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a b s t r a c t

Plasticity appears to be a ubiquitous property of nervous systems, regardless of developmental stage or
complexity. In the visual system of higher mammals, perceptual plasticity has been intensively studied,
both during development and in adulthood. However, the last few years have seen some significant con-
troversies arise about the existence and properties of visual plasticity after permanent damage to the
adult visual system. The study of perceptual plasticity in damaged, adult visual systems is of interest
for several reasons. First, it is an important means of unmasking the relative contribution of individual
visual areas to visual learning, adaptation and priming, among other plastic phenomena. Second, it can
provide knowledge that is essential for the development of effective therapies to rehabilitate the increas-
ing number of people who suffer the functional consequences of damage at different levels of their visual
hierarchy. This review summarizes the available evidence on the subject and proposes that visual plas-
ticity may be just as ubiquitous after damage as it is in the intact visual system. However, damage may
alter visual plasticity in ways that are still being defined.

� 2008 Elsevier Ltd. All rights reserved.
1. Definitions

Perceptual plasticity or the ability to alter perception, usually as
a result of experience, takes on many forms, including perceptual
learning, adaptation and priming. It is a well-described feature of
mammalian visual systems throughout the lifespan (see reviews
by Gilbert, Das, Ito, Kapadia, & Westheimer, 1996; Kaas, 1995). This
is no surprise, given that the visual system, even in adulthood, ap-
pears to exhibit functional plasticity at every stage of processing,
from photoreceptors (Smallman, MacLeod, & Doyle, 2001) to high-
er-level cortical areas (e.g. Zohary, Celebrini, Britten, & Newsome,
1994). As a result, the adult visual system is capable of substantial
changes in sensitivity following visual stimulation (e.g. Fahle &
Poggio, 2002; Gilbert, 1996; Gilbert, Sigman, & Crist, 2001; Gold-
stone, 1998; Ramachandran, Cobb, & Yang, 1994), deprivation
(Fine, Smallman, Doyle, & MacLeod, 2002; He, Hodos, & Quinlan,
2006; Komatsu, 2006; Mendola, Conner, Sharma, Bahekar, & Lem-
ieux, 2006) and even abnormal development, as in amblyopia (e.g.
Kupfer, 1957; Levi & Polat, 1996; Levi, Polat, & Hu, 1997; Polat, Ma-
Naim, Belkin, & Sagi, 2004; Simmers & Gray, 1999; Zhou et al.,
2006). The present review will, following a brief description of vi-
sual plasticity in the normal, adult brain, attempt to summarize the
state of the field related to perceptual plasticity after damage to
the adult visual system.
ll rights reserved.
2. Perceptual plasticity with an intact visual system

2.1. Task-dependent and task-independent learning

In many instances, changes in sensitivity are driven by task de-
mands (e.g. during task dependent learning—Ahissar & Hochstein,
1993; Ball & Sekuler, 1987; Fiorentini & Berardi, 1980; Karni & Sagi,
1993a; Ramachandran & Braddick, 1973). However, evidence also
suggests that the visual system can adapt to stimulus features that
are subliminal, not the main focus of attention, and in some cases,
not even relevant to the task (Watanabe et al., 2002; Watanabe,
Nanez, & Sasaki, 2001). The major requirement for this form of per-
ceptual plasticity is that irrelevant or subliminal stimulus features
be presented synchronously with task-relevant, supraliminal fea-
tures (Seitz & Watanabe, 2003, 2005), suggesting that Hebbian
neural mechanisms (Hebb, 1949) may underlie this phenomenon.
2.2. A role for V1 in visual plasticity

An interesting characteristic of both task-dependent and task-
irrelevant visual learning is their apparent reliance on relatively
low-level, retinotopically organized areas of the visual system.
The primary evidence for this comes from a large number of stud-
ies showing specificity of learning for fundamental stimulus fea-
tures such as orientation (Crist, Kapadia, Westheimer, & Gilbert,
1997; Fiorentini & Berardi, 1980; Ramachandran & Braddick,
1973), spatial frequency (Fiorentini & Berardi, 1980), direction of
motion (Ball & Sekuler, 1987; Vaina, Sundereswaran, & Harris,
1995), visual field location (Crist et al., 1997; Fiorentini & Berardi,
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1980; Karni & Sagi, 1991; Shiu & Pashler, 1992) and eye of presen-
tation (Karni & Sagi, 1993a). These specificities are consistent with
the smaller receptive field sizes, selectivity for stimulus attributes
and ocular dominance observed in early visual cortical circuits,
including primary visual cortex or V1 (Maunsell & Newsome,
1987). This notion is supported by electrophysiological recordings
in monkeys (Crist, Li, & Gilbert, 2001; Schoups, Vogels, Qian, & Or-
ban, 2001) as well as fMRI (Furmanski, Schluppeck, & Engel, 2004;
Schwartz, Maquet, & Frith, 2002; Walker, Stickgold, Jolez, & Yoo,
2005) and EEG (Pourtois, Rauss, Vuilleumier, & Schwartz, 2008)
studies in humans, which demonstrate functional plasticity in V1
that parallels behaviorally measured perceptual plasticity—in this
case, visual learning.

2.3. A role for higher-level visual cortex in visual plasticity

A role for V1 or other low-level visual areas in perceptual plas-
ticity does not preclude an important (albeit different) contribu-
tion of higher levels of the visual cortical hierarchy to this
phenomenon (Ahissar & Hochstein, 1997; Dosher & Lu, 1998; Gil-
bert et al., 1996; Herzog & Fahle, 1997; Hupe et al., 1998; Karni &
Sagi, 1993b; Liu, 1999; Schwartz et al., 2004). The fact that in some
cases, task dependent learning is associated with a reduction in
external noise and an enhancement in signal extraction, is thought
to reflect plasticity in, and mediation by higher-level visual cortical
areas (Dosher & Lu, 1998). Interestingly, Fine and Jacobs (2002)
found that humans show more learning on tasks requiring discrim-
inations along multiple perceptual dimensions than on tasks
requiring discrimination along a single dimension. Humans also
exhibited more learning when external noise was added to an
otherwise unambiguous stimulus (Fine & Jacobs, 2002), suggesting
perhaps, that higher level visual areas not only mediate different
aspects of visual learning relative to V1, but perhaps, that they
mediate larger learning effects as well.

Other evidence for the role of higher level visual areas in per-
ceptual plasticity has come from electrophysiological recordings
in primate area V4, demonstrating significant changes in both
neuronal responsiveness and orientation tuning following train-
ing on a fine orientation discrimination task (Yang & Maunsell,
2004). With respect to visual motion discrimination learning,
the fact that it can transfer between the two eyes and is highly
specific for directions trained if the task is difficult (Ball & Sekul-
er, 1982, 1987) has implicated area MT, with its binocular, highly
direction selective neurons, rather than V1, as a potential site for
learning (Lu, Qian, & Liu, 2004). However, nothing in the mature
visual system appears set in stone, including the visual areas
mediating different aspects of visual plasticity. Indeed, when task
difficulty was relaxed, training accelerated learning away from a
trained motion direction (Liu, 1999; Liu & Vaina, 1998; Liu &
Weinshall, 2000). Thus, a simple change in test conditions can in-
duce a change in specificity and possibly, in the visual circuitry
mediating learning.

A further level of complexity appears to exist at the highest lev-
els of the visual cortical hierarchy. In primate inferotemporal (IT)
cortex, the highest level in the ventral visual stream (Felleman &
Van Essen, 1991; Ungerleider & Mishkin, 1982; Van Essen, Ander-
son, & Felleman, 1992; Van Essen & Maunsell, 1983), training with
particular stimulus categories alters the neuronal representation of
diagnostic features for the trained categories (Sigala & Logothetis,
2002). As a result, training monkeys to discriminate novel visual
stimuli causes the emergence of a population of IT neurons which
begin to respond selectively to the novel stimuli (DiCarlo & Maun-
sell, 2000; Kobatake, Wang, & Tanaka, 1998; Logothetis, Pauls, &
Poggio, 1995; Sato, Kawamura, & Iwai, 1980), or which become
capable of distinguishing between them (Jagadeesh, Chelazzi,
Mishkin, & Desimone, 2001).
Taken together, the weight of experimental evidence supports
the notion that plasticity is a ubiquitous property of the adult
mammalian visual system. However, it also demonstrates signifi-
cant differences in the contributions of different levels of the visual
system to perceptual plasticity. While these differences are evi-
dent, the neural mechanisms that give rise to them remain poorly
understood. For instance, it is often difficult to identify whether
there is increased plasticity at higher levels of the visual system,
or whether the amount of plasticity is constant at every level of
the visual system, but its expression differs because of limitations
imposed by neuronal properties specific to each processing level. It
is hoped that future studies may shed some light on this issue,
since understanding the potential for plasticity inherent in differ-
ent processing levels of the adult visual has critical implications
for the rehabilitation of visual system disorders. Indeed, the easy
adaptability of the intact visual system raises interesting questions
about its ability to change when critical components of the cir-
cuitry are damaged. Clearly, damage impairs vision. To what extent
does it also affect perceptual plasticity?
3. Damaging different levels of the adult visual system affects
perception differently

An in depth analysis of perceptual plasticity after visual system
damage cannot take place without first examining the perceptual
consequences of such damage. The sheer complexity of the visual
system means that damage to its different components causes vi-
sual problems that differ in quality, severity and thus, functional
consequence for the organism as a whole. From a simple retinotop-
ic standpoint, there are already major differences in the effect of
damage at different points along the information transfer path be-
tween the retina and primary visual cortex (Fig. 1). Retinal damage
causes localized (‘‘retinotopic”), usually complete blindness by
depriving the rest of the visual system of its basic sensory input.
In fact, blindness (in the form of visual field loss) results when
V1 or any of its inputs (down to the retina) are damaged. However,
it should be noted that the blindness that results from damage at
different levels of this early visual pathway differs not only in
topography (as shown in Fig. 1), but also in quality and properties.
For instance, the blindness that results from V1 damage is not as
‘‘deep” or complete as that induced by retinal lesions (see discus-
sion below).

Damage to higher-level, extrastriate visual cortex causes even
more subtle, area-specific abnormalities of visual perception with-
out frank blindness. For example, in humans, temporal cortex le-
sions predominantly cause abnormalities of face perception
(prosopagnosia) and/or perception of complex objects and shapes
(Damasio, Damasio, & Van Hoesen, 1982; Huxlin & Merigan,
1998). Motion perception abnormalities occur when the MT com-
plex is damaged (Vaina, 1989, 1994; Zeki, 1991; Zihl, Von Cramon,
Mai, & Schmid, 1991), while color vision abnormalities usually re-
sult from damage to the fusiform and lingual gyri (Bartels & Zeki,
2000; Damasio, Yamada, Damasio, Corbett, & McKee, 1980; Zeki,
1990; Zeki & Marini, 1998).

3.1. The special case of V1 damage

Among the different forms of visual cortical damage in humans,
V1 damage is both the most commonly reported and the most dev-
astating. The principal reason for this is that V1 is the main gate-
way through which visual information reaches the rest of
[extrastriate] visual cortex (Fig. 2; reviewed by Felleman & Van Es-
sen, 1991; Van Essen & Maunsell, 1983; Van Essen et al., 1992). As
a result, unilateral damage to V1 or its primary inputs causes an
inability to consciously perceive most types of visual information



Fig. 1. Ventral view of visual pathways in the human brain illustrating the topography of visual field defects that result from damage (red bars in middle, schematic diagram)
at different levels of the visual pathway. This is illustrated here only for the right hemisphere, but can clearly occur in the left hemisphere or bilaterally. Note that even for
unilateral damage, there are bilateral effects on visual function once the optical chiasm is crossed. dLGN—dorsal lateral geniculate nucleus; SC—superior colliculus.
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in the contra-lateral visual hemifield (see examples in Fig. 3—Cow-
ey & Stoerig, 1991, 1995; Holmes, 1918; Teuber, Battersby, & Bend-
er, 1960; Weiskrantz, Warrington, Sanders, & Marshall, 1974).
When it affects the majority of the contra-lateral hemifield, such
cortical blindness is termed a ‘‘homonymous hemianopia” or
‘‘hemianopsia”. It most commonly occurs as a result of unilateral
stroke, trauma, or tumor in the visual thalamus, optic radiation
or primary visual cortex (Gilhotra, Mitchell, Healey, Cumming, &
Currie, 2002; Zhang, Kedar, Lynn, Newman, & Biousse, 2006a).

In mammals with relatively high-acuity, color vision (including
monkeys and humans), V1 damage is doubly devastating. In these
animals, visual information is relayed from the retina to the pri-
mary visual cortex via a largely parallel, labeled-line system.
Therefore, V1 damage destroys not only an important visual pro-
cessing center (V1 itself), but also causes the retrograde degenera-
tion of neurons in retinotopically corresponding areas of the dorsal
lateral geniculate nucleus (dLGN), and subsequently, the death of a
large portion of parvocellular (Pb retinal ganglion cells in the eye
(Cowey & Stoerig, 1991; Cowey, Stoerig, & Perry, 1989).

3.2. Residual vision and blindsight after V1 damage—Behavioral
characteristics

In spite of retrograde degeneration at lower levels of the visual
system and in contrast with the aftermath of primary retinal le-
sions, vision after V1 damage does not completely disappear with-
in cortically blind portions of the visual field (e.g. Barbur, Harlow, &
Weiskrantz, 1994; Morland et al., 1999; Pöppel, Held, & Frost,
1973; Riddoch, 1917; Weiskrantz, 1986, 1990, 1996). Evidence
from a number of patients with V1 lesions demonstrates the exis-
tence of basic residual visual motion, form and wavelength sensi-
tivity in the blind field (e.g. Blythe, Kennard, & Ruddock, 1987;
Weiskrantz, Harlow, & Barbur, 1991; Zeki & Ffytche, 1998), find-
ings that have been broadly replicated in monkeys with V1 damage
(Cowey & Stoerig, 1995; Pasik & Pasik, 1982). Such preserved vi-
sion was originally termed ‘‘blindsight” (Weiskrantz, 1986; Weisk-
rantz et al., 1974) to denote the fact that it often occurred in the
absence of awareness. However, more recent studies have shown
that this residual vision is not simply an unconscious form of nor-
mal vision, such as might be mediated by islands of intact V1 cor-
tex within the broader zone of damage (Gazzaniga, Fendrich, &
Wessinger, 1994; Morland, Le, Carrol, Hoffmann, & Pambakian,
2004). First, it varies considerably among affected individuals,
likely because the amount and precise location of damage sus-
tained varies between individuals (Blythe et al., 1987; Morland
et al., 2004). Variability in the amount of conscious vision experi-
enced by different individuals with V1 damage has caused investi-
gators to break up the syndrome into classes, including blindsight
types I and II, with type I denoting the unconscious version of
blindsight or ‘‘agnosopsia” (Zeki & Ffytche, 1998) and type II or
‘‘gnosopsia” (Zeki & Ffytche, 1998) denoting residual vision accom-
panied by awareness (Weiskrantz, 1986, 1997; Weiskrantz, Barbur,
& Sahraie, 1995).

3.3. Residual vision after V1 damage—Underlying mechanisms

One very specific manner in which residual vision after V1 dam-
age differs from vision with an intact visual system is that residual
vision is narrowly tuned in the spatio-temporal domain (Barbur
et al., 1994; Sahraie et al., 2003; Weiskrantz et al., 1991). Visual
stimuli that are sensed tend to be simple (e.g. grating), with spatial
frequencies around 1 cycle/deg and temporal frequencies around
10 Hz. Stimuli moving faster than about 5�/s or with a steep onset
and offset are also most easily detectable (Morland et al., 1999).
The most likely explanation for residual visual capacities with
these specific characteristics is the existence of several pathways
that can transmit information from the retina to extrastriate cor-
tex, bypassing V1 (examples shown in red in Fig. 2). Indeed, a se-
lect number of dLGN neurons and even Pb retinal ganglion cells
are known to survive over the long term within retinotopic areas
corresponding to the V1 lesion (reviewed by Cowey & Stoerig,
1991). In monkey dLGN, the survival of these cells is due to their
lack of direct projection to V1. Instead, they project to extrastriate
visual cortical areas, including V4 (Cowey & Stoerig, 1989), V2
(Hendry & Reid, 2000) and MT (Sincich, Park, Wohlgemuth, & Hor-
ton, 2004).

In addition, several extra-geniculocalcarine pathways bypass
both the dLGN and V1, terminating directly in extrastriate visual
cortex (reviewed in Cowey & Stoerig, 1991). The extra-geniculo-
calcarine pathway most commonly invoked in residual visual func-
tions after V1 damage is the retinal projection to the superior
colliculus (SC), hence to the pulvinar/LP complex and finally, to



Fig. 2. Schematic representation of the connectional complexity of the primate visual system according to Van Essen and colleagues (Van Essen et al., 1992). This diagram
illustrates well the serial and hierarchical organization of the system. Superimposed on this diagram in red is a connectional explanation for the preservation of residual visual
functions following V1 damaged. Indeed, when V1 is damaged, visual information can still reach higher level visual areas directly, either through the lateral geniculate
nucleus (LGN) or through the superior colliculus (SC)/Pulvinar. Current knowledge indicates that pathways, which bypass V1 on their way to extrastriate visual cortical areas,
tend to terminate in either V4 or MT, and thus, should theoretically be capable of mediating both motion and form processing.
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extrastriate visual cortex, especially to dorsal stream areas such as
V5 or MT/MST (Fig. 2; Benevento & Rezak, 1976; Cragg, 1969),
which are thought to be critical for many aspects of motion percep-
tion (Newsome & Paré, 1988; Pasternak & Merigan, 1994; Tootell
et al., 1995; Zeki et al., 1991). Indeed, MT neurons maintain activ-
ity, including directionally selective responses after lesions or inac-
tivation of V1 in monkeys (Girard, Salin, & Bullier, 1992; Rodman,
Gross, & Albright, 1989; Zeki & Ffytche, 1998) and humans (Goebel,
Muckli, Zanella, Singer, & Stoerig, 2001). However, in monkeys,
additional SC removal abolishes these visual responses (Mohler &
Wurtz, 1977; Rodman, Gross, & Albright, 1990; Rodman et al.,
1989). In summary, damage at different levels of the adult visual
system causes different types of perceptual deficits. Does it also af-
fect visual plasticity?

4. Visual deficits are not stable—Spontaneous perceptual
plasticity after damage

While we cannot categorically claim that visual perceptual plas-
ticity is completely normal following visual system damage in
adulthood, an important clue that speaks to its preservation is
the fact that visual deficits that first arise after the insult are rarely
stable. This pertains both to retinal damage and damage at higher
(cortical) levels of the visual system.



Fig. 3. Magnetic resonance images (MRI) of three different human subjects (A, B and C) who sustained unilateral, stroke-induced damage of V1 or the optic radiation during
adulthood. Note the darkened, damaged areas of the brain in the occipital cortex of each subject (white arrows). Adjacent to each MRI image is that particular subject’s 24-2
Humphrey visual field, measured independently through the left (OS) and right (OD) eyes. The solid black areas in each visual field indicate lack of sight. Numbers on the axes
are in degrees of visual angle relative to central fixation. Note the homonymous nature of the field defects resulting from damage to V1.
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4.1. Spontaneous plasticity after retinal lesions

Over time, human subjects suffering from macular degenera-
tion, and other, relatively large retinal lesions exhibit perceptual
filling-in of the resulting scotomas (blind spots), as well as distor-
tions of visual space in and around them (Burke, 1999; Craik, 1966;
Gerrits & Timmerman, 1969; Kapadia, Gilbert, & Westheimer,
1994; Zur & Ullman, 2003). Experimental evidence in several spe-
cies (Calford, Wright, Metha, & Taglianetti, 2003; Darian-Smith &
Gilbert, 1994, 1995) suggests that a major cellular/anatomical sub-
strate for this phenomenon is cortical reorganization, both within
and around the silenced zone of primary (and likely higher le-
vel—see De Weerd, Gattass, Desimone, & Ungerleider, 1995) visual
cortex. The result is a distortion of the retinotopic map in V1 (and
most likely, in other visual areas as well), with neurons in the le-
sion-projection zone becoming responsive to stimulation of the
retina surrounding the area of damage (Calford, Schmid, & Rosa,
1999; Chino, Kaas, Smith, Langston, & Cheng, 1992; Chino, Smith,
Kaas, Sasaki, & Cheng, 1995; Gilbert & Wiesel, 1992; Heinen &
Skavenski, 1991; Kaas et al., 1990; Schmid, Rosa, Calford, & Ambler,
1996). Although the fundamental finding of altered neuronal
responsiveness within and around the lesion projection zone in
V1 and its interpretation in terms of retinotopic map alteration
has been questioned (Baker, Peli, Knouf, & Kanwisher, 2005; DeAn-
gelis, Anzai, Ohzawa, & Freeman, 1995; Smirnakis et al., 2005; Sun-
ness, Liu, & Yantis, 2004), the observation that perceptual changes
occur after retinal lesions or artificial scotomas in adult mammals
remains.

The simple existence of perceptual changes after retinal damage
implies that some form of perceptual plasticity exists, even if its
exact mechanisms are not yet fully understood (but see evidence
for possible cellular mechanisms in the more recent work of Arc-
kens et al., 2000; Arckens, Van Der Gucht, Eysel, Orban, & Vande-
sande, 2000; Giannikopoulos & Eysel, 2006; Van den Bergh, Eysel,
Vandenbussche, Vandesande, & Arckens, 2003). The fact that the
visual system remains capable of perceptual plasticity after retinal
damage is the major reason why patients who suffer from foveal or
macular damage spontaneously develop one or more alternative,
preferred retinal loci (PRL) of fixation (Cheung & Legge, 2005;
Crossland, Culham, Kanbanarou, & Rubin, 2005; Cummings, Whit-
taker, Watson, & Budd, 1985; Schuchard & Fletcher, 1994). Indeed,
the development of PRLs is an important aspect of occupational
therapy for this patient population, allowing for the restoration, al-
beit to a limited extent, of reading, navigation and driving abilities
(e.g. Schuchard & Fletcher, 1994; Watson, Schuchard, De l’Aune, &
Watkins, 2006).

4.2. Spontaneous plasticity after V1 damage

4.2.1. Changes in visually guided behavior
There is clear indication of spontaneous perceptual plasticity

after permanent damage to V1 or its immediate inputs in both hu-
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mans and non-human species. Much of this evidence comes from
carefully controlled clinical and laboratory studies of human sub-
jects suffering from homonymous hemianopia (Gassel & Williams,
1966; Ishiai, Furukawa, & Tsukagoshi, 1987; Pambakian et al.,
2000). Of interest is the fact that the most obvious changes noted
in these subjects relate to visual behavior. Indeed, although a good
number of these individuals possess residual vision in their blind
field, the great majority of hemianopes significantly alter their vi-
sual behavior—and specifically, the way they distribute gaze—fol-
lowing their insult (Pambakian et al., 2000). For instance, when
presented with point light targets at different, random sites along
the horizontal meridian, visually intact controls usually fixate the
targets directly (Meienberg, Zangemeister, Rosenberg, Hoyt, &
Stark, 1981). Hemianopes rarely do so (Meienberg et al., 1981). In-
stead, when target duration and position are predictable, they per-
form a series of hypometric saccades that incrementally approach
each target until it is found. Once target positions are learned, the
saccades become hypermetric, overshooting the target by a few de-
grees of visual angle, and requiring a short, corrective saccade for
eventual target localization (Meienberg et al., 1981). Hypometric
saccades are also observed when hemianopes are asked to search
static images for a small target (Zangemeister, Oechsner, & Freksa,
1995) or when searching for a visual target among distracters
(Chedru, Leblanc, & Lhermitte, 1973). Indeed, hemianopes exhibit
longer search times, shorter and more frequent fixations, and
shorter saccades than visually normal controls (Chedru et al.,
1973).

Hemianopes also spend more time looking towards their blind
than their intact hemifield (Ishiai et al., 1987). This bias has been
observed for numerous visual tasks, including counting dots (Zihl,
1995), viewing natural and degraded images (Pambakian et al.,
2000) and detecting sudden-onset, moving targets in a three-
dimensional, virtual environment (Riley, Kelly, Martin, Hayhoe, &
Huxlin, 2007). It is not due to visual or attentional neglect with re-
spect to the intact hemifield (Ishiai et al., 1987) but rather, repre-
sents a compensatory strategy that partially overcomes the loss
of conscious, high-quality visual input from the affected side of
space. By looking towards their blind field, hemianopes place most
of the scene of interest in their intact hemifield (Zihl, 1995).

Finally, the sequential gaze patterns exhibited by hemianopes
while they perform naturalistic tasks strongly suggest that they
also place greater weight on visual memory representations of
their visual environment, compared to age-matched, visually in-
tact controls (Martin, Riley, Kelly, Hayhoe, & Huxlin, 2007). All
these changes in visual strategy after V1 damage occur spontane-
ously and in the presence of normal saccade and eye movement
dynamics (Martin et al., 2007; Zangemeister et al., 1995), sug-
gesting that they are a true adaptation to the perceptual deficit
rather than being due to abnormal oculo-motor control. Because
patterns of gaze allocation are a good indication of the quality
and quantity of visual information needed and gathered by the
organism (Hayhoe & Ballard, 2005; Triesch, Ballard, Hayhoe, &
Sullivan, 2003), we propose that changes in gaze strategy follow-
ing visual loss should be considered a true form of perceptual
plasticity.

4.2.2. Changes in the peri-lesional cortex
While there is clear evidence that organisms change their vi-

sual behavior because of cortical blindness, we known much less
about specific changes in perception in the blind field over time.
A change in the size of the blind field is the most commonly re-
ported alteration. While this usually takes the form of an
improvement in vision, it is usually restricted in time to the first
few weeks after the insult, and in space to the border between
blind and intact portions of the visual field (Zhang, Kedar, Lynn,
Newman, & Biousse, 2006b). This is thought to be due to resolv-
ing inflammation around the lesion site, a return of function in
neural circuits damaged but not destroyed by the insult (Poggel,
Kasten, Müller-Oehring, Sabel, & Brandt, 2001; Sabel, 1997) and/
or improvements in the subject’s ability to perform visual field
testing reliably (Zhang et al., 2006b). With very rare exceptions
(e.g. Poggel et al., 2001), perimetric visual improvements are
not seen after the second or third month post-lesion (Tiel & Kol-
mel, 1991; Zhang et al., 2006b). In addition to resolving inflam-
mation around the lesion site, spontaneous plasticity following
V1 damage may also be mediated by changes in the properties
of neural circuits adjoining the lesion (reviewed in Eysel, 1997).
Neurons in these perilesional circuits exhibit significant plasticity,
including changes in excitability (Eysel & Schmidt-Kastner, 1991),
receptive field size (Eysel & Schweigart, 1999), neurochemistry
and channel properties (Barmashenko, Eysel, & Mittmann, 2003;
Rumpel et al., 2000). Indeed some of the changes in LTP and
ion (especially Ca2+) permeability may underlie the observed
changes in field size and excitability around the lesion site.

4.2.3. Changes deep within the blind field
For large V1 lesions, the question of whether residual vision

deep within the blind field borders changes spontaneously over
time has been more difficult to answer. This is partly due to diffi-
culties in separating the influence of visual testing (necessary to
assess ‘‘vision”) from the simple passage of time. An interesting
observation in one patient with stroke-induced homonymous
quadrantanopia made recently by Dilks and colleagues (Dilks, Ser-
ences, Rosenau, Yantis, & McCloskey, 2007) does, however, provide
some evidence for perceptual plasticity deep within the blind field
after retro-chiasmatic damage. Of note is the fact that the patient
in question had suffered damage not to V1 directly, but rather to
the optic radiations providing input to his left upper visual quad-
rant representation in V1. This is important because it means that
his V1 neurons, while deprived of their main visual input, were
likely to have survived this lesion. Six months after his stroke, psy-
chophysical testing revealed that the subject experienced a dis-
torted perception of space for stimuli presented in his left lower
visual quadrant—objects appeared stretched upwards into his
blind, upper left quadrant. Visually guided grasping was similarly
distorted: when the subject attempted to pick up objects in his
lower left visual quadrant, he ‘‘overshot” the upper boundary of
the target into his scotoma. fMRI confirmed little activation of
the right V1 when stimuli were placed in his blind, upper left quad-
rant. However, stimuli placed in the near lower left visual quadrant
activated the blind, upper left field representation of the right V1,
suggesting that this portion of V1, after losing its normal geniculate
input, had become responsive to adjacent retinotopic locations.
While it is not currently possible to establish the exact anatomical
and physiological substrates of such perceptual plasticity, these
could include dis-inhibition of pre-existing long-range horizontal
connections within V1 (Darian-Smith & Gilbert, 1995; Das & Gil-
bert, 1995), sprouting of new horizontal connections in V1 (Dari-
an-Smith & Gilbert, 1994), or changes in the functional
interactions between higher-level visual cortical areas and V1
(De Weerd et al., 1995; Mendola, Dale, Fischl, Liu, & Tootell,
1999; Mendola et al., 2006).

In summary, while sparse, evidence for spontaneous visual
improvements after damage to low-level visual cortex does exist.
Functionally, the most pronounced changes appear to involve visu-
ally guided behavior. As discussed above, this is mostly the result
of subjects developing compensatory visual strategies rather than
recovering lost vision per se. Thus, we may tentatively conclude
that in spite of evidence for cellular plasticity within low-level
areas, the primary form of spontaneous perceptual plasticity fol-
lowing damage to lower levels of the adult visual system (retina
to V1), appears to be higher-level, integrative plasticity, focused
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on preserving functional interactions between the organism and its
environment.
4.3. Spontaneous plasticity after extrastriate cortical damage

Clear evidence of spontaneous improvements in visual percep-
tion following extrastriate cortical damage is even more difficult to
find in the literature. In order to claim that changes in perception
are spontaneous, experiments must first behaviorally measure
the visual deficit and then monitor it over time, while differentiat-
ing whether changes observed are due to the passage of time or the
repeated administration of visual testing. Very few of the many
published lesion studies actually do this, making it difficult to
ascertain whether spontaneous perceptual plasticity occurs after
extrastriate visual cortical damage. The only claim that can be
made with certainty is that most forms of extrastriate cortex dam-
age cause long-lasting (over months to years) visual deficits. How-
ever, extrastriate visual areas were not created equal. Merigan and
Pham (Merigan & Pham, 1998) noted that damage to extrastriate
areas in the ventral visual pathway such as V2 (Merigan, Nealey,
& Maunsell, 1993) and V4 (Merigan, 1996; Merigan & Pham,
1998; Schiller, 1993) appeared to cause more stable (and perma-
nent) visual deficits than damage to motion processing areas in
the dorsal processing stream, especially areas MT/MST in monkeys
(Dursteler, Wurtz, & Newsome, 1987; Pasternak & Merigan, 1994;
Yamasaki & Wurtz, 1991), or their homologues in other species—
V5/MT + complex in humans (Huk, Dougherty, & Heeger, 2002;
Huk et al., 2002; Huk & Heeger, 2002; Tootell et al., 1995; Watson
et al., 1993; Zeki et al., 1991) and LS cortex in cats (Payne, 1993;
Rudolph & Pasternak, 1996).

Furthermore, damage to several extrastriate areas, including
area V4 (Merigan, 1996; Schiller, 1993), foveal prestriate cortex
(Cowey & Gross, 1970; Gross, Cowey, & Manning, 1971; Iwai &
Mishkin, 1968; Manning, 1971; Manning, Gross, & Cowey, 1971)
and inferotemporal cortex (Britten, Newsome, & Saunders, 1992;
Gross, 1971, 1973; Huxlin, Saunders, Marchionini, Pham, & Meri-
gan, 2000; Mishkin, 1966) impairs aspects of visual learning, espe-
cially those which involve stimulus attributes or aspects of vision
that rely on the damaged area for processing. Since learning is a
form of perceptual plasticity, this is an important consideration.
Further research is needed to assess whether this is a unique effect
of extrastriate cortex damage or of damage to visual areas in the
ventral processing stream.

In summary, while damage at any level of the visual system in-
duces changes in anatomy, connectivity and function throughout
the rest of the system, the functional relevance of these changes
for visual perception and function seems to depend critically on
the hierarchical level that has been most perturbed. With retinal
damage, the loss of visual function is profound and all encompass-
ing. However, spontaneous plasticity rapidly develops, causing
changes in cortical responsiveness, perhaps even topography, but
most clearly, changing higher-level usage of visual information.
As a result, preferred retinal loci of fixation develop in the retinal
periphery. With retro-chiasmatic damage, up to and including
V1, there is residual, but largely unconscious and most definitely
degraded vision. Long-term, spontaneous improvements in visual
sensitivity in the blind field appear to be minimal. The most obvi-
ous spontaneous changes pertain, once again, to higher-level usage
of visual information, resulting in the development of compensa-
tory gaze strategies. It is uncertain, at this time, whether extrastri-
ate visual cortical damage is associated with more or less
spontaneous perceptual plasticity than V1 damage. But the pro-
posed role of higher-level visual areas in perceptual learning leads
us to consider to what extent training might be used to further
stimulate perceptual plasticity after visual system damage.
5. Training-induced visual plasticity in damaged visual systems

5.1. Effects of training following retinal damage

Visual training, which usually involves repeated trials of a vi-
sual task, is known to alter the electrophysiological response prop-
erties of neurons in intact primary (e.g. Schoups et al., 2001) as
well as higher level visual cortical areas (e.g. Salazar, Kayser, &
König, 2004; Yang & Maunsell, 2004). Repetitive stimulation of vi-
sual neurons in anesthetized preparations (i.e. in the absence of a
‘‘training task”) is likewise capable of altering response properties
in V1 (e.g. Eyding, Schweigart, & Eysel, 2002; Eysel, Eyding, &
Schweigart, 1998; Godde, Leonhardt, Cords, & Dinse, 2002). How-
ever, an important factor in being able to repetitively stimulate
the visual system is the intactness of its basic sensory mechanisms,
which reside in the retina. Once retinal circuitry is destroyed, it is
unclear how stimulating, even repetitively, the damaged retinal
locations could generate any perception, let alone perceptual plas-
ticity of any functional benefit for the organism. Perhaps as a result
of this interpretation, there have been few attempts to recover sen-
sory function following retinal lesions. In fact, theoretically, this is
unlikely to be feasible unless the retinal neurons destroyed (espe-
cially if they are photoreceptors) are replaced and their connec-
tions re-formed.
5.2. Training-induced plasticity after V1 damage—Animal studies

Most instances of training-induced perceptual plasticity after
visual system damage have been reported following cortical in-
sults. Although patients with V1 damage exhibit spontaneous
and/or compensatory changes in visual behavior, they still report
significant visual difficulties, especially when reading (Leff et al.,
2000; McDonald, Spitsyna, Shillcock, Wise, & Leff, 2006) or navi-
gating in the complex, dynamic visual environments of everyday
life (Marigold, Weerdesteyn, Patla, & Duysens, 2007; Turano
et al., 2004). This brings up the notion that spontaneous perceptual
plasticity after V1 damage has significant limitations. It also delin-
eates very real, functional consequences of these limitations for
natural behavior, which we now have the opportunity to address.

Several research groups have asked whether more directed,
functionally relevant perceptual plasticity might be induced after
V1 damage if visual training was administered. In monkeys, visual
training after V1 lesions restores the ability to detect and localize
visual stimuli in their blind fields (Cowey & Weiskrantz, 1963;
Mohler & Wurtz, 1977). These improvements do not occur sponta-
neously, but require training (Cowey & Weiskrantz, 1963), and
they are largely restricted to visual field regions retrained (Mohler
& Wurtz, 1977).
5.3. Training-induced plasticity after V1 damage—Human studies

In humans, our fundamental lack of knowledge about visual
plasticity and the controversies that have plagued the field mean
that there are currently no widely accepted treatment options
available for people with visual cortical damage. Patients with V1
damage are either sent home or to ‘‘low vision” clinics where they
are trained to improve their compensatory mechanisms rather
than to attempt recovery of their lost vision. This is in sharp con-
trast with the physical therapy and motor retraining aggressively
implemented to rehabilitate patients with damage to primary mo-
tor cortex (see reviews by Hallett, 2001; Taub, Uswatte, & Elbert,
2002). A major reason for this discrepancy is the dogmatic assump-
tion that unlike motor functions, visual functions lost as a result of
damage to the adult visual system cannot be recovered (Horton,
2005). This assumption has come about after multiple, but contro-
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versial attempts to restore visual function in humans with V1 dam-
age (see review by Pambakian & Kennard, 1997).

Poppelreuter (Poppelreuter, 1917) and Preobrazenskaya (cited
in Luria, 1963) were perhaps the first to report on the effects of vi-
sual retraining (in this instance, reading) in such patients. A mod-
ified perimetry system was then developed to train saccadic eye
movements into the blind field following V1 damage (Zihl, 1981;
Zihl & von Cramon, 1985). However, the results obtained were
questioned, because they reported variable, limited improvements,
and did not properly control for variables such as compensatory
shifts in fixation or eye movements that could affect the patients’
measured visual ‘‘recovery” (Bach-Y-Rita, 1983; Balliet, Blood, &
Bach-Y-Rita, 1985). A few years later, a computerized campimetry
system devised by Sabel and colleagues (Kasten, Poggel, & Sabel,
2000; Kasten & Sabel, 1995; Kasten, Wüst, Behrens-Baumann, &
Sabel, 1998; Sabel & Kasten, 2000), was tested and then marketed
as Nova Vision’s Visual Restitution Training (VRT) in a number of
clinics in Europe and more recently, in the United States. This sys-
tem is used on patients with either V1 or optic nerve damage and
requires them to carry out in-home, daily practice of a light detec-
tion task. This task asks the subject to fixate a star-shaped spot of
light while clicking a mouse button every time he or she perceives
a white, bright spot of light presented at one of 500 positions on a
dark computer monitor in front of them (Kasten et al., 2000). Nova-
Vision’s strategy is to intensively stimulate the border between in-
tact and impaired portions of the visual field and thus recruit
potentially intact but under-performing visual circuits (Sabel &
Kasten, 2000). VRT evaluates its success by the amount of visual
field enlargement attained after about 6 months of daily training.
On average, the enlargement is about 5�of visual angle in size,
and about 72% of patients report subjective improvements in their
vision (Kasten et al., 2000). However, NovaVision’s claims have re-
cently been challenged by a report that showed visual field
improvements to disappear if subjects were tested using a scan-
ning laser ophthalmoscope, a different instrument than that used
for training but one which could tightly control for the subjects’
eye movements (Reinhard et al., 2005).

In order to assess whether perceptual improvements could be
attained deep in the blind field of subjects with V1 damage when
eye movements were tightly controlled, three groups indepen-
dently carried out visual training in humans with homonymous vi-
sual field defects using three very different systems (Huxlin, 2004,
2007; Raninen, Vanni, Hyvärinen, & Näsänen, 2006; Sahraie et al.,
2006). All three groups measured improvements in visual sensitiv-
ity at the trained blind field locations while monitoring eye move-
ments using automated systems. Raninen and co-workers
(Raninen et al., 2006) trained two cortically blind subjects on a
luminance detection task and a letter identification task using
flickering stimuli presented at 10� and 30� eccentricity on the hor-
izontal meridian. The subjects attained up to a sevenfold improve-
ment in sensitivity for the flickering stimuli after 1 year of training.
Although improvements were not restricted to the trained loca-
tions, they were associated with changes in activity of intact visual
cortical areas, as demonstrated both with neuromagnetic record-
ings (Raninen et al., 2006) and fMRI (Henriksson, Raninen, Näsä-
nen, Hyvärinen, & Vanni, 2007).

Sahraie and co-workers (Sahraie et al., 2006) trained cortically
blind subjects to discriminate a vertical sinewave grating from a uni-
form background in their blind field. Training in this study was con-
ducted using a two-alternative forced-choice paradigm and was
very specialized, in the sense that the spatial and temporal frequen-
cies of the training stimuli were set at levels optimal for spatio-tem-
poral channels known to survive V1 damage and mediate blindsight
(Barbur et al., 1994; Sahraie et al., 2003). While they could not be
monitored during in-home training, the patients’ eye movements
were closely monitored during laboratory verification of threshold
improvements using an ASL 5000 pupillometer. This form of eye
movement monitoring ensured that shifts in fixation during stimu-
lus presentation could not explain the improvements observed.

Huxlin and colleagues (Huxlin, 2004, 2007) also precisely mon-
itored fixation using an ISCAN RK426 pupillometer during psycho-
physical testing of cortically blind subjects before and after
training on a global motion discrimination task (Fig. 4). Complex
visual motion processing is interesting in the context of V1 damage
for several reasons. First, it is significantly impaired after V1 dam-
age and may be responsible for many of the problems experienced
by this patient population in navigating and interacting with the
complex, dynamic visual environments typical of everyday life.
Second, the MT + complex is usually spared after V1 strokes and
even appears to mediate some aspects of residual visual motion
perception (see earlier discussion of blindsight). Given its well-
established role in processing complex motion information (New-
some & Paré, 1988; Rudolph & Pasternak, 1999; Thompson & Liu,
2006; Vaina, Cowey, Eskew, LeMay, & Kemper, 2001), area MT
and its homologues are likely to be ideally placed to mediate
relearning of not just simple, but also complex motion perception
in the absence of V1. Indeed, when adult humans with stroke-in-
duced V1 damage were retrained to perform a global direction dis-
crimination task with random dot stimuli at a single location in
their blind field, their performance progressed from a complete
inability to discriminate global motion direction to normal direc-
tion integration thresholds following 20–100 training sessions
(i.e. 6000–30,000 trials—Huxlin, 2004, 2007). Improvements ap-
peared to be permanent and were retinotopically restricted to re-
trained blind field locations. Furthermore, contrast sensitivity for
direction and the ability to extract motion signals from noise both
improved at the trained blind-field locations, even though they had
never been specifically trained. Interestingly, the spatial and tem-
poral frequencies at which the greatest post-training improve-
ments in sensitivity were attained hovered around 0.5–1 cycles/
deg and 10 Hz. This matches the known spatio-temporal channels
thought to mediate blindsight (Barbur et al., 1994; Sahraie et al.,
2003, 2006) and suggests that these channels may well play a role
in mediating training-induced plasticity of complex motion per-
ception after V1 damage. A final point of interest is that just as
in the subjects trained by Sahraie and colleagues (Sahraie et al.,
2006), training-induced improvements in global motion discrimi-
nation after V1 damage (Huxlin, 2004, 2007) were elicited at least
12, and in some cases 30 or more months after the subjects’
strokes, a time when spontaneous visual improvements in the
blind field are no longer thought possible (Zhang et al., 2006b).

5.4. Training-induced plasticity after extrastriate damage—Animal
studies

The evidence for training-induced perceptual plasticity after
extrastriate cortex lesions, which comes largely from animal stud-
ies, stands in contrast with the controversies that arose from
attempts to retrain vision after V1 damage in humans. Training-in-
duced perceptual improvements have been reported following
lesions of area V4 in monkeys (Merigan & Pham, 1998; Schiller,
1993), areas MT/MST in primates (Bisley & Pasternak, 2000; Durst-
eler et al., 1987; Newsome & Paré, 1988; Newsome, Wurtz, Durst-
eler, & Mikami, 1985; Pasternak & Merigan, 1994; Rudolph &
Pasternak, 1999; Yamasaki & Wurtz, 1991), MT/MST’s homologue
in the cat—the lateral suprasylvian (LS) cortex (Huxlin & Pasternak,
2004; Huxlin, Williams, & Price, 2008; Rudolph & Pasternak, 1996),
foveal prestriate (Manning, 1972) and inferotemporal cortex (Brit-
ten et al., 1992; Dean, 1974; Holmes & Gross, 1984; Manning,
1972; Yaginuma, Niihara, & Iwai, 1982). In most of the studies
involving V4 or MT lesions, improvements were specific to
the class of visual stimuli and/or retinotopic locations trained,



Fig. 4. Example of a psychophysical task (A) and visual stimuli (B) used by Huxlin and colleagues to train complex motion perception in the blind field of V1-damaged
subjects (Huxlin, 2007), as well as of cats with extrastriate cortical damage (Huxlin & Pasternak, 2004). Each trial of this two-alternative, forced-choice, left-right direction
discrimination task begins with the appearance of a spot on a computer screen that the subject is required to fixate precisely for 1000 ms. Following successful fixation, a
drifting stimulus appears at a pre-selected location in the blind field (dark grey), lasting for 500 ms. The subject is required to discriminate its global direction of motion
without breaking fixation from the central spot, and then indicate this perceived direction using a key press on the keyboard (or an eye movement in the case of cats). Random
dot stimuli were used n which dots moved within a range of directions that was progressively increased (in a staircase) between 0 deg (completely coherent motion) and
355 deg (almost random). Accurate performance of the task required the subjects’ visual system to perceive and integrate individual dot directions in the stimulus, extracting
a global direction vector that was either to the left or the right.
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suggesting that relatively low-level, retinotopically organized
visual areas might be mediating such training-induced, post-lesion
plasticity. Because retinotopically localized stimuli were generally
not used to retrain primates with temporal lobe lesions, it is not
know if training-induced improvements are likely to be retinotop-
ically restricted to the retrained locations. Likewise, there appears
to be little stimulus specificity in the effects of training following
damage to visual areas in the primate temporal lobe. However, this
may be due to the nature of the deficits being investigated, which
for temporal lobe lesions, tend to involve more cognitive, mne-
monic and associative deficits (see reviews by Cowey, 1994; Dean,
1974, 1976; Gross, 1971, 1973), rather than the largely perceptual
deficits, which arise from damage at lower levels of the visual
system hierarchy.

5.5. Training-induced plasticity after extrastriate damage—Human
studies

In humans, extrastriate damage is less commonly reported than
damage to V1, partly because the visual deficits are more subtle
than those induced by V1 damage (specifically, extrastriate dam-
age rarely causes visual field losses). For instance, damage to hu-
man V5 or the MT + complex, causes deficits of motion
perception, often termed motion blindness (Baker, Hess, & Zihl,
1991; Hess, Baker, & Zihl, 1989; Shipp, Dejong, Zihl, Frackowiak,
& Zeki, 1994; Vaina, 1998; Vaina et al., 2001; Zeki, 1991; Zihl,
Von Cramon, & Mai, 1983; Zihl et al., 1991). Just as in monkeys
with MT lesions, the motion deficits can be transient or permanent,
more or less severe, affecting first and/or second order motion,
depending on how much of MT + and surrounding motion process-
ing circuitry has been damaged (Nawrot, Rizzo, Rockland, & How-
ard, 2000; Shipp et al., 1994; Vaina & Cowey, 1996). A frank
attempt to retrain motion coherence thresholds in humans with
unilateral cortical damage involving the MT + complex was made
by Vaina and colleagues (Vaina et al., 2001). Although subjects
who were thus trained exhibited improved motion coherence
thresholds, in contrast with the results of carefully controlled le-
sion studies in animal models, the retinotopy and stimulus-speci-
ficity of improvements attained in humans did not appear tightly
correlated with retraining parameters (Vaina et al., 2001). To what
extent this lack of correlation is due to non-optimal training
parameters, differences in the amount and type of brain damage
sustained, or other uncontrolled variables remains to be deter-
mined. Significantly more work is needed before any solid conclu-
sions can be drawn about the potential role of training in eliciting
perceptual plasticity and improved visual function after permanent
damage to extrastriate cortex in humans.

6. Conclusions

When considering the many, well-documented cases of plastic-
ity and recovery following damage to motor, speech, somatosen-
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sory and auditory centers of the adult mammalian brain (see re-
views by Cauraugh & Summers, 2005; Engelien et al., 1995; Hallett,
2001; Musso et al., 1999; Xerri, 1998; Xerri, Benelhadj, & Harlay,
2004), one may surmise that barring major differences in structure
and function between the visual system and the rest of the brain,
we should be able to demonstrate some form of visual perceptual
plasticity following visual system damage in adulthood. In addi-
tion, we should be able to tap such perceptual plasticity for the
purpose of recovering visual functions lost as a result of visual sys-
tem damage. In reality, however, solid evidence for perceptual
plasticity following visual system damage is relatively sparse and
its underlying mechanisms are far from understood. A direct con-
sequence of this gap in scientific knowledge is that visual rehabil-
itation for those afflicted by visual system damage is still in its
infancy. Most likely, it currently achieves only a fraction of the suc-
cess possible if treatments were based on a better understanding of
the impact of visual system damage, both on perception and plas-
ticity. The present review does illustrate one important point how-
ever: visual perception in adult, large-brained mammals is capable
of change after damage, regardless of the levels of the visual sys-
tem affected. It should not be too difficult to canvas the available
evidence and design the next generation of experiments whose
goal should be to better characterize this phenomenon, identify
its enabling mechanisms and canvas it for the improvement of
vision.
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