < t l  < t2 < ' "  < tk < t. The  wait ing t ime 
difference between the ith and (i - 1) th customers is equal to t~ - t ~ - i  for i = 1 , 2 , . . . ,  k. Hence, 

the condi t ional  probabi l i ty  densi ty  function w(t t k, l) is equal to the  lth element of the  column 

vector given by 

Since e c (x -y /  = eC~e - c y  = e-CYe cx  [13], we can rearrange the above as 

{fflk.t ( eCt 'De-Ct : ) (eCt2De-Ct2)" ' (eCtkDe-Ctk)eCtDdt ld t2""d tk}  l-r" (17) 
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Hence, W~(x) can be written by 

K-1 ~ fxOr W~(x) = E rc*(k + c - l, l) w(t I k, l) dt 
k=o l=o (18) 
K-1 c~ 

= E P k ~  dtMk(t)e ctD1T. 
k=O 

Note that  Pk is the row vector whose/th element gives the steady-state probability tha t  an arriving 
customer finds k waiting customers and l servers are in the wrap-up stute at arrival epoch. Since 
each eigenvalue of C is strictly negative, C is invertible and l i m t ~  exp(Ct)  = O [10], where O 
is the matrix whose elements are all zero. Recalling the relation (C + D ) I  T = 0 T [9], where O r 

is the transpose of vector 0, we can show tha t  

jfxC~ dt Mk(t)eCtD1T = Mk( t )eCtC- lD1X [~ - ffzC~ dt ~ e C t C - l D 1  x 

/? = Mk(x)eC~l  r + dtMk_a(t)eCtD1 T 

(19) 

= E Mn(x)eCXlT" | 
n=0 

In order to evaluate the waiting time distribution, we need to calculate Mk(x)  which is in the 
form of the multiple integral of the matrix products in general. However, it is difficult to evaluate 
the multiple integral of eCtDe - c t  analytically and even numerically except for the special case 
such as when C and D commute. In what  follows, we further analyze the waiting time distribution 
and make it in as simple a way as possible for analytically and numerically easy evaluation. To 
this end, we need some preliminaries of algebraic properties on C and D for the queueing system 

with postservice activity. 

DEFINITION 3.1. For two square matrices X and Y ,  we define the commutator IX, Y] by 

[X, Y] a_ X Y  - Y X .  (20) 

W'e can directly calculate the commutator  on C and D matrices given by equations (8) and (9). 
We summarize the results as the following lemma. 

LEMMA 3.1. The elements (i,j) of the commutators [C, D] and [C, [C, D]] are calculated as 

{[C,D]}~,j = ( c -  2i)#~5~,j + i ( # -  ~)~5~,j+,, (21) 

and 
{[C, [c ,  D]I}~,j = - 2 ( c  - i)#2(Si,j_, + (c - 2i)(# - ~)p~5,,j + i(# - ~)2~6~,j+~. (22) 

Furthermore, the commutator [C, [C, [C, D]]] is calculated as 

[C, [C, [C, D]]] = (p - ~)2[C, D]. (23) 

Hence, we have 
n 
^ ( (# - ~)2k[C,D], n = 2 k + l ,  iC,[C,...,[C,D]...I]=, (# - ~)2k[C, [C, D]], n = 2 k + 2 ,  

(24) 

[ork >_O. 
PROOF. We can check this lemma by direct calculation. Details are described in the Appendix. | 

Before proceeding, we need the following key lemma for our analysis. 



214 K. KAWANISHI 

(See [13].) For a given t c R and square matrices X and Y,  the matrix eXtye  - x t  LEMMA 3.2. 
can be expanded as 

n 
o o  t n  r 

eX tye -X t  = Y + E ~. IX, [X, . . -  , [)(, Y I " "  ]]. (25) 
r t = l  

Combining Leinma 3.1 and the Baker-Hausdorff lemma immediately leads us to the next lemma. 

LEMMA 3.3. Let C and D be matrices given by equations (8) and (9), respectively. If # r ~, 
then we have 

eCtDe - c t  = D + f( t ) [C,  D] + g(t)[C, [C, D]], (26) 

where f ( t)  and g(t) are scalar fimctions defined by 

f ( t )  ~ sinh((# - ~)t) 

g(t) ~ cosh( (~-  ~)t) - 1 (28) 
(~ - ~)2 

If # = ~, then eCtDe - c t  can be further simplified as 

t 2 
eCtDe - c t  = D + tiC, D] + -~[C, [C, D]]. (29) 

PROOF. Applying the Baker-Hausdorff lemma with the combination of Lemma 3.1, we have for 

n 

t 2 t ,~ . ^ 
eCtDe - c `  = D + t [ C , D ]  + [ [ C , [ C , D ] ]  + - - -  + ~. [C , [C , . . .  , [ (~,D]. . . ] ]  + . - .  

( t 3 t 5 ) 
= D +  t + ~ ( # - ~ ) 2 + ~ ( # - ~ ) 4 +  . . .  [C,D] 

( t2 t 4 t 6 ) 
+ ~ + ~ . ( t t - ~ ) 2 + ~ ( # - ~ ) 4 +  .. .  [C,[C,D]] (30) 

= D + \ 2(# - [) ] 

( e("-~)' + e - ( ' - ' ) t  1 ) [ C , [ C . D ] ]  ' 
+ 2( .  - ~)2 (u - ~  

Recalling the definitions of sinh(x) and cosh(x), we obtain the first statement. In case of # = ~, 
we can easily derive the result by taking the limit of # ~ ~. | 

REMARK. Lemma 3.3 indicates that  eCtDe -Ct has the form of sum of the three matrices D. 
[C, D], and [C, [C, D]]. It  also indicates that  we can factorize the t-dependence of the matrix 
eCtDe -c t .  Hence, M~(x)  can be written in terms of the products of the three matrices in closed 
form. Moreover, each product has the coefficient given by the multiple integral of the scalar 
functions f ( t )  and g(t) which are explicitly given. 

The remaining task to calculate the waiting time distribution is to evaluate tile matrix expo- 
nential exp[Cx]. Because C is the triangular form, we can easily obtain its eigenvalues from the 
characteristic equation. Note that  C has c + 1 distinct eigenvalues - c # , - ( c -  1)I~-  ~ , . . . , - #  - 
( c -  1)~,-c~ when # r ~. Hence, if we can find the right and left eigenvectors corresponding 
each eigenvalue explicitly, exp[Cx] can be easily calculated by using the spectral representation 
of C. Let us denote t h e e i g e n v a l u e o f C  byAm = - ( c - m ) # - m ~ ,  and let um a n d v m  be the 



Waiting Time Distribution 215 

corresponding the right and left eigenvectors, m E {0, 1 , . . . ,  c}. Then,  they  are given by solving 

the system of equations 
Curn = A,nUm, v m C  = Amvm. (31) 

For each eigenvalue, in principle, we can express um and Vm in te rms of # and ~. However, it 

is often difficult to obta in  the  left and right eigenvectors in closed form even if the  eigenvalues 

are ana ly t ica l ly  obtained.  In our case, we can analyt ica l ly  evaluate  them by vi r tue  of the  specific 
s t ruc ture  of C. In fact, we can check the following lemma (proof is given in the Appendix) ,  

which presents a formal, explicit  solution in terms of U and V composed of the  right and left 

eigenvectors um and vm ( m e  {0, 1 , . . . ,  c}). 

LEMMA 3.4. Let  U be a (c + 1) x (c + 1) matr ix  whose first column is u0, second column is u l ,  

and so on. Similarly, let V be a (c + 1) • (c + 1) ma t r i x  whose first row is vo, second row is v~, 

and so on. We can then show that these matrices are  explicitly given by 

u = ( -o ,  u ~ , . . . ,  uc), (32) 
t . .  V t V = ( v ~ , v l , .  , c),  (33) 

where Um and v ~  (m C {0, 1 , . . . ,  c}) are both column vectors which are  formally expressed by 

differentiating the vectors 

Z - 1  

U c ~ 
! 

V c 
( i  c W - 1  # 

, z - -  z + w = O, ( 3 4 )  ~ - ~ '  

element by element as 

1 d m 1 d m ! ! 

uc-,~ m! dz muc '  Vc-m - m! dw mvc '  for m = 0, 1 , . . . , c .  (35) 

It  can also be shown by direct  calculat ion tha t  the  relat ion U V  = I holds. By using the 

spectral  representa t ion  C = U A V  with A = d i a g { - c # , - ( c  - 1)/~ - ~ , . . . ,  - #  - (c - 1 ){ , - c~} ,  
exp[Cx] can be explici t ly  wr i t ten  in terms of #, ~, c. When  # = ~, the  character is t ic  equat ion has 
the mult iple  roots  of order c + 1, i.e., all eigenvalues of C are - c # .  In this  case, we can also have 
an explicit  solut ion of exp[Cx] by jus t  taking the l imit  of ~ --~ # in the  spectra l  representat ion 

of C. 
In summary,  the condi t ional  wait ing t ime dis t r ibut ion can be expressed in te rms of several 

mat r ix  produc ts  which are expl ici t ly  given by the sys tem paramete r s  #, ~, and c. Because 
M . ( x ) e  cx is indeed related to the  number  of arrival events in (0,x] for the Markovian arrival 

process wi th  represent ing matr ices  C and D,  our closed-form solut ion gives an analyt ica l ly  exact  
expression of the  probabi l i ty  mat r ix  P ( n , x )  for the  counting process of the  M A P  [9]. The 
successful der ivat ion depends  on the fact t ha t  the matrices C and D have a specific s tructure.  
In practice,  it  is desirable to  provide an a lgor i thm for comput ing  the wai t ing t ime dis t r ibut ion,  

ra ther  than  deriving an explicit  formula. We, however, believe tha t  a closed-form solution is 

interest ing to derive, at  least, from the mathemat ica l  point  of view. The  effectiveness of the  

closed-form solut ion is not  pursued in this paper  but  is left for another  study. 

4 .  E X A M P L E  

We show examples  of the  closed-form solution. For simplicity, we calculate  the  queueing system 

with c = 2 servers. In this  case, the  mat r ix  C has the  spectra l  representa t ion  given by 

C = 0 1 z - ( #  + ~) 0 1 w . (36) 

0 0 1 0 - 2 ~  0 1 
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Hence we have exp[Cx] explici t ly  as 

1 2z z 2 / e  -2t 'x 0 0 1 2w ' 

exp[Cx] = 0 1 z 0 e -( t '+()x 0 0 1 . 
0 0 I 0 0 e -2~x 0 0 

(37) 

The  closed-form solut ion of M ~ ( z )  can be wr i t ten  in terms of the  three  matr ices  D,  E = [C, D], 
and F = [C, [C,D]] for general  c. The  coefficient of the  diagonal te rms such as D n for t i le 

general  M n ( x )  can be easily obta ined as follows: 

X n 

D n m 

n ! '  

En { ' c o s h ( ( # -  ( )x )  - 1 ) n  1 
\ (~ ~)2 n!' 

F n :  ( s i n h ( ( P -  ~)x) - ( P -  ~ ) x )  n n--~." 

The explici t  expression of the cross terms is relat ively involved. However, we can derive them by 
evaluat ing the mul t ip le  integral  of the  scalar functions f ( . )  and g(.). Here, we show the first two 
matr ices  M1 (x) and M2 (x) as examples.  Denoting by a = # - ~, and using shor thand  notat ions 
sh(.) = sinh(.) and ch(.) =- cosh(-), it  can be shown by direct  calculat ion tha t  

ECh(ax)  - 1 FSh (a x )  - ax  
MI(X)  = D x  + a2 + a3 , 

M2(x)  = D2X 22_ + DEaXCh(aX)a 3- sh(ax)  

+ D F  2ax sh(ax)  - (ax)  2 - 2 ch(ax)  + 2 
2a 4 

E D  sh(ax) - ax  1) 2 + + E2 (ch(ax) - 
a 3 2a 4 

+ E F S h ( a x )  ch(ax)  + 3ax - 4sh(ax)  
2a 5 

+ F D  2 ch(ax) - (ax) 2 - 2 
2a 4 

+ F E S h ( a x ) c h ( a x )  - ax  - 2ax  ch(ax) + 2 sh(ax)  
2a 5 

+ F2 (sh(ax)  - ax) 2 
2a 6 

(38) 

(39) 

In case of # = (, we can obta in  the  coefficients by taking the l imit  a ---* 0. 

5. C O N C L U S I O N  

In this  paper ,  we have considered a queueing system with postservice activity.  Using the 

Markovian point  process, or Markovian arrival process (MAP),  we have derived the wait ing t ime 

d is t r ibut ion  in terms of the  representing matr ices  of a par t icu la r  MAP. We have applied the 

Baker-Hausdorff  l emma to the matrices.  Exploi t ing the  specific s t ruc ture  of the  matrices,  we 

have obta ined  the condi t ional  wait ing t ime dis t r ibut ion  in closed form. As a byproduct ,  we have 
given an ana ly t ica l ly  exact  expression of the  probabi l i ty  mat r ix  P ( n ,  x) for the  counting process 

of t i le MAP. Sortie analyt ic  examples  have also been shown. 
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A P P E N D I X  

P r o o f  o f  L e m m a  3 .1 .  

Here  we give the  de t a i l ed  ca lcu la t ion  of  the  c o m m u t a t o r  of  C and  D to p rove  L e m m a  3.1. 
In  the  following, we use the  E ins t e in  s u m m a t i o n  convent ion  t h a t  doub le  ( d u m m y )  indices  are 
s u m m e d  over au toma t i ca l l y ,  viz.,  aib i  m e a n s  }~ i  a ib i .  Then ,  i t  follows t h a t  

{C}~,k{D}k,y = {(c - i ) ,5~ ,k-1  - [(c - i ) ,  + i~]5~,k}k(Sk,j+l 

{D} i ,k{C}k , j  = i(5~,k+1{(c - k ) p S k , j - i  - [(c - k ) ,  + k~]~a, j}  

= i ( c  - i + 1)H45i.j - i [ (c  - i + 1)p + (i - 1 ) ~ ] ~ . , j + , .  

Consequent ly ,  the  c o m m u t a t o r  [C, D] has  e lement  ( i , j )  given by 

{[C, D]} , , j  = {C}~ ,k{D}k j  -- {D}, ,k{C}k,y  
( 4 0 )  

- ( e  - 2 i ) . { ~ , j  + i ( ~  - ~ ) ~ , j + l .  

In the  same  way, we can  conf i rm by d i rec t  ca lcu la t ion  t h a t  

{C}/ ,k{[C,  D1}k,j = (c - i )[c  - 2(i  + 1)1#2~i ,5_ ,  + (c -- i ) ( i  + 1) (#  - ~ ) , ~ i , j  

- [ (~  - i ) .  + i~1 (~  - 2 i ) . ~ , ~  - [ (c  - i ) .  + i ~ ] ~ ( .  - ~ ) ~ , j + , ,  

{[C, D l} i , k{C}k , j  = (c -- 2 i ) (c  -- i ) , 2~5 id_1  -- (c - 2i)[(c -- i ) p  + i ( ] , ( S i , j  

+ i{~ - ( i  - 1 ) ] ( .  - ~ ) ~ , 3  

- i [ ( c  - ( i  - 1 ) ) #  + ( i  - 1 ) ( 1 ( #  - ~ ) ~ 6 i , j + ~ .  

Hence,  we can express  e lement  ( i , j )  of the  c o m m u t a t o r  [C, [C, D]] as 

{[C, [ C , D ] ] } i d  = - 2 ( c  - i ) # ~ / , j _ ~  + (c - 2 i ) ( .  - ~ ) # ~ i , j  + i ( .  - ()~(5~,y+~. (41) 

F u r t h e r m o r e ,  we can  ca lcu la te  e l emen t  ( i , j )  of the  c o m m u t a t o r  [C, [C, [C, D]]] by d i rec t  calcu-  
la t ion,  which resul t s  in 

{[C, [C, [C, D]]]}i , j  = (#  - ~)2{[C, D l } i j .  (42) 

P r o o f  o f  L e m m a  3 .4 .  

Next ,  we give the  expl ic i t  left  a n d  r ight  e igenvectors  of  C given in L e m m a  3.4. Define t he  r ight  
e igenvec tor  x (i) for i ts e igenvalue  )~i = - ( c -  i ) # -  i (  for i ~ {0, 1 , . . .  ,c}.  D e n o t i n g  the  m th 

e lemcnt  of the  r ight  e igenvec tor  x (i) by x ~  ), C x  (i) = A/x (/) gives 

- [ ( ~  - m ) .  + - ~ ] z ( ~ )  + (~  - m ) . x } : ) + l  = - [ ( ~  - i ) .  + i ~ ] ~ )  

for m ~ {0, 1. c} w i th  -(~) = 0 and  we can choose  x ,  Xc+ 1 = 0. Se t t i ng  m i, we have  _(i) _(i) = 1 
�9 . . . , ~ ; z i +  1 

S i n c e .  ~ 0, ~ ~ 0, and  # r ~, we have _(0 _(~) -- = x(~ i) = 0. For  m �9 {0, 1,.  i 1}, 
we have the  r e l a t ion  

= ( c -  x ( , )  _ 

S u b s t i t u t i n g  1 for xl  i), we ob t a in  

~-k  = k zk  

for k ~ {0, 1 , . . . ,  i}. Di f fe ren t ia t ing  x l~  ~ w i th  respec t  to  z and  d iv id ing  by (c - i + 1), we ob t a in  

1 1) 
c - i + 1 d z  ' ' i - k  = k 1 zk-1 

for i ~ {1, 2 , . . . ,  c}. T h e  r i g h t - h a n d  side is exac t ly  the  e l emen t  of t he  (i - 1) th r ight  e i g e n v e c t o r  
In case of the  left  e igenvector ,  we can  s imi la r ly  o b t a i n  the  expl ic i t  express ion .  
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