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Abstract

We give several applications of a recent theorem of the second author, which solved a conjecture of the
first author with Hay and Neal, concerning contractive approximate identities; and another of Hay from the
theory of noncommutative peak sets, thereby putting the latter theory on a much firmer foundation. From
this theorem it emerges there is a surprising amount of positivity present in any operator algebras with
contractive approximate identity. We exploit this to generalize several results previously available only for
C∗-algebras, and we give many other applications.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

An operator algebra is a closed subalgebra of B(H), for a Hilbert space H . We recall that by
a theorem due to Ralf Meyer, every operator algebra A has a unique unitization A1 (see [30]
or [10, Section 2.1]). Below 1 always refers to the identity of A1 if A has no identity. We
are mostly interested in operator algebras with contractive approximate identities (cai’s). We
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also call these approximately unital operator algebras. In our paper we give several applica-
tions of the following recent result, which was prompted by, and solves, a question on p. 351
of [9]:

Theorem 1.1. (See [35].) An operator algebra with a cai, has a cai (et ) with ‖1 − et‖ � 1, and
even with ‖1 − 2et‖ � 1, for all t .

This result draws attention to the set of operators x in an operator algebra A satisfying
‖1 − x‖ � 1. We denote this set by FA; it will play a role for us very much akin to the role
of the positive cone in a C∗-algebra. This surprising claim will be justified at many points in
our paper, but the reader can begin to see this by considering the following fact: a linear map
T :A → B between C∗-algebras or operator systems is completely positive in the usual sense iff
there is a constant C > 0 such that T (FA) ⊂ CFB , and similarly at the matrix levels (see Sec-
tion 8). Indeed we use Theorem 1.1 to see that there is a remarkable amount of positivity present
in any operator algebra with cai. We exploit this, and various properties of operators in FA, to
generalize several results previously available only for C∗-algebras. Many of the applications
which we give are to the structure theory of operator algebras. Some of these advances are men-
tioned in more detail in the next paragraph. We recall that a classical principle is to study a ring
or algebra A in terms of its ideals, both two-sided and one-sided. Unfortunately, not much is
known about general closed ideals in A, even for common examples of function algebras, and so
we focus on the r-ideals (right ideals with a left cai) and �-ideals (left ideals with a right cai). As
proved in [9] using a deep result from [26], these objects are in an inclusion-preserving, bijective
correspondence with each other, and also with the hereditary subalgebras (or HSA’s; defined
below). HSA’s are frequently more useful, for example in C∗-algebra theory, because they are
more symmetrical objects, and because many important properties pass to HSA’s [7].

The layout of our paper is as follows: At the end of Section 1 we give some quick conse-
quences of Theorem 1.1. The long Section 2 contains a number of facts about FA, and uses these
together with Theorem 1.1 to give many applications to the structure of operator algebras. For
example, one theme of our paper is how cai’s may be built. We dissolve the remaining mysteries
concerning r-ideals by showing how they all arise. The separable r-ideals in an operator algebra
are precisely the subspaces xA, for an element x ∈ FA which we may select to be as close as we
like to a positive norm 1 operator. The nonseparable r-ideals are limits of increasing nets of such
subspaces xA. Similarly for the matching class of �-ideals, or HSA’s. Other sample results: we
show that as in the C∗-algebra case, any separable operator algebra with cai has a countable cai
consisting of mutually commuting elements; and we prove a noncommutative Urysohn lemma.
In Section 3 we study the pseudo-invertible (sometimes called ‘generalized invertible’) elements
in operator algebras, a topic connected to the notion of ‘well-supported’ elements. This topic is
also very intimately connected to the question of when a ‘principal ideal’ xA is already closed.
In Section 4 we study operator algebras possessing no r-ideals or HSA’s. We also give several
interesting examples of such algebras. In Section 5 we display a radical, approximately unital
operator algebra which is an integral domain, and whose ideal structure can be completely deter-
mined. Hence this is an excellent example against which to test certain conjectures concerning
the structure theory of operator algebras. In Section 6 we consider pre-images of r-ideals, HSA’s,
etc. In Section 7 we describe some other interesting constructions of r-ideals in operator alge-
bras. In the final Section 8 we introduce and study a notion of completely positive maps between
general operator algebras, or between unital operator spaces, and give an Arveson type extension
theorem [6], and a Stinespring type characterization [38], for such maps.
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We remark that most of our results apply immediately to function algebras, that is to uniformly
closed subalgebras of C(K) spaces, since these are special cases of operator algebras. We will
not take the time to point these out, although some of these applications are new.

We now state our notation, and some facts. We refer the reader to [10] for additional back-
ground on operator algebras, and for some of the details and notation below. For us a projection
is always an orthogonal projection, and an idempotent merely satisfies x2 = x. If X, Y are sets,
then XY denotes the closure of the span of products of the form xy for x ∈ X, y ∈ Y . We
write X+ for the positive operators that happen to belong to X. Returning to the unitization, if
A is a nonunital operator algebra represented (completely) isometrically on a Hilbert space H

then one may identify A1 with A + CIH . The second dual A∗∗ is also an operator algebra with
its (unique) Arens product, this is also the product inherited from the von Neumann algebra B∗∗
if A is a subalgebra of a C∗-algebra B . Meets and joins in B∗∗ of projections in A∗∗ remain
in A∗∗, as can be readily seen for example by inspecting some of the classical formulae for meets
and joins of Hilbert space projections, or by noting that these meets and joins may be computed
in the biggest von Neumann algebra contained inside A∗∗. Note that A has a cai iff A∗∗ has an
identity 1A∗∗ of norm 1, and then A1 is sometimes identified with A + C1A∗∗ . In this case the
multiplier algebra M(A) is identified with the idealizer of A in A∗∗ (that is, the set of elements
α ∈ A∗∗ such that αA ⊂ A and Aα ⊂ A). It can also be viewed as the idealizer of A in B(H), if
the above representation on H is nondegenerate. If A is unital then M(A) = A, and in this case
we often assume that 1A = IH .

Let A be an operator algebra. The set FA = {x ∈ A: ‖1−x‖ � 1} equals {x ∈ A: ‖1−x‖ = 1}
if A is nonunital, whereas if A is unital then FA = 1 + Ball(A). If x ∈ FA then the numerical
range of x is contained in the closed disk of center 1 and radius 1, and in particular is in the right
half plane (that is, x is accretive). Clearly x is a sectorial operator. See [21] for more information
on sectorial and accretive operators and their functional calculus. Note that x ∈ FA iff xx∗ �
x + x∗ = 2 Re(x), and iff x∗x � x + x∗ = 2 Re(x). If A is a closed subalgebra of an operator
algebra B then it is easy to see, using the uniqueness of the unitization, that FA = A ∩ FB .
We write 1

2FA for {x ∈ A: ‖1 − 2x‖ � 1}. We remark that the condition ‖1 − 2x‖ � 1 implies
both ‖x‖ � 1 and ‖1 − x‖ � 1. In much of our paper, where we have FA it probably would
be preferable to employ 1

2FA instead. However since in these occurrences it will not matter
technically, we use the simpler notation.

We recall that an r-ideal is a right ideal with a left cai, and an �-ideal is a left ideal with a
right cai. We say that an operator algebra D with cai, which is a subalgebra of another operator
algebra A, is an HSA (hereditary subalgebra) of A, if DAD ⊂ D. For the theory of HSA’s
see [9]. These objects are in an order preserving, bijective correspondence with the r-ideals in A,
and also with the open projections p ∈ A∗∗, by which we mean that there is a net xt ∈ A with
xt = pxtp → p weak*. These are also the open projections p in the sense of Akemann [1,2]
in B∗∗, where B is a C∗-algebra containing A, such that p ∈ A⊥⊥. The complement (‘perp’) of
an open projection is called a closed projection. We spell out some of the correspondences above:
if D is an HSA in A, then J = DA is the matching r-ideal. The weak* limit of a cai for D, or of a
left cai for J , is an open projection, and is called the support projection of J or D. Conversely, if
p is an open projection in A∗∗, then pA∗∗ ∩ A and pA∗∗p ∩ A is the matching r-ideal and HSA
pair in A. We also mention that suprema (resp. infima) of open (resp. closed) projections in A∗∗,
remain in A∗∗, by the fact mentioned two paragraphs earlier about meets and joins, together with
the C∗-algebraic case of these facts [1,2].

The peak and p-projections studied in [25] and [9], are certain closed projections which gen-
eralize the important notions of peak sets and p-sets from the theory of function spaces. We recall
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that a peak set for a unital space A of continuous functions on a compact set K , is a set of form
E = f −1({1}) for some f ∈ A,‖f ‖ = 1. Equivalently, E is a peak set iff there exists g ∈ A with
|g||Ec < ‖g‖ = 1 = g|E . A p-set is an intersection of peak sets. Hay defined a peak projection
for a unital subspace A of a C∗-algebra B to be a closed projection in B∗∗, such that there exists
an a ∈ Ball(A) with aq = q and satisfying any one of a long list of equivalent conditions; for
example ‖ar‖ < 1 for every closed projection r in B∗∗ with r � q⊥. If A is a unital operator
algebra, then peak projections are also the complements of support projections of r-ideals in A

of the form (1 − z)A for z ∈ Ball(A) (see Proposition 6.7 in [9]). By [9, Remark 6.10 (ii)], the
latter support projections are the right support projections r(1 − z) for contractions z ∈ A (this
also follows from results in Section 2 below). A p-projection is defined to be the infimum of
a family of peak projections, or equivalently a weak* limit of a decreasing net of peak projec-
tions.

If A has a cai, then a state of A is a functional ϕ ∈ Ball(A∗) with ϕ(et ) → 1, for some
(or every) cai (et ) for A. We write S(A) for the space of states. We write Q(A) for the qua-
sistate space {tϕ: t ∈ [0,1], ϕ ∈ S(A)}. States extend uniquely to states on the unitization A1

(see [10, 2.1.19]). We will sometimes use C∗-algebras generated by an operator algebra A. If
C∗(A) is such a C∗-algebra, then it is known that any bounded approximate identity (bai) for A

is a bai for C∗(A), and hence states of A are precisely the restrictions to A of states on C∗(A)

(see [10, 2.1.19]). We will often use the numerical range of an operator (see e.g. [14]), as opposed
to its spectrum. This distinction is important: for example, for an operator T , having spectrum {0}
or contained in [0,1] tells one very little, whereas having numerical range in these sets gives
T = 0 in the first case, and 0 � T � I in the second. Of course the (closed) numerical range of
an operator contains its spectrum.

For an operator algebra A, and x ∈ A, we define oa(x) to be the closed subalgebra of A

generated by x. We define the left (resp. right) support projection of x ∈ A to be the smallest
projection p ∈ A∗∗ such that px = x (resp. xp = x), if such a projection exists (it always exists
if A has a cai). If the left and right support projections exist, and are equal, then we call it the
support projection written s(x).

We end this section with some quick consequences of Theorem 1.1.
Theorem 1.1 answers several questions posed in [26,9,4]. For example, it solves the biggest

open problem in Hay’s thesis [25,26]. This problem concerns noncommutative peak sets, and the
first part of the following result may be viewed as the noncommutative version of a fundamental
theorem of Glicksberg on which the theory of peak sets rests (see e.g. Theorem II.12.7 and II.12.5
in [20] or [39]). Thus the result puts the theory of noncommutative peak sets on a much firmer
foundation.

Theorem 1.2. If A is a unital operator algebra and if q is a closed projection in A∗∗, then q is a
p-projection, and indeed is a strong limit of a decreasing net of peak projections for A.

The r-ideals in a unital operator algebra A are precisely the right ideals which are the closure
of the union of an increasing net of right ideals of the form (1 − z)A for z ∈ Ball(A).

Proof. The first statement was reduced, in the first two pages of [9, Section 6], to the existence
in any operator algebra with a cai, of a bai (et ) with ‖1 − et‖ � 1 for all t . The latter follows
from Theorem 1.1.

For the second statement, we use the first statement, together with the fact mentioned earlier
that peak projections are the complements of support projections of r-ideals in A of the given
form (1 − z)A for z ∈ Ball(A). It was shown in [9, Proposition 6.8] that such (1 − z)A is an
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r-ideal (this also follows from Lemma 2.1 below). Moreover, the ordering of open projections
in A∗∗ corresponds to the inclusion of the matching r-ideals. Hence, by the correspondence be-
tween r-ideals and open/closed projections, closures of sums of r-ideals corresponds to infs of
closed projections (or sups of the complementary open projections). More precisely, suppose that
(ei) is a family of open projections corresponding to r-ideals Ji in a (possibly nonunital) opera-
tor algebra A. Then J , the closure of the span of the Ji , is known (and is easily seen) to be an
r-ideal, and its matching open projection r equals e = ∨

i ei . Indeed e � r clearly (since Ji ⊂ J ).
Conversely, if a ∈ Ji then eia = a, so that ea = a. Hence a = ea for any a ∈ J , so that r � e,
and r = e.

Putting this all together, any r-ideal is the closure of the union of an increasing net of r-ideals
of the given form. �
Remark. In particular, every nonzero r-ideal in a unital operator algebra A is what we called
1-regular in [4]: that is it contains (1 − y)A for some y ∈ Ball(A) \ {1}. This was stated as a
question in that paper.

Corollary 1.3. If A is a nonunital operator algebra with cai, and x ∈ A1 \ A, then there are
always more than one closest point in A to x. That is, A is never a Chebychev subspace of A1.

Proof. The existence of nonzero x ∈ A with ‖1 − x‖ = 1 is saying that there are always more
than one closest point in A to 1. If a + λ1 ∈ A1, for a ∈ A, λ 	= 0, and if ‖1 − x‖ = 1 for
x ∈ A \ {0}, then ‖a + λ1 − (a + λx)‖ = |λ|‖1 − x‖ = |λ| = ‖a + λ1 − a‖ � ‖a + λ1 − b‖ for
all b ∈ A, using [10, Lemma 2.1.12]. �

See e.g. [33] for more information on Chebychev subspaces of operator algebras.

Corollary 1.4. Every r-ideal in an operator algebra, has a left cai (et ) with ‖1 − 2et‖ � 1 for
all t , and eset → es with t for any fixed s.

Proof. If J is an r-ideal, and if D is the matching HSA, then by Theorem 1.1, D has a cai (et )

with ‖1 − 2et‖ � 1. Since J = DA, as explained in the introduction, the result follows. �
Corollary 1.5. If J is a closed two-sided ideal in an operator algebra A, and if J has a cai, then
J has a cai (et ) with ‖1 − 2et‖ � 1 for all t , which is also quasicentral (that is, eta − aet → 0
for all a ∈ A).

Proof. Let (et ) be a cai for J with ‖1 − 2et‖ � 1 for all t (see Theorem 1.1). The weak* limit q

of (et ) is well known to be a central projection in A∗∗, and so eta − aet → 0 weakly for all
a ∈ A. A routine argument using Mazur’s theorem shows that convex combinations of the et

comprise the desired cai, and they will still have the property of being in the convex set 1
2FA

defined earlier. �
Corollary 1.6. If A is an operator algebra with a countable cai (fn), then A has a countable cai
in 1

2FA.

Proof. By Theorem 1.1, A has a cai (et ) in 1
2FA. Choosing tn with ‖fnetn −fn‖∨‖etnfn−fn‖ <

2−n, it is easy to see that (etn) is a countable cai in 1
2FA. �
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2. Consequences involving FA

Lemma 2.1. If x ∈ FA, with x 	= 0, then the operator algebra oa(x) has a cai. Indeed, the oper-
ator algebra oa(x) has a sequential cai belonging to 1

2FA, consisting of elements un = ( x
2 )1/n,

the nth roots being suitably defined below.

Proof. We will give two proofs of the fact that oa(x) has a cai, since both will be needed later.
The operator algebra oa(x) is an ideal in C, its unitization, which is the closed algebra generated
by 1 and x. Indeed the closure of xC is oa(x). Note too that oa(x) has a bai (en) where en =
1 − 1

n

∑n
k=1(1 − x)k , since

x

n

n∑
k=1

(1 − x)k = 1

n

(
1 − (1 − x)

) n∑
k=1

(1 − x)k = 1

n

(
1 − (1 − x)n+1) → 0

with n. Also, ‖ 1
n

∑n
k=1(1 − x)k‖ � 1. By [9, Theorem 6.1], oa(x) has a cai (the argument is that

any weak* limit point p of (en) in A∗∗ has to be the identity for oa(x)∗∗, hence is idempotent.
Since ‖1 − p‖ � 1, we see that 1 − p and hence p = 1oa(x)∗∗ are projections. So oa(x) has a cai
by a well-known principle stated in the introduction (see also [10, Proposition 2.5.8])).

The second proof will be presented after Proposition 2.3, and it will include the extra infor-
mation about the sequential cai (un). �

The following fact about the ‘disk algebra functional calculus’ arising from von Neumann’s
inequality, is well known:

Lemma 2.2. If f,g ∈ A(D), with ‖g‖A(D) � 1, and if T ∈ B(H) is a contractive operator, then
f (g(T )) = (f ◦ g)(T ).

Proposition 2.3. The sets FA and 1
2FA are closed under taking roots. That is, for 0 < r � 1

and x ∈ FA (resp. x ∈ 1
2FA), a suitably defined r th power xr is in FA (resp. xr ∈ 1

2FA), and

xr ∈ oa(x), and (xr )
1
r = x.

Proof. If y ∈ A1 with ‖y‖ � 1, then the disk algebra functional calculus is a contractive algebra
homomorphism θ from A(D) to A1 with θ(1) = 1 and θ(z) = y. If r > 0 then there is a unique
analytic branch of f (z) = (1 − z)r defined on D such that f (0) = 1. For x ∈ FA set y = 1 − x.
Applying the functional calculus for this value of y, θ(f ) will be our suitable r th power of x. The
image θ(f ) is a norm limit of polynomials pn(y), such that pn(z) converges uniformly to (1−z)r

on the unit disk. In particular the values at z = 1 must tend to zero, and so we may assume that
pn(1) = 0. That is, xr = θ(f ) is a norm limit of polynomials qn(x) with qn(0) = 0, and these
are in oa(x). Hence xr ∈ oa(x). Indeed for 0 < r � 1, the binomial expansion of 1 − (1 − z)r

is an absolutely convergent sum
∑∞

n=1 anz
n with an � 0 and

∑∞
n=1 an = 1. Therefore 1 − xr

is in the closed convex hull of the powers (1 − x)n, so ‖1 − xr‖ � 1 and xr ∈ FA. A routine

application of Lemma 2.2, with g(z) = 1 − (1 − z)r and the f there equal to 1 − (1 − z)
1
r , yields

(xr )
1
r = x.

Suppose that x ∈ 1
2FA. It is a pleasant exercise in complex numbers that 1

2FC is closed under
taking roots. Equivalently, |1 − 2( 1−z )r | � 1 for 0 < r � 1 and |z| � 1. Replacing z by 1 − 2x,
2
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that is by applying the functional calculus arising from von Neumann’s inequality in a routine
way, we have ‖1 − 2xr‖ � 1. �
Conclusion of proof of Lemma 2.1. Suppose that x ∈ FA. It is not hard to see that z

1
n z → z

uniformly on the closed disk of radius 1 center 1. Writing y = 1 − x, and applying the functional
calculus, we find that ‖x1/nx − x‖ → 0. The elements un = x1/n satisfy unx = xun → x, and so
they are a bai for oa(x). If x ∈ 1

2FA then un ∈ 1
2FA, and so (un) is a cai. �

Theorem 2.4. For 0 < ρ < π
2 let Wρ be the wedge-shaped region containing the real interval

[0,1] consisting of numbers reiθ with argument θ such that |θ | < ρ, which are also inside the
circle | 1

2 − z| � 1
2 .

An operator algebra A with cai, has a cai (et ) in 1
2FA, with the spectrum and numerical range

of et contained in Wρ . In fact this can be done with ρ → 0 as t runs over its directed set.

Proof. If x ∈ 1
2FA then x

1
k is in oa(x) and in 1

2FA, by Proposition 2.3, and it clearly has spec-
trum contained inside a ‘wedge-shaped region’ of the type described; and the spectrum in A is
smaller. The numerical range of x is also in this wedge, for example from a result of Macaev
and Palant [29] (see also e.g. [21, Corollary 7.1.13]), stating that the numerical range of a kth
root of an operator whose numerical range avoids the negative real axis, lies in the appropriate
‘wedge’ or sector centered on the positive real axis of angle π

k
. It is also clearly inside the desired

circle.

By Theorem 1.1, there is a cai (ut ) in 1
2FA. Let vt,n = u

1
n
t for n ∈ N. If b ∈ A then using (ak)

as we did in the proof of Proposition 2.3,

‖b − vt,nb‖ =
∥∥∥∥∥

∞∑
k=1

ak(1 − ut )
kb

∥∥∥∥∥ �
( ∞∑

k=1

ak

)∥∥(1 − ut )b
∥∥ = ∥∥(1 − ut )b

∥∥ → 0,

with t , for fixed n. Similarly, ‖b−bvt,k‖ → 0. Thus (vt,k) is also a cai in A. By the last paragraph
we can ensure it has numerical range in the appropriate ‘wedges’, and that these wedges shrink
to the interval [0,1] with (t, k). �

An operator with numerical range contained in [0,1] × [−ε, ε], in fact is near to a posi-
tive operator. Indeed Re(x) = x+x∗

2 � 0 (since ϕ(x+x∗
2 ) = Re(ϕ(x)) ∈ [0,1] for states ϕ), and

‖x − Re(x)‖ = ‖Im(x)‖ � ε (since Im(x) is Hermitian, so its norm is a supremum of quantities
|ϕ(x−x∗

2 )| = |Im(ϕ(x))| � ε). It thus follows from Theorem 2.4 that any operator algebra with
cai has a cai that gets arbitrarily close to being positive. In fact this is not the deep thing (the
latter also follows by routine convexity methods of [5,17,36,37]). What seems deep here is the
position of the numerical range (being accretive and sectorial, etc.).

Lemma 2.5. For any operator algebra A, if x ∈ FA, with x 	= 0, then the left support projection
of x equals the right support projection. If A ⊂ B(H) via a representation π , for a Hilbert
space H , such that the unique weak* continuous extension π̃ :A∗∗ → B(H) is (completely)
isometric, then s(x) also may be identified with the smallest projection p on H such that px = x

(and xp = x). That is, s(x)H = Ran(x) = Ker(x)⊥. Also, s(x) is an open projection in A∗∗ in
the sense of [9]. If A is a subalgebra of a C∗-algebra B then s(x) is open in B∗∗ in the sense of
Akemann [1,2].
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Proof. Viewing oa(x) ⊂ A, the identity of oa(x)∗∗ corresponds to a projection e ∈ A∗∗ with
ex = xe = x. If A is represented on H as described, suppose that px = x. Then pen = en, where
(en) is the usual bai of oa(x) from Lemma 2.1, so that in the weak* limit we have pe = e and
e � p. Similarly, e � p if xp = x. So e = s(x). The equalities for s(x)H are now routine.

This projection e, being the identity of oa(x)∗∗, is open in the sense of [9]. The last statement
of the proof follows from e.g. [9, Theorem 2.4]. �
Corollary 2.6. For any operator algebra A, if x ∈ FA, with x 	= 0, then the closure of xA is an
r-ideal in A and s(x) is the support projection of this r-ideal. We have xA = s(x)A∗∗ ∩ A. Also,
xAx is the HSA matching xA, and x ∈ xAx.

Proof. The first assertion follows for example from Lemma 2.1: any cai for oa(x) serves as a
left cai for the closure of xA. The second assertion follows from this, since the weak* limit of
this left cai is s(x). Clearly xA ⊂ s(x)A∗∗ ∩ A, and since (en) in the proofs above converges
weak* to s(x), if a ∈ s(x)A∗∗ ∩ A we have ena → a weakly. By Mazur’s theorem, a convex
combination converges in norm, so a ∈ xA.

For the last assertion notice that by the argument in the first line of this proof, xAx has a
cai, and so it is an HSA. It is the HSA matching xA by the correspondence described in the
introduction, since xAxA = xA. The latter follows because x ∈ xAx, which in turn follows
easily from Lemma 2.1. �
Corollary 2.7. If A is a closed subalgebra of an operator algebra B , and x ∈ FA, then the support
projection of x computed in A∗∗ is the same, via the canonical embedding A∗∗ ∼= A⊥⊥ ⊂ B∗∗,
as the support projection of x computed in B∗∗.

Proof. This is obvious given the formula s(x) = w∗ limn en above. �
Corollary 2.8. If A is a closed subalgebra of a C∗-algebra B , and x ∈ FA, then s(x) is the
support projection of x∗x in B∗∗. Indeed s(x) = s(x∗x) = s(xx∗) = s(x∗), where the latter
three support projections are with respect to B .

Proof. We have x∗xs(x) = x∗x, so s(x) � s(x∗x). Conversely, if p is a projection in B with
x∗xp = x∗x, then (1−p)x∗x(1−p) = 0, so that x = xp, and so s(x) � p (using Corollary 2.7).
Thus s(x) � s(x∗x). So s(x) = s(x∗x) and the other equalities are similar, or now obvious. �
Lemma 2.9. Let A be an operator algebra with cai. If x ∈ FA, then for any state ϕ of A, ϕ(x) = 0
iff ϕ(s(x)) = 0.

Proof. Let B = C∗(A), then as we said in the introduction, states ϕ on A are precisely the
restrictions of states on B . Continuing to write ϕ for its canonical extension to A∗∗, if ϕ(s(x)) = 0
then by Cauchy–Schwarz,

∣∣ϕ(x)
∣∣ = ∣∣ϕ(

s(x)x
)∣∣ � ϕ

(
s(x)

) 1
2 ϕ

(
x∗x

) 1
2 = 0.

Conversely, if ϕ(x) = 0 then ϕ(x∗x) � ϕ(x + x∗) = 0, since x ∈ FA. By Cauchy–Schwarz,
ϕ(ax) = 0 for all a ∈ A. Since any bai for oa(x) converges to s(x) weak* we have
ϕ(s(x)) = 0. �
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Lemma 2.10. If x, y ∈ FA, for any operator algebra A, then xA ⊂ yA iff s(x) � s(y). If A has
a cai and x ∈ FA, then the following are equivalent:

(i) xA = A.
(ii) xAx = A.

(iii) s(x) = 1A∗∗ .
(iv) ϕ(x) 	= 0 for every state ϕ of A.
(v) Re(x) is strictly positive (that is, ϕ(Re(x)) > 0 for every state ϕ of C∗(A)).

Proof. Since xA = s(x)A∗∗ ∩A, it is clear that if s(x) = 1 then xA = A; and also that xA ⊂ yA

if s(x) � s(y). Conversely, if xA ⊂ yA, then x ∈ yA = s(y)A∗∗ ∩A. We have s(y)x = x, so that
s(x) � s(y) by definition of s(x).

(i) ⇔ (iii) Corollary 2.6.
(i) ⇔ (ii) Follows by the bijective correspondence between r-ideals and HSA’s, and Corol-

lary 2.6.
(iii) ⇒ (iv) Obvious by the last lemma.
(iv) ⇒ (iii) If s(x) 	= 1 choose a state ϕ on A (or equivalently on C∗(A)) with ϕ(1−s(x)) = 1.

Then ϕ(s(x)) = 0, and so ϕ(x) = 0 by Lemma 2.9.
(v) ⇒ (iv) Follows since Re(ϕ(x)) = ϕ(Re(x)).
(iv) ⇒ (v) If Re(ϕ(x)) = ϕ(Re(x)) = 0, then because |1 − ϕ(x)| � 1, we must have

ϕ(x) = 0. �
Remark. It is easy to see that in the last result we can replace A by any C∗-algebra C∗(A)

generated by A. Thus for example xA = A iff xC∗(A) = C∗(A).

An element in FA with Re(x) strictly positive, and hence satisfying the equivalent conditions

in the last result, will be called strictly real positive. Note that roots x
1
k of a strictly real pos-

itive x are strictly real positive, and they become as close as we like to a positive operator, as
k → ∞.

Proposition 2.11. If x ∈ FA is strictly real positive, then pxp is invertible in pAp for every
projection p ∈ A.

Proof. The state space S(pAp) is weak* compact since pAp has an identity, and the map
ϕ �→ ϕ(pxp) on S(pAp) is continuous. It is also never zero, as can be seen using Lemma 2.10,
since for any ϕ ∈ S(pAp), ϕ(p · p) extends to a nonzero positive functional on C∗(A), so is a
nonzero multiple of a state on A, hence ϕ(pxp) 	= 0. Thus |ϕ(pxp)| is bounded away from 0, so
pxp has numerical range, hence spectrum with respect to pAp, excluding 0. �

We will need the following ‘Fredholm alternative’ type result, a ‘sharp form’ of the Neumann
lemma.

Theorem 2.12. Let T be an operator in B(H) with ‖I − T ‖ � 1. Then T is not invertible if and
only if ‖I − T ‖ = ‖I − 1

2T ‖ = 1. Also, T is invertible iff T is invertible in the closed algebra
generated by I and T , and iff oa(T ) contains I . Here I = IH of course.
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Proof. Since ‖I − T ‖ � 1 implies ‖I − 1
2T ‖ � 1 by convexity, the (⇒) direction of the first

‘iff’ is clear by the Neumann lemma. Conversely, if ‖I − T ‖ = ‖I − 1
2T ‖ = 1, then by the

parallelogram law

∥∥∥∥1

2
T ζ

∥∥∥∥
2

+
∥∥∥∥
(

I − 1

2
T

)
ζ

∥∥∥∥
2

=
∥∥∥∥1

2
ζ

∥∥∥∥
2

+
∥∥∥∥1

2
(I − T )ζ

∥∥∥∥
2

� 1, ζ ∈ Ball(H).

Hence I − 1
2T approximately achieves its norm at some norm one vector ζ with ‖T ζ‖ as close

as we wish to 0. Hence T is not invertible, or else ‖T ζ‖ � ‖T −1‖−1.
If oa(T ) contains IH then ‖I − RT ‖ < 1 for some R in oa(T ), which by commutativity of

oa(T ) and the Neumann lemma implies that T is invertible in oa(T ), and hence in A. Conversely,
if T is invertible in A then by the above, ‖I − T ‖ < 1 or ‖I − 1

2T ‖ < 1. In the first case, the
bai (en) for oa(T ) in Lemma 2.1, converges in norm to I , so I ∈ oa(T ). The second case follows
from the first by replacing T with T/2. �
Lemma 2.13. If (Ji) is a family of r-ideals in an operator algebra A, with matching family of
HSA’s (Di), and if J = ∑

i Ji then the HSA matching J is the HSA D generated by the (Di)

(that is, the smallest HSA in A containing all the Di ). Here ‘matching’ means with respect to the
correspondence between r-ideals and HSA’s described in the introduction.

Proof. Let D′ be the HSA generated by the (Di). Since Ji ⊂ J we have Di ⊂ D, and so D′ ⊂ D.
Conversely, since Di ⊂ D′ we have Ji ⊂ D′A, so that J ⊂ D′A. Hence D ⊂ D′. �

An r-ideal (resp. HSA, �-ideal) of the form xA (resp. xAx, Ax), for x ∈ FA, will be called
peak-principal. We note that the peak-principal r-ideals in a uniform algebra A are precisely the
JE = {f ∈ A: f|E = 0} for a peak set E. Thus peak-principal r-ideals (or peak-principal HSA’s)
may be thought of as a noncommutative variant of peak sets (see also [9, p. 354]).

If J is a peak-principal r-ideal, for example, then for any ε > 0, we may write J = xA for
some x ∈ 1

2FA, where the numerical range of x is contained in the thin wedge Wε from Theo-

rem 2.4. This is because xA = x
1
n A for all n ∈ N (since x

1
n ∈ oa(x) by Proposition 2.3).

As pointed out in [9, Section 4], there is a bijective correspondence between r-ideals, and
certain weak* closed faces in the quasistate space Q(A), for an approximately unital operator
algebra A. In fact, there are simple arguments for what we will need: If J is an r-ideal with
support projection p, let Fp = {ϕ ∈ Q(A): ϕ(p) = 0} = Q(A) ∩ J⊥. (The one direction of the
last equality follows from Cauchy–Schwarz, the other from the fact that a left cai of J converges
to p.) Note that if Fp2 ⊂ Fp1 then by extending states to C∗(A) we get a similar inclusion
with respect to C∗(A). Since p1, p2 are open with respect to C∗(A), we obtain p1 � p2 by the
C∗-algebra theory, and so J1 ⊂ J2. Thus J �→ Fp is a one-to-one order injection. It also takes
‘closures of sums of r-ideals’ to ‘intersections’, since Q(A) ∩ (

∑
i Ji)

⊥ = ⋂
i (Q(A) ∩ J⊥

i ).

Proposition 2.14. Let A be any operator algebra (not necessarily with an identity or approximate
identity). Suppose that (xk) is a sequence in FA, and that αk ∈ (0,1] add to 1. Then the closure
of the sum of the r-ideals xkA, is the r-ideal zA, where z = ∑∞

k=1 αkxk ∈ FA. Similarly, the HSA
generated by all the xkAxk equals zAz.
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Proof. Since x ∈ oa(x), it is easy to see that xA = xA1. Thus we may assume that A is unital if
we want. The statement to be proved corresponds to the identity

∨
k s(xk) = s(z). We have

{
ϕ ∈ Q(A): ϕ

(∑
k

αkxk

)
= 0

}
=

⋂
k

{
ϕ ∈ Q(A): ϕ(xk) = 0

}

(because ϕ(
∑

k αkxk) = 0 implies that
∑

k αk Reϕ(xk) = 0; and the latter implies that
Reϕ(xk) = 0 since xk is accretive, and so ϕ(xk) = 0 because of the shape of the numerical range
of elements in FA). Hence, by Lemma 2.9, Fs(z) = ⋂

k Fs(xk), which implies, in the light of the
discussion above the proposition, that the closure of the sum of the r-ideals xkA, is the r-ideal zA.
So

∨
k s(xk) = s(z). The HSA assertion follows from the r-ideal assertion, by Lemma 2.13, and

the last assertions of Corollary 2.6. �
Theorem 2.15. Let A be any operator algebra (not necessarily with an identity or approximate
identity). The r-ideals (resp. HSA’s) in A, are precisely the closures of unions of an increasing
net of ideals (resp. HSA’s) of the form xA (resp. xAx), for x ∈ FA.

Proof. The r-ideal case is done in Theorem 1.2 if A is unital. If A is not unital, and if J is
an r-ideal in A, then it is also an r-ideal in A1. Theorem 1.2 gives that J is the closure of an
increasing unions of ideals of the form (1 − z)A1, for z ∈ Ball(A1). If z = λ1 − x for x ∈ A,
λ ∈ C, then λ = 1 (or else there is a nonzero scalar t = 1 − λ with t1 + x = 1 − z ∈ (1 − z)A1 ⊂
J ⊂ A, which forces 1 = 1

t
((t1 + x) − x) ∈ A). So (1 − z)A1 = xA1. Since oa(x) has a cai by

Lemma 2.1, x ∈ x oa(x) ⊂ xA. It follows that xA1 has the same closure as xA. Thus the closure
of (1 − z)A1 is xA. This completes the proof of the statements concerning r-ideals.

We saw in Corollary 2.6 that xAx is an HSA if x ∈ FA, with matching r-ideal xA. Also, the
closure D of an increasing union of HSA’s Di is an HSA, and therefore it is the HSA generated
by the (Di). Indeed, it clearly satisfies DAD ⊂ D, and to see that it has a cai it is well known
that it is enough to show that if x1, . . . , xn ∈ D and ε > 0 are given, then there exists d ∈ Ball(D)

with ‖xkd − xk‖ ∨ ‖dxk − xk‖ < ε. Picking j and y1, . . . , yn ∈ Dj with ‖xk − yk‖ < ε/3 for all
k = 1, . . . , n, we have for a cai (et ) for Dj that

‖xket − xk‖ �
∥∥(xk − yk)et

∥∥ + ‖yket − yk‖ + ‖xk − yk‖ < ε

for all k, and for some choice of t . Similarly, ‖dxk − xk‖ < ε, as desired.
Finally, if D is an HSA in A, with matching r-ideal J , express J as the closure of an increasing

unions of r-ideals Ji of the form xA, by the first paragraph. Then by Lemma 2.13, D is the HSA
generated by, and is also the closure of, the increasing net of HSA’s (Di) matching the (Ji). By
Corollary 2.6, Di is of the desired form xAx. �

Peak sets were defined in the introduction. It is well known that a countable intersection of
peak sets is a peak set, and that a p-set which is a Gδ set is a peak set, so that for uniform algebras
on metrizable spaces the p-sets are exactly the peak sets (using the fact that C(K) is separable
if K is metrizable). Analogous results hold in C∗-algebras: e.g. separable closed right ideals are
all of the form xA for some x ∈ A+. Similar facts hold in our context:

Theorem 2.16. Let A be any operator algebra (not necessarily with an identity or approximate
identity).
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(1) Every separable r-ideal (resp. HSA) in A, is peak-principal (that is, equal to xA (resp. xAx),
for some x ∈ FA).

(2) The closure of a countable sum of peak-principal r-ideals (resp. the HSA generated by a
countable number of peak-principal HSA’s) is peak-principal.

Proof. (2) By Proposition 2.14, the closure of
∑∞

n=1 xnA is xA, where x = ∑∞
n=1

xn

2n . The HSA
assertion then follows from this, as in the proofs of Proposition 2.14 and Theorem 2.15.

(1) Let D be a separable r-ideal (resp. HSA) in A. By Theorem 2.15, D is the closure of a
union of r-ideals (resp. HSA’s) of the form wA (resp. wAw), for w ∈ FA, and we can clearly
assume that there are a countable number of these. Now apply (2) (in the HSA case recall that
the HSA generated by an increasing net of HSA’s is the closure of the union of these HSA’s). �
Remark. The above considerations give an ‘algorithm’ for building useful cai in r-ideals,
�-ideals, or HSA’s (and hence in any approximately unital operator algebra). In the separable

case, we can just take (y
1
k ) where y = x

2 for x as in Theorem 2.16. Indeed as we saw in the

second proof of Lemma 2.1, y
1
k y → y. Similarly in the nonseparable case, any r-ideal J , for

example, in a unital operator algebra A may be written as the closure of the union of an increas-

ing net of r-ideals Jt = xtA for xt ∈ 1
2FA, by Theorem 1.2. Then as before, (x

1
k
t ) is a left cai

for J .

Corollary 2.17. If A is a separable operator algebra, generating a C∗-algebra B , then the open
projections in A⊥⊥ are precisely the s(x) for x ∈ FA.

Proof. This follows from Theorem 2.16 (1), Lemma 2.5, and Corollary 2.6. �
Remark. Of course if in the last result A is also unital, then these projections are precisely the
‘perps’ of peak projections for A, by a fact mentioned in the introduction.

Corollary 2.18. If A is a separable operator algebra with cai, then there exists an x ∈ FA with
A = xA = Ax = xAx.

Any separable operator algebra with cai has a countable cai consisting of mutually commut-

ing elements, indeed of form (x
1
k ) for an x ∈ 1

2FA.

Proof. The first part is immediate from Theorem 2.16; if A = xAx then this agrees with xA

and Ax, since for example xAx ⊂ xA ⊂ A = xAx. The second part is clear from the fact that

x
1
k x → x (see the second proof of Lemma 2.1). �

Theorem 2.19. Let A be any operator algebra with cai. The following are equivalent:

(i) A has a countable cai.
(ii) A has a strictly real positive element.

(iii) There is an element x in FA with s(x) = 1A∗∗ .

Proof. If A has a strictly real positive element x then A = xAx by Lemma 2.10, and (a scaling

of ) (x
1
k ) is a countable cai.
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If A has a countable cai (fn), then A has a countable cai (en) in FA by Corollary 1.6. By
Lemma 2.10 and Theorem 2.16 (2), A = ⋃

n enA = zA for a strictly real positive element z ∈ A.
The equivalence of (ii) and (iii) comes from Lemma 2.10. �

Definition 2.20. If A is an approximately unital operator algebra, then we define a peak projec-
tion for A to be the complement of a support projection s(x), for an element x ∈ FA. A p-pro-
jection for A is the infimum of a collection of peak projections for A.

If A is unital, this definition coincides with the ones discussed in [26,9], as was pointed out in
the introduction (following from [9, Remark 6.10]).

Remark. If A is a nonunital C∗-algebra, then our Definition 2.20 is connected, via Corollary 2.8,
to the one in [28], but it is not the same. Indeed, the function in B = C0((0,1)) which is 0 until 1

2 ,
and then makes an inverted ‘vee’ of height 1, is in FB , and the corresponding peak projection is
the characteristic function of [0, 1

2 ]. However, the latter is not an essential support projection in
their sense.

Corollary 2.21. For any approximately unital operator algebra A, a projection q ∈ A∗∗ is the
complement of the support projection of an r-ideal iff q is the infimum of a collection of peak
projections. These can be chosen to be a decreasing net.

Proof. (⇒) This follows from Theorem 2.15, and from the fact in the proof of Theorem 1.2 that
the open projection corresponding to the closure of a sum of r-ideals, is the supremum of the
open projections pt corresponding to each of these r-ideals. In our case here each pt = s(xt ) for
some xt ∈ FA, so that p⊥ = ∧

t s(xt )
⊥.

(⇐) This follows from the fact that s(x)⊥ is closed, and that the infimum of closed projections
in A∗∗ remains a closed projection in A∗∗, as we said in the introduction. �

Just as in the unital case [26,9], one may write down several equivalent characterizations of
peak projections matching some of the characterizations in these papers. We will not take the
time to do this here since most of these become cumbersome to state in the nonunital case. We
will mention a characterization in terms of the tripotent u(z) = w∗ limn z(z∗z)n considered by
Edwards and Rüttimann [19]:

Proposition 2.22. If A is any operator algebra and if x ∈ FA, set z = 1 − x
2 , where 1 is the

identity of a C∗-algebra B containing A. Then u(z) (computed with respect to B) is a projection
and u(z) = s(x)⊥ = w∗ limn(z

∗z)n.

Proof. We may assume that A = B , and view A ⊂ A∗∗ ⊂ B(H). Since z = 1+(1−x)
2 , it is a

contraction. It is well known (and easy to see) that (z∗z)n → P weak*, where P is the pro-
jection onto Ker(1 − z∗z). We claim that Ker(1 − z∗z) = Ker(x). Indeed clearly Ker(x) ⊂
Ker(1 − z∗z). If R is the contraction 1 − x and ζ ∈ H is a unit vector, then z∗zζ = ζ implies that
(2 Re(R) + R∗R)ζ = 3ζ , which implies that 〈Rζ, ζ 〉 = 〈R∗Rζ, ζ 〉 = 1. Hence ‖Rζ − ζ‖2 = 0,
so ζ ∈ Ker(x). By Lemma 2.5, s(x)⊥ is the projection onto Ker(x), namely P above. Of course
zP = (1 − x/2)P = P . Thus (z∗z)n → s(x)⊥ weak*, and z(z∗z)n → zP = P weak*. �
Corollary 2.23. If A is an approximately unital operator algebra then every projection in M(A)

is a strong limit of a decreasing net of peak projections, and is also a strong limit of an increasing
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net of support projections of elements of FA. If A is separable then we do not need to take limits
here.

Proof. The first statements follow from Corollary 2.21, since every projection in M(A) is open
and closed (see [9, Proposition 5.1]). The last statement follows from this and Corollary 2.17. �

During the writing of the papers [9,26], we had believed (on the basis of a proof that had
a gap) the following fact about compact projections q , hence about closed projections in the
second dual of a unital algebra: If {ui : i ∈ I } is a collection of open projections whose supremum∨

i∈I ui dominates a compact projection q , then q �
∨

i∈F ui for a finite set F ⊂ I . This is true
if q = 1, or under some strong commutativity hypotheses, but is false in general (as may be seen
by considering A = K(�2) (or its unitization if one prefers a unital algebra), q the projection
onto Ce1, and uk the projection onto Span({e1 + e2, e2 + e3, . . . , ek + ek+1}). Then

∨
k uk = I ,

but we do not have q �
∨n

k=1 uk for any finite n).
This incorrect statement was used only twice in those papers, namely in [26, Proposition 5.6]

and [9, Theorem 6.4]. Fortunately both of these proofs can be fixed. There is a very short direct
proof for [26, Proposition 5.6]: note that the result is true for peak projections since these are
weak* limits of terms in A. Every p-projection q is a limit of a decreasing net of peak projec-
tions qi , so ϕ(q) = limi ϕ(qi) = 0. We can fix the gap in the first two lines of one direction of the
proof of [9, Theorem 6.4], and at the same time improve the result as follows:

Theorem 2.24 (Noncommutative Urysohn lemma for nonselfadjoint operator algebras). Let A

be a subalgebra of a unital C∗-algebra B , with 1B ∈ A, and let q ∈ B∗∗ be a closed projection.
Then q ∈ A⊥⊥ iff for any open projection u � q , and any ε > 0, there exists an a ∈ Ball(A)

with aq = q and ‖a(1 − u)‖ < ε and ‖(1 − u)a‖ < ε. Indeed this can be done with, in addition,
‖1 − 2a‖ � 1.

Proof. (⇐) As in [9, Theorem 6.4].
(⇒) Let q ∈ A⊥⊥, let u be an open projection with u � q , and let ε > 0 be given. Using

Theorem 1.1, let (et ) be a cai with ‖1 − 2et‖ � 1, for the HSA q⊥A∗∗q⊥ ∩ A associated with q

as in the introduction. Then 1 − et → q weak*, and (1 − et )q = q . We follow the idea in the last
seven lines of the proof of [9, Theorem 6.4]. By the noncommutative Urysohn lemma [1], there
is an x ∈ B with q � x � u. Then (1 − et )(1 − x) → q(1 − x) = 0 weak*, and hence weakly
in B . Similarly, (1 − x)(1 − et ) → 0 weakly. By a routine convexity argument in B ⊕ B , given
ε > 0 there is a convex combination a of the 1− et such that ‖a(1−x)‖ < ε and ‖(1−x)a‖ < ε.
Clearly ‖1 − a‖ � 1 and aq = q . Therefore ‖a(1 − u)‖ = ‖a(1 − x)(1 − u)‖ < ε. Similarly for
‖(1 − u)a‖ < ε. The estimate ‖1 − 2a‖ � 1 follows since ‖1 − 2(1 − et )‖ = ‖1 − 2et‖ � 1, and
this formula persists with convex combinations. �

We now show that the elements a in Theorem 2.24 constitute a left cai for the r-ideal asso-
ciated with q , with the net constituting the cai indexed by the directed set of open projections
u � q .

Corollary 2.25. Let A be a unital subalgebra of C∗-algebra B and let q ∈ A⊥⊥ be a closed
projection associated with an r-ideal J in A. Then an explicit left cai for J is given by x(u,ε) =
1−a, where a is an element which satisfies the conclusions of the last theorem, and is associated
to an open projection u � q , and a scalar ε > 0. This left cai is indexed by such pairs (u, ε), that
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is, by the product of the directed set of open projections u � q , and the set of ε > 0. This right
cai is also in 1

2FA; that is, ‖1 − 2x(u,ε)‖ � 1.

Proof. By [3, Theorem 2.9], if p1, p2 are two open projections dominating q , then there exists a
third open projection p � q with {x ∈ B+: q � x � p} ⊂ {x ∈ B+: q � x � pk}. By Lemma 2.7
in [3], there is an increasing net in the first of these sets with strong limit q , hence q � pk for
k = 1,2. Thus the set of open projections dominating q is a directed set.

By the last theorem, for each open projection u � q , and any ε > 0, there exists an a ∈ Ball(A)

with aq = q and ‖a(1 − u)‖ < ε, and ‖1 − 2a‖ � 1. Let x(u,ε) = 1 − a. We claim that (x(u,ε))

is a cai for J . Certainly x(u,ε)q = (1 − a)q = q − q = 0, so that x(u,ε) ∈ J . Also, ‖x(u,ε)‖ � 1,
indeed ‖1 − 2x(u,ε)‖ � 1. If b ∈ Ball(J ), we have

‖x(u,ε)b − b‖ = ‖ab‖ �
∥∥(a − au)b

∥∥ + ‖aub‖ �
∥∥a(1 − u)

∥∥ + ‖ub‖ < ε + ‖ub‖.

Thus we need to show that ub → 0 in norm with u, over the directed set of open projections
u � q . This is easy, for example in Akemann’s proof in [26, Proposition 2.3] one associates to an
increasing left cai (at ) for q⊥B∗∗ ∩ B , an open projection rt with q � rt � 2(1 − at ). It follows
that ‖rtb‖ � 2‖(1 − at )b‖ → 0, since b ∈ J ⊂ q⊥B∗∗ ∩ B . Thus if ‖rtb‖ < ε, then

‖x(u,ε)b − b‖ < ε + ‖ub‖ < ε + ‖rtb‖ < 2ε,

if q � u � rt . �
3. When xA and Ax are closed

Proposition 3.1. If A has a cai but no identity, and x ∈ FA with Ax = A, then xA 	= A. Hence
for no strictly real positive x ∈ A is xA closed.

Proof. If x = xy for some y ∈ A, then ety = et → y for the cai (et ), so that A has identity. For
the last statement use Lemma 2.10. �

We recall that ‘well-supported’ operators are those operators x that have a ‘spectral gap’
(for |x|) at 0, that is 0 is absent from, or is isolated in, the spectrum (of |x|). It is a well-known
principle in operator theory and C∗-algebras, that x is a well-supported operator (resp. element if
a C∗-algebra A) iff x has closed range (resp. xA is closed), and this is equivalent to the existence
of an operator y (resp. element y ∈ A) with xyx = x. Such a y is called a generalized inverse or
pseudoinverse. See e.g. [7, II.3.2.11], [23,24]. With this in mind, it is tempting to conjecture that
for an operator algebra A, a noninvertible element x ∈ FA has 0 isolated in (or absent from) its
spectrum, iff xA is closed, and iff there exists y ∈ A with xyx = x. However there are two issues
that we have to deal with, for x ∈ FA. First, we do not know if it is true that xA is closed iff Ax

is closed. What is true is that xA and Ax is closed iff xAx is closed. Second, in a nonsemisimple
setting, 0 being an isolated point in Sp(x) need not imply that xA is closed. Indeed there can exist
quasinilpotent operators without closed range. Thus for example suppose that A is the radical
operator algebra in Example 4.3, with cai (et ) ⊂ FA. Then et is quasinilpotent (any character
of A certainly annihilates et , so Sp(et ) = (0)). Hence 0 is an isolated point of its spectrum, but
etA = A since this algebra has no proper r-ideals, and this differs from etA by Proposition 3.1.
So etA is not closed.
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With the above in mind, the following result may be the best possible:

Theorem 3.2. For an operator algebra A, if x ∈ FA, the following are equivalent:

(i) x oa(x) is closed.
(ii) oa(x) is unital (which implies that x is invertible in oa(x)).

(iii) There exists y ∈ oa(x) with xyx = x.
(iv) xAx is closed.
(v) xA and Ax are closed.

(vi) There exists y ∈ A with xyx = x.

Also, the latter conditions imply

(vii) 0 is isolated in, or absent from, SpA(x).

Finally, if further oa(x) is semisimple, then conditions (i)–(vii) are all equivalent.

Proof. If A is unital, x ∈ FA, and x is invertible in A, then by Theorem 2.12 we have (ii), and
indeed in this case (i)–(vii) are all obvious. So we can assume that x is not invertible in A.

That (i) implies (ii) follows since in this case x ∈ x oa(x) = x oa(x), and if x = xy for
y ∈ oa(x) then y = 1oa(x). That the first condition in (ii) implies the second is clear (as in Theo-
rem 2.12). Now the equivalences (i)–(iii) are obvious (some also follow from (iv)–(vi)), as is the
fact that these imply some of (iv)–(vi).

(iv) ⇒ (vi) Suppose that xAx is closed. Now x = (x
1
3 )3, and

x
1
3 ∈ oa(x) = x oa(x)x ⊂ xAx = xAx,

and so x = xyx for some y ∈ A.
(vi) ⇒ (v) (vi) implies that xA = xyA is closed since xy is idempotent. Similarly Ax is

closed.
(vi) ⇒ (iv) xAx = xyAyx is closed as in the last line.

(v) ⇒ (vi) If xA and Ax are closed, then by a similar argument, x
1
3 ∈ xA, and similarly

x
1
3 ∈ Ax. Hence x = x

1
3 x

1
3 x

1
3 ∈ xAx. Thus x = xyx for some y ∈ A.

(vi) ⇒ (vii) We may assume that A ⊂ B(H), and that x is pseudo-invertible as an operator
on H . Then x(H) ⊂ xy(H) ⊂ x(H), so that x(H) is closed. Let P be the projection onto K =
Ker(x)⊥ = x(H) (see Lemma 2.5), an invariant subspace for x. Let S be the restriction of x

to K , then S is bicontinuous and invertible. If K = H then x is invertible, and we discussed
this case at the start of the proof. If K 	= H then since x = PSP , it follows that SpB(H)(x) =
{0} ∪ SpB(K)(S), which has 0 as an isolated point since S is invertible. If 0 was not isolated in
SpA(x) then, by the topology of compact sets in the plane, there is a sequence of boundary points
in SpA(x) converging to 0. Since ∂ SpA(x) ⊂ SpB(H)(x), this is a contradiction.

(vi) ⇒ (ii) We saw in the last paragraph or two that (vi) implies that x = 0 ⊕ S for an invert-
ible S. Note that oa(x) ∼= oa(S). By Theorem 2.12, oa(S) is unital, and S is invertible there. Thus
the same is true for x.

(vii) ⇒ (ii) Suppose that oa(x) is semisimple but nonunital, and that 0 is an isolated point
in SpA(x). The latter is equivalent (by the basic spectral result for singly generated subalgebras,
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and because the spectrum is contained in the disk B(1,1)), to 0 being isolated in K = Spoa(x)(x).
Consider E, the spectral projection of x corresponding to {0}. Namely, E = f (x) where f is 1 on
a neighborhood of 0, and is 0 on a neighborhood of K \ {0}. We have Sp(Ex) = Sp((f z)(x)) =
(f z)(Sp(x)) = {0}. By semisimplicity, Ex = 0, and (1 − E)x = x. Since (1 − f )(0) = 0 we
have 1 − E ∈ oa(x). Note that if g is 0 on a neighborhood of 0, and is 1/z on a neighbor-
hood of K \ {0}, then gz2 − z is zero on Sp(x), and so by semisimplicity we have xg(x)x = x.
Since g(0) = 0 we have g(x) ∈ oa(x), and we deduce from the above that oa(x) is unital, and
(ii) holds. �
Remark. The conditions in the theorem are not necessarily equivalent under the assumption that
A is semisimple. For example, if A = B(L2([0,1])), suppose that T ∈ A is any quasinilpotent
operator with T − I contractive. Then T does not have closed range, for if it did have closed
range then as in the proof that (vi) ⇒ (vii) above, T is of the form 0 ⊕ S for an invertible S. This
is impossible for a quasinilpotent (since if 0 	= t ∈ Sp(S) then t ∈ Sp(T ) = (0), a contradiction).
It is easy to see that then (vi) fails, and so (i)–(v) fail too. However 0 is isolated in the spectrum
of this quasinilpotent operator.

Also in this connection we remark that all C∗-algebras are semisimple, yet C∗-algebras may
have dense subalgebras consisting entirely of nilpotents (hence quasinilpotents) [34].

4. Operator algebras without HSA’s

In this section we study operator algebras A without nontrivial HSA’s or r-ideals. By a trivial
HSA (or r-ideal) of A we mean of course (0) or A.

Theorem 4.1. For a unital operator algebra A, the following are equivalent:

(i) A has no nontrivial r-ideals (or equivalently, HSA’s).
(ii) an → 0 for all a ∈ Ball(A) \ C1.

(iii) The spectral radius r(a) < ‖a‖ for all a ∈ Ball(A) \ C1.
(iv) The numerical radius ν(a) < ‖a‖ for all a ∈ Ball(A) \ C1.
(v) ‖1 + a‖ < 2 for all a ∈ Ball(A) \ C1.

(vi) Ball(A) \ C1 consists entirely of quasi-invertibles.

If A has a cai but no identity, then the following are equivalent:

(a) A has no nontrivial r-ideals (or equivalently, HSA’s).
(b) A1 has one nontrivial r-ideal.
(c) Re(x) is strictly positive for every x ∈ FA \ {0}.

Proof. The equivalences (i)–(vi) are in [4, Section 3], if one uses the fact that every r-ideal con-
tains what we called a 1-regular ideal (defined before Corollary 1.3), which is a consequence of
Theorem 1.1. The one direction of the equivalence of (a) and (b) is obvious. For the other, sup-
pose that x ∈ Ball(A1). Then (1 − x)A is an r-ideal in A by [9, Proposition 3.1] (or Theorem 7.1
below). So if A has no nontrivial r-ideals then either (1 − x)A = (0) or (1 − x)A = A. In the
first case, xa = a for all a ∈ A, which forces (if A has a cai) x = 1 and (1 − x)A1 = (0). In the
second case: in the notation of the proof of Theorem 7.1 and the Remark after it, (1 − x)A has
bai (enft ), which has weak* limit pf if f is the left identity of A⊥⊥ and p is the weak* limit
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of en. So pf = f , which forces p = f or p = 1. If p = f then (1 − x)A1 = A. If p = 1 then
(1 − x)A1 = A1. By the Remark after Theorem 1.2, for example, A1 has A as its only nontrivial
r-ideal.

That (a) is equivalent to (c) follows easily from Lemma 2.10, and the fact that r-ideals are
‘sups’ of peak-principal ones (see Theorem 2.15). �
Remarks. (1) Simple examples (the 2 × 2 matrices supported on the first row) show that the
equivalence with (b) in the last result is not true without a cai.

(2) If there exist nontrivial r-ideals in a unital operator algebra A, then there exist proper
maximal r-ideals in A. This follows from [4, Proposition 3.6] and the Remark after Theorem 1.2
above.

Theorem 4.2. An approximately unital operator algebra with no countable cai, has nontrivial
r-ideals.

Proof. If A has no countable cai then by Theorem 2.19 there is no element in FA with s(x) = 1.
Thus for any nonzero x ∈ FA, we have xA 	= A by Lemma 2.10, and this is a nontrivial
r-ideal. �
Proposition 4.3. If a nonunital operator algebra A contains a nonzero x ∈ FA with xAx closed,
or with 0 isolated in SpA(x) and oa(x) semisimple, then A has a nontrivial r-ideal.

Proof. By Theorem 3.2, under these conditions xA is closed, and so xA 	= A by Proposition 3.1.
This is a nontrivial r-ideal. �
Proposition 4.4. A nontrivial r-ideal in the unitization of an approximately unital radical oper-
ator algebra A, is an r-ideal in A.

Proof. If λ 	= 1 then we claim that z = λ1 + a is quasi-invertible in A1, so that (1 − z)A1 = A1,
for all a ∈ A. Indeed we know that a

1−λ
is quasi-invertible in A, and easy algebra shows that its

quasi-inverse gives rise to a quasi-inverse of λ1 + a. �
We now give several examples of operator algebras with cai, with only trivial r-ideals.

4.1. Example. A unital two-dimensional algebra

Consider the upper triangular 2 × 2 matrices whose 1–2 entry is the difference of the diagonal
entries.

4.2. Example. A nonunital commutative semisimple algebra

Set A = RDR−1, where D is the diagonal copy of c0 in B(�2), and R is an invertible opera-
tor in B(�2), such that the commutant of R∗R contains no nontrivial projections in the diagonal
copy of �∞ in B(�2). For example, R = I + S/2 where S is the backwards shift. Since A is a
subalgebra of the compact operators, its second dual may be identified with its σ -weak closure
in B(�2). Thus A∗∗ is unital, so that A has cai. In this case, there are no nontrivial projections
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in A∗∗ = A⊥⊥ = RDw∗R−1. Indeed any projection q in RDw∗R−1 corresponds to an idem-
potent, hence projection, p in Dw∗. Any projection in Dw∗ is a sequence of 0’s and 1’s. That
q = q∗ forces p to commute with R∗R, so that p = 0 or p = 1. Thus A has no nontrivial
r-ideals.

4.3. Example. A commutative radical algebra

Let A be the norm closed algebra generated by the Volterra operator V . This is commutative,
and so since V is quasinilpotent we have that A is radical. By [16, Corollary 5.11] we have
Āw∗ = V ′. As in the last example this coincides with A∗∗, and since this is unital we see that
A has a cai. By [16, Lemma 5.1], V ′ contains no nontrivial projections, hence the same is true
for A∗∗. Thus A has no HSA’s or r-ideals.

In the next section we will continue looking at examples.

5. An approximately unital radical operator algebra which is an integral domain

In this section we present an interesting commutative approximately unital operator alge-
bra, which happens to be radical and semiprime, and in fact is an integral domain (so ab = 0
exactly when a = 0 or b = 0). It is also an operator algebra whose ideal structure we can com-
pletely describe. This is achieved by adapting the work of Domar [18] on convolution algebras
L1(R+,ω); he showed that certain conditions on ω imply that L1(R+,ω) is a radical Banach
algebra and that all of its closed ideals are of a certain ‘standard’ type which we will describe
below. A simplified exposition of Domar’s result can be found on p. 554 of Dales [15]. The op-
erator algebras we produce will clearly have no nontrivial ideals having approximate identities.
They will have some features in common with Example 4.3, but in other ways they are very
different.

For our purposes, a radical weight ω : [0,∞) → (0,∞) is a continuous function such that
ω(0) = 1, ω(s + t) � ω(s)ω(t) for all s, t � 0, and ω(t)1/t → 0 as t → ∞. The Banach spaces
Lp(R+,ω) (1 � p < ∞) consist of equivalence classes of measurable functions f : R+ → C

such that ‖f ‖p = (
∫ ∞

0 |f (t)|pω(t)p dt)1/p < ∞. The space L1(R+,ω) is a Banach algebra
when given the convolution multiplication (see [15, Section 4.7]). For each α � 0, there is the
“standard ideal” Jα ⊂ L1(R+,ω) consisting of functions supported on [α,∞), and this ideal is
always norm closed.

We say that the radical weight ω satisfies Domar’s criterion if the function η(t) = − logω(t)

is a convex function on (0,∞), and for some ε > 0 we have η(t)/t1+ε → ∞ as t → ∞. An
obvious example of such a weight is ω(t) = e−t2

. Domar’s theorem asserts that if the radical
weight ω satisfies Domar’s criterion, then the standard ideals are the only nonzero closed ideals in
L1(R+,ω). We will use this result to obtain radical operator algebras with interesting properties.
Let ω denote any radical weight. The algebra L1(R+,ω) acts on L2(R+,ω) by convolution,
for one may readily check that the familiar inequality ‖f ∗ g‖2 � ‖f ‖1 · ‖g‖2 still holds when
the Lp spaces are given their radical weighting according to ω. If we write H for the Hilbert
space L2(R+,ω) and Mf for the operator on H with Mf (g) = f ∗ g, then the norm closure
of the operators Mf (f ∈ L1(R+,ω)), is an operator algebra A = A(ω). Indeed, the set of
operators Mf is already a subalgebra of B(H) since Mf · Mg = Mf ∗g .

Clearly A is a commutative operator algebra, and we claim that it has a dense set of quasinilpo-
tent elements consisting of operators Mf , so that A is also radical. Let | · |1 denote the unweighted
L1 norm, that is, the usual norm on L1(R+), and let ‖ · ‖1 be the weighted norm on L1(R+,ω). If
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f ∈ L1(R+,ω) is supported on [a, b], where 0 < a < b, then ‖f ‖1 � |f |1 ·min{ω(t): t ∈ [a, b]}.
The convolution power ∗nf is supported on [na,nb], and so ‖∗nf ‖1 � |∗nf |1 · max{ω(t): t ∈
[na,nb]}. We deduce that

∥∥∗nf
∥∥

1 � ‖f ‖n
1 · max{ω(t): t ∈ [na,nb]}

(min{ω(t): t ∈ [a, b]})n .

Taking nth roots and using the spectral radius formula and the fact that ω(t)1/t → 0, we see that
f is a quasinilpotent element of L1(R+,ω). Since the operator norm in A is bounded by the L1

norm ‖ · ‖1, it follows that Mf is quasinilpotent in A too.
The fact that ω(t) → 1 as t → 0 ensures that for small ε > 0, the L1 norm of any nonnegative

function f whose integral is 1 and which is supported on [0, ε], is close to 1. The correspond-
ing operators Mf form a contractive approximate identity for A. Also, A has, for each α � 0,
a “standard ideal” Jα consisting of the norm closure of operators Mf with f ∈ L1 supported
on [α,∞). We shall show:

Theorem 5.1. For any radical weight ω, the algebra A(ω) is an integral domain with cai. If
the radical weight ω satisfies Domar’s criterion, then the standard ideals are the only nonzero
closed ideals of A.

Note that Jα · Jβ ⊂ Jα+β , so Jα 	= J 2
α for α > 0. In particular, the nontrivial standard ideals

do not have any approximate identity and are not r-ideals. So when the above theorem is proved,
we will have shown that the algebra A has all the properties claimed at the start of the section,
provided the weight ω satisfies Domar’s criterion.

Recall that L1
loc(R

+) denotes the Fréchet space of locally integrable measurable functions
on R

+. For a function f ∈ L1
loc(R

+), we define α(f ) to be the minimum of the support
of f (or +∞ if f = 0). We will use the Titchmarsh convolution theorem (see e.g. [15, The-
orem 4.7.22]), which states for example that α(f ∗ g) = α(f ) + α(g) for f,g ∈ L1

loc(R
+). In

particular this is the case when f ∈ Lp(R+,ω) and g ∈ Lq(R+,ω) for some p,q � 1 (for on
compact intervals ω is bounded away from 0 and so by the Hölder inequality it is clear that
Lp(R+,ω) ⊂ L1

loc for every p � 1). For an operator T ∈ A we define α(T ) = inf{α(Tf ): f ∈
L2(R+,ω)}.

Lemma 5.2. For each radical weight ω and each S,T ∈ A(ω), we have α(ST ) = α(S) + α(T ).

Proof. Let f ∈ L2(R+,ω) and let g = T (f ), so that α(g) � α(T ). Write g1(x) = g(x) ·
1x�α(S)+α(T ). Then g1 is compactly supported with |g1|2 ∈ L1, and so g1 = δα(T ) ∗ g0 for
some g0 ∈ L2. Then S(g1) = δα(T ) ∗ S(g0), because S is a norm limit of convolution oper-
ators. Hence α(S(g1)) = α(T ) + α(S(g0)) � α(S) + α(T ). The functions Sg1(x) and Sg(x)

agree for x � α(T ) + α(S), because g(x) and g1(x) agree for such values, and the sub-
space of functions f with α(f ) � α is invariant for all operators under consideration. Thus
α(STf ) = α(Sg) � α(T ) + α(S), so for all S and T we have α(ST ) � α(S) + α(T ).

To prove the converse, we will use the fact that the function f �→ α(f ) is upper semicon-
tinuous on Lp(R+,ω). This is because if the minimum of the support of f ∈ Lp is α, then
for ε > 0 the integral

∫ α+ε

α
|f (t)|p dt is strictly positive. Hence for functions g sufficiently

close to f in p norm, we will have
∫ α+ε |g(t)|p dt > 0 also, and in particular α(g) < α + ε.

α
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Since the set C00(R
+) of continuous functions of compact support is dense in L2, given ε > 0

we may pick f,g ∈ C00(R
+) such that α(Sf ) � α(S) + ε/2 and α(T g) � α(T ) + ε/2. Then

ST (f ∗ g) = S(f ∗ (T g)), because T is a norm limit of convolution operators. This is equal to
S(f ) ∗ T (g) because S is a norm limit of convolution operators. By the Titchmarsh convolution
theorem, α(S(f ) ∗ T (g)) = α(Sf ) + α(T g), and so

α(ST ) � α
(
ST (f ∗ g)

) = α(Sf ) + α(T g) � α(S) + α(T ) + ε.

Hence α(ST ) � α(S) + α(T ), and the lemma is proved. �
Corollary 5.3. The algebra A(ω) is an integral domain.

We have defined the standard ideal Jα to be the closure in A of the operators Mf with
f ∈ L1(R+,ω) and α(f ) � α. There is another obvious closed ideal, namely Iα = {T ∈ A:
α(T ) � α}. We now show that these two ideals coincide.

Lemma 5.4. Let ω be any radical weight. Then for each α � 0, the ideals Iα and Jα ⊂ A(ω) are
the same.

Proof. Every operator Mf with f ∈ L1(R+,ω) and α(f ) � α is plainly in Iα , which is closed
because it is the set of operators in A which map H into the closed subspace of functions sup-
ported on [α,∞). Therefore Jα ⊂ Iα . Conversely, let T ∈ Iα with T = limi Mfi

, fi ∈ L1(R+,ω).
We claim that T ∈ Jα , which will imply that the two ideals are the same. To prove this, let f be
smooth and compactly supported in [0,∞). The operator T · Mf = limi Mfi∗f , and the function
γ = T (f ) = limi fi ∗ f , are supported on [α,∞). Thus (fi ∗ f ) · 1[0,α] → 0 in L2([0, α],ω),
and even in L1([0, α],ω), because the L1 norm on the compact set [0, α] is bounded by a con-
stant times the L2 norm. It follows that if γi = (fi ∗ f ) · 1[0,α] ∈ A then the operator norm
‖γi‖ → 0 (for the operator norm is at most the L1 norm, which is known to tend to zero). So
T Mf = limi M(fi∗f )·1(α,∞)

∈ Jα . However, the algebra A is known to have a sequential cai con-
sisting of (convolution operators by) functions ui which are smooth and compactly supported
in [0,∞). So T = limi T Mui

∈ Jα also, and Iα = Jα . �
Lemma 5.5. If the radical weight ω satisfies Domar’s criterion, then for each t > 0 the integral∫ ∞

0 (ω(x + t)/ω(x))2 dx is finite.

Proof. The function η(x) = − logω(x) is a convex function by Domar’s criterion. Thus the ratio
ω(t + x)/ω(x) = exp(η(x)− η(t + x)) is a decreasing function of x. We know that η(x) � x1+ε

for large x, so that η(nt) � t1+εn1+ε for large enough n. Since η(0) = 0, we have
∑n

r=1η(rt) −
η((r − 1)t) � t1+εn1+ε , and so the largest term η(nt) − η((n − 1)t) must dominate nεt1+ε . This
implies that for all large enough n we have ω(nt)/ω((n − 1)t) � e−cnε

, where c = t1+ε . Since
ω(x + t)/ω(x) is a decreasing function, this implies that

∫ ∞
0 (ω(x + t)/ω(x))2 dx < ∞. �

Corollary 5.6. If ω satisfies Domar’s criterion, f ∈ L2(R+,ω) and t > 0 then f ∗ δt ∈
L1(R+,ω).
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Proof. By the Cauchy–Schwarz inequality we have

∞∫
0

∣∣f (x)
∣∣ω(x + t) dx �

( ∞∫
0

∣∣f (x)
∣∣2

ω(x)2 dx

)1/2( ∞∫
0

(
ω(x + t)/ω(x)

)2
dx

)1/2

< ∞. �

Lemma 5.7. Suppose a radical weight ω satisfies Domar’s criterion, T ∈ A(ω) is nonzero, and
α(T ) = α. Then the closed principal ideal T · A is equal to Iα .

Proof. By Lemma 5.2 we have T · A ⊂ Iα . Conversely, since Iα = Jα it is enough to show
that for each f ∈ L1(R+,ω) with α(f ) � α we have Mf ∈ T · A. Any such f is a norm limit
of functions fn ∈ L1(ω) with α(fn) > α; and so it is enough to show that Mf ∈ T · A when
α(f ) > α. Given such a function f , pick g ∈ L2(R+,ω) with α(T g) < α(f ) (this is possible
because the infimum of values α(T g) is by hypothesis equal to α), and pick t > 0 such that we
have t +α(T g) = α(δt ∗T g) < α(f ). By Corollary 5.6 the function h0 = δt ∗g is in L1(R+,ω),
as also is h = δt ∗ T g.

By Domar’s theorem the closed ideal generated by h in L1(R+,ω) is standard. It therefore
contains every function k in L1(R+,ω) with α(k) � α(h), so it contains the function f . There is
a sequence of functions ui ∈ L1(R+,ω) with ui ∗ h → f . The operator norm on A is bounded
by the L1 norm so Mui∗h → Mf in A. Now T is a norm limit of convolution operators: T =
limj Mτj

with τj ∈ L1(R+,ω). So for any γ ∈ C00(R
+), we have

Mui∗h(γ ) = ui ∗ (δt ∗ T g) ∗ γ = ui ∗ δt ∗
(

lim
j

τj ∗ g
)

∗ γ

= lim
j

τj ∗ ui ∗ δt ∗ g ∗ γ = T · Mui∗h0(γ ),

because convergence of τj ∗ g occurs in L2(R+,ω), and both ui ∗ δt and γ are in L1(R+,ω),
and L1(R+,ω) acts continuously on L2(R+,ω) by convolution.

Since C00 is dense in L2, the operators T · Mui∗h0 and Mui∗h are equal. Hence the operator
T · Mui∗h is in the principal ideal T A. Therefore the closure T A contains Mf for every f ∈
L1(R+,ω) with α(f ) > α. Thus T A = Iα as claimed. �
Proof of Theorem 5.1. By Corollary 5.3, A(ω) is an integral domain for any radical weight ω.
Let J ⊂ A be any nonzero closed ideal and let α = α(J ) = inf{α(T ): T ∈ J }. We claim that
J = Iα . From the definition it is plain that J ⊂ Iα . For the converse, choose Tn ∈ J with
α(Tn) → α. By Lemma 5.7, J contains Iβ for a sequence of values β tending to α. In par-
ticular J contains the operator Mf for every f ∈ L1(R+,ω) with α(f ) > α. The closure
of this set includes every Mg with α(g) � α. Hence it contains Jα = Iα . Thus J = Iα as
claimed. �

It is easy to see that the algebras A(ω) above contain no idempotents, and are ‘modular anni-
hilator algebras’. As in [15], the function u = 1 in L1(R+,ω) corresponds to a single generator
for the algebra A.
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6. Pre-images of HSA’s

If J is a closed ideal in an approximately unital operator algebra, we examine the relation
between FA and FA/J . From Meyer’s theorem ([30], [10, Theorem 2.1.13]) one can see that the
‘image’ of FA in A/J is a subset of FA/J .

Proposition 6.1. If J is a closed ideal in an operator algebra A, and if J has a cai, then
q(FA) = FA/J , where q :A → A/J is the canonical map.

Proof. Indeed suppose that x ∈ A/J with ‖1−x‖ � 1 in A1/J ∼= (A/J )1. Since J is an M-ideal
in A1 (see e.g. [10, Theorem 4.8.5]), it is proximinal [22]. Hence there is an element z = λ1 + a

in Ball(A1), with λ ∈ C, a ∈ A, such that λ1 + a + J = 1 − x. It is easy to see now that λ = 1,
and a +J = −x. Let y = −a. Then ‖1−y‖ = ‖1+a‖ = ‖z‖ � 1, so y ∈ FA, and q(y) = x. �
Proposition 6.2. If J is a closed ideal in an operator algebra A, and if J has a cai, then any
closed approximately unital subalgebra D in A/J is the image of a closed approximately unital
subalgebra in A, under the quotient map qJ from A onto A/J . In fact q−1

J (D) will serve here.

Proof. The idea for this proof was found independently by M. Almus. Note that J is an ap-
proximately unital ideal in q−1

J (D). Moreover, q−1
J (D)/J ∼= D, which is approximately unital.

So q−1
J (D) is approximately unital by [12, Proposition 3.1]. Another proof follows immediately

from 3.4 in [12], since, in the language there, B ⊕C C′ = β−1(C′) clearly. �
Corollary 6.3. Let J be a closed approximately unital two-sided ideal in an operator algebra A,
and let qJ :A → A/J be the quotient map.

(i) The open projections in (A/J )∗∗ are exactly the q∗∗
J (p), for open projections p in A∗∗.

(ii) The HSA’s in A/J are precisely the images of the HSA’s in A, under qJ .
(iii) The r-ideals in A/J are precisely the images of the r-ideals in A, under qJ .
(iv) An r-ideal (resp. HSA) in A/J of the form x(A/J ) (resp. x(A/J )x) for some x ∈ FA/J , is

the image of an r-ideal (resp. HSA) in A of the form yA (resp. yAy) for some y ∈ FA.

Proof. It is easy to see that the images of HSA’s (resp. r-ideals) in A, are HSA’s (resp. r-ideals)
in A/J . If p is open in A∗∗ then p is the weak* limit of a net (at ) in A with at = patp.
Then q∗∗

J (p) is the weak* limit of a similar net in A/J , so is open there. Items (i)–(iii) follow
easily from these observations, and Proposition 6.2. For (i), if p is the support projection of
D′ = q−1

J (D), where D is the HSA associated with p, then q∗∗
J (p) is the support projection

of D. So the open projections in (A/J )∗∗ are precisely the q∗∗
J (p), for open projections p ∈ A∗∗.

Item (iv) follows easily from Proposition 6.1; and that result also leads to another proof
of (i)–(iii), which seems to give a possibly different pre-image. We give the argument in the
r-ideal case: Let K be an r-ideal in A/J . By Corollary 1.4, there is a lcai (et ) in K with
‖1 − 2et‖ � 1. As above we obtain xt ∈ FA, with qJ (xt ) = et . The closure of the sum of
the right ideals xtA, is an r-ideal K ′ in A by Theorem 2.15. Moreover qJ (K ′) is contained
in the closure of the union of the qJ (xt )(A/J ) = et (A/J ) ⊂ K . Conversely, for any a ∈ A,
we have et (a + J ) = qJ (xta); and since (et ) is a lcai for K it follows that K ⊂ qJ (K ′). So
qJ (K ′) = K . �
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This technique seems applicable to other ‘constructions’ besides quotients, such as direct
limits, ultrapowers, interpolated operator algebras, etc. See [10, Sections 2.2 and 2.4] for some of
these constructions. Indeed the results apply directly to ultraproducts because they are quotients
of the type described in this section.

7. Other constructions of r-ideals

The following is an improvement of [4, Proposition 3.1], and also answers the question in the
Remark following it.

Theorem 7.1. If A is an operator algebra with left cai, which is a left ideal in an operator
algebra B , then (1 − x)A is an r-ideal in A for all x ∈ Ball(B).

Proof. We may assume that B is unital. Certainly J = (1 − x)A is a right ideal, the question
is whether it has a left cai. Note that en = 1 − 1

n

∑n
k=1 xk defines a bounded net, ‖1 − en‖ � 1,

and en(1 − x) = 1 − x − 1
n
(1 − xn+1) → 1 − x. Suppose that (ft ) is a left cai for A, with

weak* limit f ∈ A⊥⊥, which is a projection and a left identity for A⊥⊥. We may view (enft )

as a net in (1 − x)A ⊂ J , with the product indexing, and it is easy to see using the above that
enft (1 − x)a → (1 − x)a for all a ∈ A. Suppose that a subnet ((1 − enμ)ftμ) converges weak*
to an element r . Then it is easy to see that r is a contraction in A⊥⊥, so that f r = r . Also,
enμftμ → f − r , so that f − r ∈ J⊥⊥. Since enμftμ(1 − x)a → (1 − x)a, we have (f − r)z = z

for all z ∈ J , hence for all z ∈ J⊥⊥. So f − r is a left identity for J⊥⊥, hence it is idempotent.
That is, f −f r − rf + r2 = f − r , which by a fact above implies that r2 = rf . If we choose (ft )

so that fsft → ft with t (as in Corollary 1.4 above, or [9, Corollary 2.6]), we may assume that
ftf = ft , which forces rf = r by definition of r . Thus r is idempotent, hence is a projection,
and so f − r is a projection too. By e.g. [10, Proposition 2.5.8], J has a left cai. �
Remarks. (1) We do not have a clean formula for the left cai in the last result, although there
is one for a left bai: the net (enft ) in the proof is a left bai. This illustrates the fact that al-
though we may know that left cai exist of a nice form (as in Theorem 1.1 or in the Remark after
Theorem 2.16), we may not be able to write a simple expression for them.

(2) Considering the example of the 2 × 2 matrices supported on the first column, shows that
the last result is best possible. That is, the hypothesis of a left cai is not removable.

The following result is actually equivalent to the last theorem:

Corollary 7.2. If A is an operator algebra with left cai, and if η :A → A is a completely con-
tractive left A-module map, or if η ∈ Ball(A∗∗) satisfies ηA ⊂ A, then (1 − η)A is an r-ideal
of A.

Proof. Consider B = {η ∈ A∗∗: ηA ⊂ A}, an operator algebra containing A as a left ideal. Thus
the second case of our result follows from Theorem 7.1.

The set of completely bounded left A-module maps ‘equals’ B by [8, Theorem 6.1] (note that
a hypothesis in the latter theorem was removed in [9, Corollary 2.6]), and hence this case follows
by the last paragraph. �
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Remarks. (1) By another equivalence in [8, Theorem 6.1], the last result is correct with η a
contraction in the operator space left multiplier algebra M�(A) (see [10, Chapter 4] for the
definition of the latter). If A is approximately unital then M�(A) = LM(A), the ordinary left
multiplier algebra.

(2) The first result of this type that we are aware of dates to 2005 (see [9, Lemma 6.8], but this
is much less general). See also [27], for some recent Banach algebra variants.

According to [9, Corollary 2.7], there is a bijective correspondence between the classes of
r-ideals, �-ideals, and HSA’s, of A. One may ask what is the �-ideal and HSA matching the
r-ideal in Theorem 7.1, in terms of x? In general we do not have a simple answer. However we
have:

Proposition 7.3. If A is an operator algebra with cai, which is an ideal in an operator algebra B ,
and x ∈ Ball(B), then the �-ideal and HSA matching the r-ideal (1 − x)A, are A(1 − x) and
(1 − x)A(1 − x).

Proof. We may assume that B is unital. Then A corresponds to a central projection p in B∗∗,
whereas the r-ideal J = (1 − x)B in B has a support projection e ∈ B∗∗, say. Then J⊥⊥ = eB∗∗,
B(1 − x)⊥⊥ = B∗∗e, and (1 − x)B(1 − x)⊥⊥ = eB∗∗e by facts in [9]. Since e and p commute,
we have that eB∗∗ ∩ B∗∗p = epB∗∗. By [13, 5.2.7], A⊥ + J⊥ is closed, and by a formula in the
proof of [13, 5.2.9], we have that

(A ∩ J )⊥⊥ = (
A⊥ + J⊥)⊥ = A⊥⊥ ∩ J⊥⊥ = pB∗∗ ∩ eB∗∗ = epB∗∗.

Similarly, (A ∩ B(1 − x))⊥⊥ = B∗∗ep. Now A(1 − x) ⊂ A ∩ B(1 − x). Conversely if z ∈ A ∩
B(1 − x) then since A has a cai (et ) and A is an ideal in B , we have z = limt et z ∈ A(1 − x). Thus
A ∩ B(1 − x) = A(1 − x), and, similarly, A ∩ (1 − x)B = (1 − x)A. It follows that A(1 − x)

is the �-ideal matching (1 − x)A. By [9, Corollary 2.8], the corresponding HSA will be the
intersection of these, which also equals their product, which can be seen to be (1 − x)A(1 − x),
using the cai for A. We do not need this here, but this HSA also equals A ∩ (1 − x)B(1 − x),
since the latter equals A ∩ (1 − x)B ∩ B(1 − x) = (1 − x)A ∩ A(1 − x). �
Remark. The result is not true if A only has a one-sided cai. For example if x = E11, and A = C2
as in the example after Theorem 7.1.

8. Positive maps between operator algebras

The size of FA, and what all it contains, seems to be an important and possibly quite dif-
ficult question for nonunital operator algebras A. Of course for unital A the answer is trivial.
Note too that for a C∗-algebra A with positive cai (et ), then one obtains a probably quite
good idea of what is contained in FA, by meditating on the simple fact that a2 + axa ∈ FA

for all x ∈ Ball(A) and a ∈ Ball(A)+ (this follows since the product y diag(1, x)y∗ is a con-
traction where y = [√1 − a2 a]). In particular, e2

t + etxet ∈ FA in this case. The method in
the next proof shows that for general approximately unital operator algebras, if v ∈ 1

2FA then

v
1
2 = a2 + iaxa for some selfadjoint contractions a, x ∈ C∗(A1) with a � 0. Conversely, any

such a2 + iaxa is in FA.
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Remark. We remark in passing that the only idempotents that could be contained in R
+FA,

are orthogonal projections. Also, note that FA can contain selected unitaries (e.g. certain func-
tions valued in the unit circle on certain subsets of [0,1]), but not nonunitary isometries (by e.g.
Corollary 2.8).

Lemma 8.1. If A is an approximately unital operator algebra, then FA is weak* dense in FA∗∗ .

Proof. (We are indebted to the referee for supplying this proof.) Assume that A ⊂ B(H). Let
(vt ) be a cai as in Theorem 2.4, with numerical range in the wedge shape region of angle 2ρ

described there, where ρ → 0 as t increases through the directed set. Write vt = at + ibt , for
selfadjoint a = at and b = bt . Because of the position of the numerical range of vt , a is a positive
contraction. Also, for all states ϕ on a C∗-algebra generated by A, we have |ϕ(b)| � (tanρ)ϕ(a).
So a tanρ ±b � 0. By a well-known fact about selfadjoint operators (which is a pleasant exercise

to prove), there exists a selfadjoint c ∈ B(H) with b = a
1
2 ca

1
2 and ‖c‖ � tanρ. Then vt = a

1
2 (1+

ic)a
1
2 . Setting ct = c we have ct → 0 with t .

Let z ∈ Ball(A∗∗); by Goldstine’s lemma we may choose zi ∈ Ball(A) with zi → z weak*.
Fix δ > 0 and set xi,t,δ = (1 − δ)vt + (1 − 2δ)vt zivt . It is easy to check that 1 − xi,t,δ = 1 − a +
a

1
2 wa

1
2 , where

w = δ1 − (1 − δ)ic − (1 − 2δ)(1 + ic)a
1
2 zia

1
2 (1 + ic).

Since c = ct → 0 with t , for t ‘large’ we have

‖w‖ � δ + (1 − δ)‖c‖ + (1 − 2δ)‖1 + ic‖2 � 1.

Hence ‖1 − xi,t,δ‖ � 1, since the product y diag(1,w)y∗ is a contraction where

y = [√1 − a a
1
2 ]. Thus xi,t,δ ∈ FA. Since vtzivt → zi in norm with t , it follows that

(1 − δ)1 + (1 − 2δ)zi is in the weak* closure of FA for every i. Hence 1 + z is in this weak*
closure too. �

Below we will also consider unital operator spaces: subspaces A of B(H) containing IH (see
e.g. [11] for a matrix norm characterization of these). Here FA = {x ∈ A: ‖1A − x‖ � 1}. One
may define a cone in any operator algebra (or unital operator space) A by considering c = cA =
R

+FA. Probably 1
2FA should be considered to be the analogue of the positive part of the unit

ball of a C∗-algebra. Similarly, one obtains cones cn in Mn(A) for every n ∈ N.
The following shows that cA is large enough to determine A:

Corollary 8.2. Let A and B be approximately unital closed subalgebras of B(H). Or, let A

and B be unital subspaces of B(H) with identities 1A and 1B corresponding to projections
on H . If cA ⊂ cB then A ⊂ B . Hence A = B iff cA = cB .

Proof. First assume that A and B are unital. If x ∈ Ball(A) then 1A and 1A + x are in FA ⊂ cB ,
and so 1A,x ∈ B . Hence A ⊂ B .

In the general case, taking weak* closures in B(H)∗∗, we have by Lemma 8.1 that FA⊥⊥ =
FA

w∗ ⊂ FB
w∗ = FB⊥⊥ . By the last paragraph, A⊥⊥ ⊂ B⊥⊥, and hence A = A⊥⊥ ∩B(H) ⊂ B =

B⊥⊥ ∩ B(H). �



214 D.P. Blecher, C.J. Read / Journal of Functional Analysis 261 (2011) 188–217
Definition 8.3. We say that a map T :A → B between operator algebras, or between unital op-
erator spaces, is operator completely positive, or OCP, if there is a constant C > 0 such that
Tn(FMn(A)) ⊂ CFMn(B) for every n ∈ N. We study these maps below. If A and B are operator
algebras, but not unital, then we will also require T to be completely bounded (this is automatic
if A is unital).

Some remarks on Definition 8.3: First, the definition is ‘positive homogeneous’ in C. That
is, T :A → B satisfies Tn(FMn(A)) ⊂ CFMn(B), iff Rn(FMn(A)) ⊂ FMn(B) where R = T

C
. Thus

we may usually assume that C = 1. Second, we will also use the fact that x ∈ c iff there is a
constant C > 0 with x + x∗ � Cx∗x. Third, it is obvious that a completely contractive unital
linear map between unital operator spaces is OCP. Finally, we remark that if ϕ :A → B is a
completely contractive homomorphism between operator algebras, then ϕ is OCP. Indeed by
Meyer’s theorem ([30], [10, Theorem 2.1.13]), we can extend ϕ to a completely contractive
unital homomorphism between unitizations, and then the result is obvious by the third remark.

We write C∗(A) for a C∗-algebra that contains A completely isometrically as a subalgebra if
A is an operator algebra, or as a unital subspace if A is a unital operator space (with 1A = 1C∗(A)

in this case), and which is generated by A.

Lemma 8.4. If ϕ :A → B(H) is a map from an operator algebra, or from a unital operator
space, that extends to a completely positive map from C∗(A) into B(H), then ϕ is OCP.

Proof. We may assume without loss of generality that A is a C∗-algebra. Suppose that x ∈ FA.
Then

ϕ(x) + ϕ(x)∗ = ϕ
(
x + x∗) � ϕ

(
x∗x

)
� Cϕ(x)∗ϕ(x),

for a constant C = ‖ϕ‖−1
cb > 0, by the Kadison–Schwarz inequality (see e.g. [6,31]). Thus

ϕ(FA) ⊂ ‖ϕ‖cbFB . Similarly for matrices. So ϕ is OCP. �
Lemma 8.5. If A is a C∗-algebra or operator system, then x ∈ Ball(A)+ iff zx ∈ FA for all
z ∈ FC.

Proof. (⇒) Left to the reader.
(⇐) If x satisfies this property then for any z ∈ FC, we have |z|2xx∗ � 2 Re(zx), so that

Re(z〈xζ, ζ 〉) � 0 for any unit vector ζ ∈ H . It is a pleasant exercise in calculus that if the latter
holds for all z ∈ FC then 〈xζ, ζ 〉 � 0. So x is positive, and it is easy to see that it has to be a
contraction. �
Theorem 8.6. If T :A → B is a map between C∗-algebras or operator systems then T is com-
pletely positive iff T is OCP.

Proof. By virtue of Lemma 8.4 we need only prove one direction. Suppose that T is OCP. By
one of the observations below Definition 8.3, we may assume that C = 1 in the definition of
OCP. If x ∈ Ball(A)+ and z ∈ FC then zx ∈ FA by Lemma 8.5. Thus zT (x) = T (zx) ∈ FB , and
so T (x) � 0 by Lemma 8.5. A similar argument applies to matrices. �
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Theorem 8.7. If T :A → B(H) is an OCP map on a unital operator space A, then the canonical
extension T̃ :A+ A∗ → B(H) :x + y∗ �→ T (x) + T (y)∗ is well defined and completely positive.

Proof. As in the last proof, we may assume that C = 1 in the definition of OCP. In this case
notice that by the last result applied to the restriction of T to C1, we have 0 � T (1) � I . Assume
first that ϕ :A → C is OCP. Since |1 − ϕ(1) − ϕ(x)| � 1 for all x ∈ Ball(A), we have 1 −
ϕ(1) + |ϕ(x)| � 1, so that ‖ϕ‖ � ϕ(1). Hence ‖ϕ‖ = ϕ(1). Thus ϕ extends by the Hahn–Banach
theorem to a functional ψ :A + A∗ → C satisfying ‖ψ‖ = ψ(1). The latter implies that ψ is
positive [6,31].

To see that T̃ is well defined, notice that if x +y∗ = 0, and if ϕ is any state on B = B(H), then
by the last paragraph, ϕ ◦ T extends to a positive map ψ on A + A∗, so that ϕ(T (x) + T (y)∗) =
ψ(x + y∗) = 0. Since this holds for every state on B we have T (x) + T (y)∗ = 0.

Similarly, if x + y∗ � 0 then ϕ(T (x) + T (y)∗) = ψ(x + y∗) � 0. Since this holds for every
state on B we have T (x) + T (y)∗ � 0. Thus T̃ is positive on A + A∗. Applying this at every
matrix level to Tn, we see that T̃ is completely positive on A + A∗. �
Lemma 8.8. If T :A → B(H) is an OCP map on an approximately unital operator algebra,
and if FMn(A) is weak* dense in FMn(A∗∗) for all n ∈ N, then the canonical weak* continuous
extension T̃ :A∗∗ → B(H) on the unital operator algebra A∗∗ is OCP.

Proof. As in the last proofs, we may assume that C = 1 in the definition of OCP. Suppose
that η ∈ Ball(A∗∗). By hypothesis, there exists (yλ) ⊂ FA, with yt → 1 + η weak*. Then ‖1 −
T (yt )‖ � 1, and in the weak* limit, ‖1 − T̃ (1 + η)‖ � 1. A similar argument prevails at the
matrix level, so that T̃ is OCP. �
Theorem 8.9 (Extension and Stinespring dilation for OCP maps). Suppose that A is an ap-
proximately unital operator algebra (resp. a unital operator space), and that B is a C∗-algebra
containing A as a subalgebra (resp. as a subspace, with 1A a projection in B). If T :A → B(H)

is a linear map, then T is OCP iff T has a completely positive extension T̃ :B → B(H). This
is equivalent to being able to write T as the restriction to A of V ∗π(·)V for a ∗-representation
π :B → B(K), and an operator V :H → K . Moreover this can be done with ‖T ‖ = ‖T ‖cb =
‖V ‖2, and this equals ‖T (1)‖ if A is unital.

Proof. As before, we only need prove one direction of the first ‘iff’. If T is OCP and A is a
unital operator space, then by the last theorem we can extend T to a completely positive map on
A + A∗. By Arveson’s extension theorem [6,31], we may extend further to a completely positive
map T̃ :pBp → B(H), where p = 1A, and this has a canonical completely positive extension
to B .

If A is an approximately unital operator algebra, then by Lemmas 8.1 and 8.8, the canonical
weak* continuous extension of T to a map from the unital operator algebra A∗∗ into B(H), is
OCP. By the last paragraph, the latter map has a completely positive extension S :B∗∗ → B(H),
and S = V ∗π(·)V for a ∗-representation π :B∗∗ → B(K) as above. Restricting S and π to B we
obtain the desired extension T̃ = V ∗π|B(·)V .

The last assertion, about the norm, follows immediately in the unital space case, since it
is well known for completely positive maps on C∗-algebras, and indeed all of our extensions
preserve norms. If A is an algebra with cai (et ), and B = C∗(A), then T (et ) → S(1) weak*. Thus
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‖S(1)‖ � supt ‖T (et )‖ by Alaoglu’s theorem. Consequently, by the unital space case, ‖T ‖cb �
‖S‖cb = ‖S(1)‖ = ‖V ‖2 � ‖T ‖, and so ‖T ‖ = ‖T ‖cb = supt ‖T (et )‖. �

The following complement gives a positive extension into a general C∗-algebra, under a hy-
pothesis that is often satisfied.

Proposition 8.10. If T :A → B is OCP, from a unital operator space A into a C∗-algebra B ,
and if there is a (resp. weak* continuous) affine map L :Q(A) → Q(C∗(A)) taking 0 to 0,
which is a retract of the restriction map Q(C∗(A)) → Q(A). Then there exists a positive map
T̃ :C∗(A) → B∗∗ (resp. T̃ :C∗(A) → B) extending T .

Proof. As before, we may assume that C = 1 in the definition of OCP. If ϕ ∈ S(B) then
ϕ ◦ T ∈ Q(A). Hence T � :Q(B) → Q(A) :ϕ → ϕ ◦ T is a weak* continuous affine map. Then
L ◦ T � :Q(B) → Q(C∗(A)) is a (resp. weak* continuous) affine map taking 0 to 0. For any
c ∈ C∗(A)sa, the map εc :Q(C∗(A)) → C of evaluation at c, is a weak* continuous bounded
affine map taking 0 to 0. Hence εc ◦L◦T � :Q(B) → C equals εb for a unique b ∈ B∗∗

sa (resp. Bsa),
by [32, 3.10.3]. Define T̃ (c) = b. Then T̃ :C∗(A)sa → B∗∗

sa (resp. Bsa) is real linear. Extend T̃

to C∗(A) by linearity. If c ∈ C∗(A)+ then it is clear that ψ(T̃ (c)) � 0 for all ψ ∈ S(B), so T̃ is
positive. �
Remark. In the light of the last result, it is worth pointing out that there need not exist a weak*
continuous retract L :S(A) → S(C∗(A)). For example, suppose that such a retract existed when
A is the sum of the compact operators on �2 and the upper triangular operators with constant
entries on the leading diagonal (that is, tij = 0 unless j � i, and tii = tjj for all i, j ). The
states ϕn on B(�2) picking out the nth entry on the leading diagonal, when restricted to A,
converge weak* on A. However (L(ϕn|A)) has no weak* limit. Indeed, the restriction of ϕn

to the compact operators is well known to have a unique state extension, so L(ϕn|A) = ϕn. If
t = (tij ) with tii = 1 and t2k−1,2k = 1 (k ∈ N), and all other tij = 0, then the diagonal entries
of t t∗ are 2,1,2,1, . . . , so (φn(tt

∗)) does not converge to any limit.
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