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Using pullback formulas for both Siegel–Eisenstein series and
Jacobi–Eisenstein series the second author obtained relations
between critical values of certain L-functions. To extend these
relations to other critical values we use holomorphic differential
operators for both types of pullbacks. The differential operators
in question are well known in the Siegel case whereas for the
Jacobi case they have to be developed from scratch. To compare
the two pullbacks, we have furthermore to establish a relation of
unexpected nature between the two types of differential operators.
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0. Introduction

In [20] the second author obtained an identity for weighted finite averages over values of triple
product L-functions (in the largest critical point) on one side and central critical values of L-functions
L( f ⊗Sym2(g), s) on the other side. In particular, the identity relates, for a given cuspidal eigenform f
of weight k, the two finite sums

∑
g∈Sk

Λ
(

f ⊗ f ⊗ g, s+) and
∑

h∈S2k−2

Λ
(
h, s+) · Λ(h ⊗ Sym2( f ), sc

)
.

In both cases, the sum should run over normalized Hecke eigenforms of weight k and weight 2k − 2
respectively and s+ and sc denote the largest and central critical points of the L-functions in question.
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We use Λ(. . .) instead of L(. . .) to indicate that we have divided the L-value by an appropriate period,
the summands above are therefore all algebraic.

It is quite mysterious that by this identity central critical values of L-functions get related to critical
values in the range of convergence of other L-functions.

This identity was obtained by restricting a degree three Siegel–Eisenstein series in different ways
and combining our knowledge about such restrictions, in particular:

• The pullback formulas for triple product L-functions (following Garrett [15]).
• The identification of the first Fourier–Jacobi coefficient of a Siegel–Eisenstein series with a Jacobi–

Eisenstein series of index one [2].
• The pullback formula of Arakawa for Jacobi–Eisenstein series [1].
• Ichino’s work on the Gross–Prasad conjecture for the Saito–Kurokawa liftings [23], rephrased as

an explicit spectral decomposition of restrictions of Jacobi forms [18].

From previous works on restrictions (in particular the doubling method, see e.g. [3]) it is quite
natural to expect, that there exist variants of the identity in question, which can be obtained by
applying differential operators before doing the restriction. “Variants” means that the weights k and
2k − 2 can be changed and also the largest critical points should be moved.

The construction of appropriate differential operators for our situation is one of the main topic of
this paper; interesting new problems arise for the following reasons:

The holomorphic differential operators should be equivariant with respect to the groups stabilizing
the subdomains, to which we restrict. Here an amusing new feature comes up: There are no holomor-
phic differential operators, which fit to all the restrictions which have to be considered at the same
time. So what we do is to consider two types of differential operators separately for different restric-
tions, one of them is well know (the one for a restriction a la Garrett), but the other one (which fits
to the work of Arakawa) cannot be found in the literature and has to be constructed; it can be viewed
as a Jacobi forms version of the differential operators studied by the first author and Ibukiyama for
symplectic groups [3,21]. This is indeed the main technical part of our paper.

At the end, we can glue these differential operators together in the sense that we can write the
operator of the Arakawa–Ichino side as a finite linear combination of the ones adopted to the Garrett
side to obtain again such an identity for L-values.

We present our main results in two ways, one in terms of periods of Jacobi forms and the other
in terms of central critical values. The formulation in terms of periods is more general, its trans-
lation into central critical values relies on the spectacular results of Ichino. Indeed we will work
as long as possible without using Ichino’s formula, arriving at more general identities between val-
ues of triple-product L-functions and periods for Jacobi forms of arbitrary squarefree index. These
results are formulated more generally than in [20], but they need some results about pullbacks of
Jacobi–Eisenstein series going beyond Arakawa (worked out by K. Bringmann and the second author
in [19,10]).

The first section is devoted to the definition and properties of the differential operators. In the
second and third sections we study pullbacks modified by differential operators whereas in Section 4
we will compare the resulting formulas and in the final section we specialize our identities to the
case, where the results of Ichino are available.

0.1. Preliminaries

For matrices A, B of appropriate size we put A[B] := Bt · A · B . For basic facts about elliptic modular
forms we refer to [27] and for Siegel modular forms to [24]. In particular, we denote by Mk and Sk the
spaces of modular and cuspidal modular forms for weight k with respect to the full modular group
SL(2,Z). We equip Sk with the usual Petersson scalar product 〈 , 〉. For normalized Hecke eigenforms
f i =∑ai(n)e2π iz ∈ Ski we define “Satake parameters” αi(p), βi(p) ∈ C by

ai(p) = αi(p) + βi(p), αi(p) · βi(p) = pk−1
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and we put

L( f i, s) =
∏

p

1

(1 − αi(p)p−s)(1 − βi(p)p−s)
,

L2( f i, s) = D( f i, s − ki + 1)

=
∏

p

1

(1 − pki−1−s)(1 − αi(p)2 p−s)(1 − βi(p)2 p−s)
.

Moreover we define the triple product L-function L( f1 ⊗ f2 ⊗ f3, s) by

∏
p

det

(
18 −

(
α1(p) 0

0 β1(p)

)
⊗
(

α2(p) 0
0 β2(p)

)
⊗
(

α3(p) 0
0 β3(p)

)
p−s
)−1

and L( f1 ⊗ Sym2( f2), s) by

∏
p

det

(
16 −

(
α1(p) 0

0 β1(p)

)
⊗
(

α2(p)2 0 0
0 pk2−1 0
0 0 β2(p)2

)
p−s

)−1

.

We mention the identity

L( f1 ⊗ f2 ⊗ f2, s) = L( f1, s − k2 + 1) · L
(

f1 ⊗ Sym2( f2), s
)
.

Hecke eigenforms for Jacobi groups and associated zeta functions will be explained in Sections 4
and 5.

1. Differential operators on HHH3

We give a construction of the differential operators in question in a direct and explicit way appro-
priate for the purpose of this paper. A more general exposition will be given elsewhere [5].

1.1. Embeddings of symplectic groups and Jacobi groups in symplectic groups of higher rank

1.1.1. Symplectic groups
The symplectic group Sp(n,R) acts on Siegel’s upper half space Hn in the usual way. Moreover,

Sp(n,R) acts by a “slash-operator” |k on functions f : Hn −→ C by

( f |k M)(Z) := j(M, Z)−k f
(
M〈Z〉) (

M ∈ Sp(n,R), Z ∈ Hn
)
.

Here j(M, Z) = det(C Z + D) is the standard automorphy factor and

M〈Z〉 := (A Z + B)(C Z + D)−1 for M =
(

A B
C D

)
∈ Sp(n,R).
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In the sequel we embed small symplectic groups Sp(n) as subgroups into bigger symplectic groups
Sp(n + m) by

↑ :

⎧⎪⎪⎨
⎪⎪⎩

Sp(n) −→ Sp(n + m)

( a b
c d

) 	−→
⎛
⎝ a 0 b 0

0 1m 0 0
c 0 d 0
0 0 0 1m

⎞
⎠

and

↓ :

⎧⎪⎨
⎪⎩

Sp(n) −→ Sp(n + m)

( a b
c d

) 	−→
( 1m 0 0 0

0 a 0 b
0 0 1m 0
0 c 0 d

)
.

It should always be clear from the context, what n and m are.

1.1.2. Jacobi groups
We prefer to consider a Jacobi group as a subgroup of an appropriate symplectic group:

Gn :=

⎧⎪⎨
⎪⎩
⎛
⎜⎝

a 0 b μ
λ′ 1 μ′ κ
c 0 d −λ

0 0 0 1

⎞
⎟⎠ ∈ Sp(n + 1)

∣∣∣ (a b
c d

)
∈ Sp(n)

⎫⎪⎬
⎪⎭

with (λ′,μ′) = (λ,μ) · ( a b
c d

)
.

We put n = n1 + n2 and we consider embeddings of Gn1 and Gn2 in a big symplectic group
Sp(n + 1):

ι(n1,n)+ : Gn1 −→ Sp(n1 + n2 + 1)

⎛
⎜⎝

a 0 b μ
λ′ 1 μ′ κ
c 0 d −λ

0 0 0 1

⎞
⎟⎠ 	−→

⎛
⎜⎜⎜⎜⎜⎝

a 0 0 b 0 μ
0 1n2 0 0 0 0
λ′ 0 1 μ′ 0 κ
c 0 0 d 0 −λ

0 0 0 0 1n2 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

and

ι(n2,n)− : Gn2 	−→ Sp(n + 1)

⎛
⎜⎝

a 0 b μ
λ′ 1 μ′ κ
c 0 d −λ

0 0 0 1

⎞
⎟⎠ 	−→

⎛
⎜⎜⎜⎜⎜⎝

1n1 0 0 0 0 0
0 a 0 0 b μ
0 λ′ 1 0 μ′ κ
0 0 0 1n1 0 0
0 c 0 0 d −λ

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

We look at a corresponding embedding of domains: We decompose an element Z ∈ Hn+1 as

Z =
(

τ1 z z1
zt τ2 z2

t t

)
, τ1 ∈ Hn1 , τ2 ∈ Hn2 , τ3 ∈ H1. (1)
z1 z2 τ3



S. Böcherer, B. Heim / Journal of Number Theory 131 (2011) 1743–1769 1747
Occasionally we use Z = ( τ1 z
zt τ2

) ∈ Hn1+n2 to denote the upper left corner of Z .

Both groups ι(n1,n)+(Gn1 )(R) and ι−(n2,n)(Gn2 )(R) stabilize the submanifold of Hn+1 defined by
z = 0.

We define Jacobi forms of degree n as holomorphic functions on Hn+1 of the form

F (Z) = φ(τ1, z)e2π imτ2 , Z =
(

τ1 z
zt τ2

)
∈ Hn+1,

satisfying the transformation law F |k M = F for all M ∈ Gn(Z) with the additional requirement of
holomorphy in the cusps if n = 1.

As an immediate consequence of these definitions we have

Remark. Suppose F is a weight k Jacobi form of degree n = n1 + n2 of index m with Z decomposed
as in (1)

F (Z) = φ

((
τ1 z
zt τ2

)
,

(
z1
z2

))
· e2π im·τ3 .

Then

F |z=0 = φ

((
τ1 0
0 τ2

)
,

(
z1
z2

))
· e2π imτ3

is a Jacobi form of index m for (τ1, z1, τ3) and for (τ2, z2, τ3) of the same weight k.

1.2. Existence of some differential operators

We introduce differential operators on Hn , which are polynomials in the entries ∂i, j of the matrix

∂ :=
(

(1 + δi j)

2

∂

∂zi j

)
.

The transformation properties of these differential operators, in particular of their minors are de-
scribed in [13,26]. We will also tacitly use that for any polynomial P in the entries of ∂ and any
complex symmetric matrix T of size n we have

P(∂)etr(T ·Z) = P(T )etr(T ·Z) (Z ∈ Hn).

Most of the statements below will make sense in the general context introduced above, their
proofs are however will be completely different and much more complicated. We stick now to differ-
ential operators on H3 where direct and more explicit methods are available.

One of our main aims in this section is the proof of the following

Theorem 1.1 (Weak version). There exists for each ν � 0 a holomorphic differential operator D (a polynomial
in ∂i, j , evaluated in z = 0) acting on C∞-functions defined on H3 such that for all M ∈ G1(R)

D
(

F |kι(1,2)+(M)
)= D(F )|k+ν M+,

D
(

F |kι(1,2)−(M)
)= D(F )|k+ν M−.

Here M+ means action of M for the variables (τ1, z1, τ3) and M− the action for the variables (τ2, z2, τ3).
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If F is a Jacobi modular form of degree 2, of index m and of weight k then D(F ) defines for ν > 0 a cuspidal
Jacobi form of degree one, index m and weight k + ν for (τ1, z1, τ3) and for (τ2, z2, τ3); moreover, D(F ) is
symmetric:

D(F )(τ1, z1, τ2, z2;τ3) = D(F )(τ2, z2, τ1, z1;τ3).

We obtain the cuspidality property by considering the differential operator together with the ac-
tion of

ι(1,2)+

⎛
⎜⎝
⎛
⎜⎝

a 0 0 0
0 1 0 0
0 0 a−1 0
0 0 0 1

⎞
⎟⎠
⎞
⎟⎠ (a ∈ R, a 
= 0)

on the constant term in the Fourier expansion or more generally on those holomorphic functions
on H3, which do not depend on (τ1, z1) (and similarly for (τ2, z2)).

The theorem follows from a statement about differential operators with much stronger properties;
instead of the notation ∂i j we use here

∂ =
(

∂τ1 ∂z ∂z1

∂z ∂τ2 ∂z2

∂z1 ∂z2 ∂τ3

)
. (2)

Theorem 1.1 (Strong version). The differential operator

Dk := (k − 1)∂z1∂z2 − (k − 1)∂z∂τ3 + z · ∂ [3]

acting on C∞-functions F defined on H3 satisfies

Dk(F |k M) = (Dk F )|k+1M

for all M ∈ ι(1,1)±(G1(R)). Moreover Dk satisfies a symmetry relation:

Dk(F |k V ) = (Dk F )|k+1 V

where

V :=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ∈ Sp(3,R).

Proof. The symmetry property can be read off directly from the explicit formula. We put ∂ [3] :=
det(∂). This operator has the fundamental transformation property

∂ [3](F |1M) = (∂ [3] F
)∣∣

3M
(
M ∈ Sp(3,R)

)
,

see [13, p. 216].
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We consider now the differential operator L defined by

F 	−→ z−k+2∂ [3](F · zk−1).
The z-coordinate is changed to z

cτ1+d or z
cτ2+d if we act on H3 by ι(1,1,1)±(G1(R)) and

( ∗ ∗
c d

)
denotes the “symplectic part” of the element of G1. Therefore, this operator has the required trans-
formation property. We easily get the identity

L = z · ∂ [3] + (k − 1)∂z1∂z2 − (k − 1)∂z∂τ3 − (k − 1)(k − 2)

4
z−1∂τ3 .

The last summand above has itself the requested transformation property and hence it can just be
omitted.

Then we get the differential operator D of Theorem 1.1 (weak version) by

D := D
0
k,ν = (Dk+ν−1 ◦ · · · ◦ Dk+1 ◦ Dk)z=0. �

Remark. The procedure above does not generalize to higher degree, the analogues of Theorem 1.1
(both versions) for arbitrary degree n are however true, but the proof has to go along the lines of [3].

1.2.1. Basic examples
Changing the weight from k to k + 1 and k + 2 (with restriction)

D
0
k,1 = (k − 1){∂z1∂z2 − ∂z∂τ3}|z=0,

D
0
k,2 =

{
(k∂z1∂z2 − k∂z∂τ3)

(
(k − 1)∂z1∂z2 − (k − 1)∂z∂τ3

)− k

2
∂τ3∂

[3]
}

z=0

=
{

k(k − 1)∂2
z1

∂2
z2

+ (k − 2k2)∂z∂z1∂z2∂τ3 + k

(
k − 1

2

)
∂2

z ∂2
τ3

− k

2
∂τ1∂τ2∂

2
τ3

+ k

2
∂2

z2
∂τ1∂τ3 + k

2
∂2

z1
∂τ2∂τ3

}
|z=0

.

Remark. We should point out that the “weight” k in all our considerations about differential operators
is allowed to be an arbitrary complex number as long as we use the same branch of log j(M, Z) on
both sides of the transformation laws.

1.3. Explicit formulas for D0
k,ν

1.3.1. Differential operators for H × H ↪→ H2
In [3] we introduced differential operators on H2n with equivariance properties with respect to

Sp(n,R)↑ × Sp(n,R)↓ ⊂ Sp(2n,R). For n = 1 these operators appeared implicitly in [11] and have been
studied from a different point of view in [21].

These operators are related to the ones introduced above and they will appear also later on explic-
itly, so we introduce them here for the special case needed (again in a strong and a weak versions):

We consider functions f defined on H2 and differential operators

∂i j := 1 + δi j

2

∂

∂z
(1 � i, j � 2) for Z =

(
z11 z12
z12 z22

)
∈ H2.
i j



1750 S. Böcherer, B. Heim / Journal of Number Theory 131 (2011) 1743–1769
Then we put

Dk =
(

−k + 1

2

)
∂12 + z12 · (∂11∂22 − ∂12∂12).

For all M ∈ SL(2,R) we have

Dk
(

f |k M↑)= (Dk F )|k+1M↑,

Dk
(

f |k M↓)= (Dk F )|k+1M↓

and we put, for t � 0

D0
k,t := (Dk+t−1 ◦ · · · ◦ Dk)z12=0.

For functions of type f (Z) = φ(z11, z12) · e2π imz22 these operators are quite familiar in the theory of
Jacobi forms [11].

There is another construction of such differential operators by means of harmonic polynomials:
We define (for even integers d) polynomials in A and B by

∞∑
ν=0

Gν
d (A, B)Xν = 1

(1 − A X + 1
2 B X2)

d−2
2

.

Then the Gν
d (A, B) are (up to a power of two) Gegenbauer polynomials. By

{
C

2k × C
2k −→ C

(x,y) 	−→ Gν
2k

({x,y}, {x, x} · {y,y})
we get polynomial functions of x,y, which are harmonic and homogeneous of degree ν in both vari-
ables; here { , } denotes the standard bilinear form on C2k . The general theory of Ibukiyama [21]
asserts, that the differential operators, defined (formally) by

Lk,ν := G2k(∂12, ∂11 · ∂22)z12=0

have the same transformation property as D0
k,ν ; these differential operators were constructed in

two completely different manners, but they are proportional (the space of such operators is one-
dimensional, see [21] for details). The constant, defined by

D0
k,ν = c(k, ν) · Lk,ν

is equal to

c(k, ν) = (−1)ν2−ν (2k − 3 + 2ν)!
(2k − 3 + ν)!

(
k − 2 + ν

k − 2

)−1

.

This is an easy computation (e.g. by comparing the effect of both operators on the function
Z 	−→ zν

12; we omit details).

Remark. Both constructions have some specific merits: The combinatorics of the Lk,ν is quite explicit,
but when we compute Γ -factors in the doubling method, the D0

k,ν are much more convenient.
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1.3.2. The operators D0
k,ν as “Jacobifications” of the D0

k,ν
The formula for defining Dk looks similar to the corresponding one for Dk− 1

2
, more precisely, it

follows directly from the definition of the differential operators in question that

Dk(F ) = (∂τ3 · Dk− 1
2
)(F ) (3)

for any function F on H2 × H, where on the left hand side of (3) we view F as a function on H3 not
depending on z1, z2.

This is not accidental, a systematic study of how to view the Dk as “jacobified” versions of the
Dk− 1

2
will be given elsewhere [5] in a much more general context.

In this section, we are mainly interested in relating the combinatorics of D0
k,ν to the more accessi-

ble one of the D0
k− 1

2 ,ν
.

We introduce two polynomials Pk,ν and Q k,ν with the entries of symmetric matrices (of size two
and three respectively) by

D0
k,ν

(
etr(T Z)

)= Pk,ν(T )et1 z11+z22 (Z ∈ H2),

D
0
k,ν

(
etr(T ·Z)

)= Q k,ν(T ) · etr(T ·Z)
|z=0 .

Here T and T are complex symmetric matrices of size 3 and 2 respectively and t1, t2 denote the
diagonal entries of T .

As an immediate consequence of (3) we obtain

Q k,ν

(
T 0
0 m

)
= Pk− 1

2 ,ν(m · T ). (4)

Note that the polynomial on the left hand side of the equation above has to be homogeneous of
degree ν in the entries of T and at the same time it carries mν as a factor, therefore we can write it
in the form given on the right side.

Proposition 1.1. We write the symmetric complex matrix T as

T =
(

T r

rt m

)
.

Then

Q k,ν(T ) = Pk− 1
2

(
m · T − r · rt).

Proof. It is sufficient to consider real symmetric matrices. We decompose

T =
(

T r

rt m

)
=
(

T − 1
m rrt 0

0 m

)[(
12 0
1
m rt 1

)]
.

Then we put

M :=
⎛
⎜⎝

12 0 0 0
rt 1 0 0
0 0 12 −r

⎞
⎟⎠ ∈ ι(1,2)+

(
G1(R)

) · ι(1,2)−
(
G1(R)

)

0 0 0 1
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and write

M = ι(1,2)+(M1) · ι(1,2)−(M2) with Mi =
⎛
⎜⎝

1 0 0 0
ri 1 0 0
0 0 1 −ri
0 0 0 1

⎞
⎟⎠ .

Then we get, using (4)

D
0
k,νetr(T ·Z) = D

0
k,ν

(
e

tr
(

T − 1
m rrt 0
0 m

)
·Z |k M

)

= (D0
k,νe

tr
(

T − 1
m rrt 0
0 m

)
·Z)∣∣

k+ν
M+

1

∣∣
k+ν

M−
2

= Pk− 1
2 ,ν

(
mT − rrt)(e(t1− 1

m r2
1)τ1+t2− 1

m r2
2τ2+mτ3

)∣∣
k+ν

M+
1

∣∣
k+ν

M−
2

= Pk− 1
2 ,ν

(
mT − rrt)etr(T ·Z)

∣∣
z=0. �

Corollary 1.1. For all k and all ν we have

D
0
k,ν = Q k,ν(∂)|z=0 = Pk− 1

2 ,ν

(
∂τ3∂Z −

(
∂2

z1
∂z1∂z2

∂z1∂z2 ∂2
z2

))
.

The advantage of this is that combinatorial formulas for the polynomials Pk,ν are known, they can
be described in terms of the Gegenbauer polynomials (whose coefficients are explicitly known, see
e.g. [11]), in particular, we have

D
0
k,ν = c

(
k − 1

2
, ν

)
· Gν

2k−1

(
(∂τ3∂z − ∂z1∂z2),

(
∂τ3∂τ1 − ∂2

z1

)(
∂τ3∂τ2 − ∂2

z2

))
.

We have tacitly used the fact that the Gegenbauer polynomials can also be defined for half-integral
weight in any case, the coefficients are polynomials in k and therefore they make sense for any (not
necessarily integral weight k).

1.4. Relation to differential operators of Ibukiyama–Zagier

Now we define operators, which map functions on H3 to functions on H×H×H: For non-negative
integers ν, t1, t2 we put

D
t1,t2,0
k,ν := D0,+

k+ν,t1
◦ D0,−

k+ν,t2
◦ D

0
k,ν .

Here the plus (minus respectively) indicates that we view the function as Jacobi form w.r.t. τ1, z1, τ3
(τ2, z2, τ3 respectively).

These operators map Siegel modular forms of weight k and degree 3 to functions on H × H × H,
which are modular forms for τ1 of weight k + ν + t1, modular forms for τ2 of weight k + ν + t2. In
general, these operators do not preserve automorphy for the variable τ3 (unless ν = 0). This is an
interesting new phenomenon. We will get a weak substitute for automorphy w.r.t. τ3 in this section.
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1.4.1. Differential operators equivariant for H3 ↪→ H3
We recall from [21,22] that there is indeed for all triples (μ1,μ2,μ3) a differential operator

Lk(μ1,μ2,μ3) changing weights from k to k + μ2 + μ3,k + μ1 + μ3,k + μ1 + μ2. This operator
is unique up to constants. It is explicitly described (and normalized) in [22] in terms of generating
functions. In a more abstract (and less explicit) setting it also appears in [16]. For us the description
of Ibukiyama–Zagier is quite appropriate:

For formal variables Y1, Y2, Y3 (which we collect as Y) and ∂ as in (2) we put

�(∂,Y) := 1 − ∂23Y1 − ∂13Y2 − ∂12Y3 + 1

2
∂23∂1Y2Y3 + 1

2
∂13∂2Y1Y3

+ 1

2
∂12∂3Y1Y2 + 1

4
∂1∂2Y 2

3 + 1

4
∂2∂3Y 2

1 + 1

4
∂1∂3Y 2

2 ,

d(∂) := 1

2
∂1∂2∂3 − 1

2
∂1∂

2
23 − 1

2
∂2∂

2
13 − 1

2
∂3∂

2
12 + ∂13∂13∂23.

We also put

R(∂,Y) := 1

2

(
�(∂,Y) +

√
�(∂,Y)2 − 4d(∂)Y1Y2Y3

)
.

If we expand

Gk(Y,∂) := 1

R(∂,Y)k−2
√

�(∂,Y)2 − 4d(∂)Y1Y2Y3

=
∑

μ1,μ2,μ3

Lk(μ1,μ2,μ3)Y ν1
1 Y ν2

2 Y ν3
3

as a formal power series, then

Lk(μ1,μ2,μ3)
0 := Lk(ν1, ν2, ν3)|z=z1=z2=0

is a holomorphic differential operator, mapping holomorphic functions on H3 to holomorphic func-
tions on H×H×H and changing the weight from k (on H3) to k+μ2 +μ3,m+μ1 +μ3,m+μ1 +μ2
(on H × H × H).

We remark, that these differential operators include the previously defined operators Lk,ν on H2
as a special case:

Lk,ν = Lk(0,0, ν)0,

if we apply the right hand side to a function on H2, viewed as a function on H3 not depending on
the variables τ3, z1, z2.

Proposition 1.2. There are rational numbers α(w) = αk,ν,t1,t2 (w) such that

D
t1,t2,0
k,ν =

ν+Min(t1,t2)∑
w=0

α(w) · ∂ w
τ3

· Lk(ν + t2 − w, ν + t1 − w, w)0. (5)

The α(w) are uniquely determined by the property above.
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Actually, this is a statement about harmonic polynomials: Define a polynomial function Q : C2k ×
C2k × C2k −→ C by

Q(x,y, z) := Q t1,t2
k,ν

((
xt · x xt · y xt · z
yt · x yt · y yt · z
zt · x zt · y zt · z

))
.

This polynomial is homogeneous of degree

ν + t1 in x and harmonic in x,

ν + t2 in y and harmonic in y,

2ν + t1 + t2 in z and not harmonic in z (in general).

The harmonicity is a consequence of the transformation properties of the differential operators defin-
ing the polynomials, see e.g. [2,21]. It follows from the representation theory of the orthogonal group
O (2k,C) (see e.g. [17, p. 255]) that such a polynomial can be written as

Q =
ν+[ t1+t2

2 ]∑
w=0

(
zt · z)w · L w(x,y, z),

where L w is now harmonic in all three sets of variables (and homogeneous of degrees ν + t1, ν + t2,
2ν + t1 + t2 − 2w). Furthermore, the expression above is unique.

It is an extra feature that the polynomial Q is invariant under the simultaneous action of the
orthogonal group O (2k,C) on the three variables. This carries over to the polynomials L w . Therefore
these polynomials are again polynomials in the entries of the Gram matrix associated with x,y, z.

It is known that such invariant harmonic polynomials L w can only exist if the sum of the two
smaller degrees is bigger than the largest degree (“balanced case”). This comes down to the condition

w � ν + Min{t1, t2}.

If this condition is satisfied, there is indeed such a polynomial, it is unique up to constants. After
rephrasing everything in terms of differential operators, we get the proposition.

1.4.2. On the coefficients α(w)

Using polyindices μ = (μ1,μ2,μ3), λ = (λ1, λ2, λ3), κ = (κ1, κ2, κ3) we may expand

Lk(μ)0 =
∑
λ,κ

Rμ(λ,κ)(∂τ1∂τ2∂τ3)
λ(∂z2∂z1∂z)

κ .

The coefficients Rμ(λ,κ) are analyzed in detail in [22].
The only property we need here is that Rμ(0,κ) 
= 0 only if μ = κ ; in that case

Rμ(0,μ) = (k − 2 + μ2 + μ3)!(k − 2 + μ1 + μ3)!(k − 2 + μ1 + μ2)!
μ1!μ2!μ3!(k − 2 + μ1)!(k − 2 + μ2)!(k − 2 + μ3)! .

Now we fix a number w ′ satisfying 0 � w ′ � ν + Min(t1, t2). We compare the coefficient of
∂w ′
τ ∂

ν+t1−w ′
z1 ∂

ν+t2−w ′
z2 ∂w ′

z on both sides of (5). For a fixed w ′ this gives a linear equation for the α(w):

3
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∑
w+λ3=w ′

α(w)Rν+t2−w,ν+t1−w,w(0,0, λ3, ν + t2 − w ′, ν + t1 − w ′, w ′)= (∗),

where (∗) denotes the corresponding coefficient on the left hand side of (5). The matrix of the corre-
sponding homogeneous system is then a lower triangular matrix with diagonal elements equal to

Rν+t2−w ′,ν+t−w ′,w ′(
0,0,0;ν + t2 − w ′, ν + t − w ′, w ′) 
= 0.

This procedure allows us to compute the rational numbers α(w) in each particular case (of course we
must compute some additional coefficients on the left and right hand sides arising either from the
generating series of [22] or from Gegenbauer polynomials). It would be nice to have a simple closed
formula for the coefficients α(w); it would in particular be desirable to show them to be different
from zero.

We compute a few cases below.

1.4.3. Basic examples
We start with the formulas

Lk(0,0,1)0 = (k − 1)∂z,

Lk(1,1,0)0 = −k − 1

2
∂τ3∂z + k(k − 1)∂z1∂z2 ,

Lk(0,0,2)0 = −1

4
(k − 1)∂τ1∂τ2 + k(k − 1)

2
∂2

z ,

Lk(1,1,1)0 = k3∂z∂z1∂z2 − k2

2

(
∂τ1∂

2
z2

+ ∂τ2∂
2
z1

+ ∂τ3∂
2
z

)+ k

2
∂τ1∂τ2∂τ3 ,

Lk(2,2,0)0 = k(k − 1)

8
∂2

z ∂2
τ3

+ k(k − 1)

16
∂τ1∂τ2∂

2
τ3

− (k + 1)k(k − 1)

8
∂τ2∂τ3∂

2
z1

− (k + 1)k(k − 1)

8
∂τ1∂τ3∂

2
z2

− (k + 1)k(k − 1)

2
∂τ3∂z∂z1∂z2 + (k + 2)(k + 1)k(k − 1)

4
∂2

z1
∂2

z2
.

All cases (except the forth one) can easily be obtained from the generating series of Ibukiyama–
Zagier by the observation that it simplifies considerably for those Lk(μ1,μ2,μ3), for which at least
one of the μi is zero: In that case everything comes down to the consideration of a series of type

1

(1 − X)k−1
=
∑(

k − 2 + j

k − 2

)
X j .

The case Lk(1,1,1) was obtained in a different way: We determine the polynomials in the entries of
Gram matrix associated to (x,y, z) ∈ C(2k,3) with the right degrees and normalize them properly.

We treat 3 examples following the pattern of the previous section.

Example 1. ν = 1, t1 = t2 = 0

D
0
k,1 = α(0)Lk(1,1,0)0 + α(1)∂τ3 Lk(0,0,1)0.

This gives the linear equations
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k(k − 1)α(0) =k − 1,

−k − 1

2
α(0)+ (k − 1)α(1)=−(k − 1)

and from this

D
0
k,1 = 1

k
Lk(1,1,0)0 − 2k − 1

2k
∂τ3 Lk(0,0,1)0.

Example 2. ν = t1 = t2 = 1

D
1,1,0
k,1 =

{(
−k − 1

2

)2

(k − 1)
(
∂2

z1
∂2

z2
− ∂z∂z1∂z2∂τ3

)}
z=0

= α(0)Lk(2,2,0)0 + α(1)∂τ3 Lk(1,1,1)0 + α(2)∂2
τ3

Lk(0,0,2)0.

The linear equations are

(k + 2)(k + 1)k(k − 1)

4
α(0) =

(
k + 1

2

)2

(k − 1),

− (k + 1)k(k − 1)

2
α(0)+k3α(1) =−

(
k + 1

2

)2

(k − 1),

k(k − 1)

8
α(0)− k2

2
α(1)+ k(k − 1)

2
α(2)=0

and from this

D
1,1,0
k,1 = 4(k + 1

2 )2

(k + 2)(k + 1)k
Lk(2,2,0)0 − (k + 1

2 )2(k − 1)

k2(k + 2)
∂τ3 Lk(1,1,1)0

− (k + 1
2 )2

k(k + 1)
∂2
τ3

Lk(0,0,2)0.

Example 3. ν = 2, t1 = t2 = 0

D
0
k,2 =

{
k(k − 1)∂2

z1
∂2

z2
+ (k − 2k2)∂z∂z1∂z2∂τ3 + k

(
k − 1

2

)
∂2

z ∂2
τ3

− k

2
∂τ1∂τ2∂

2
τ3

+ k

2
∂2

z2
∂τ1∂τ3 + k

2
∂2

z1
∂τ2∂τ3

}
|z=0

= α(0)Lk(2,2,0)0 + α(1)∂τ3 Lk(1,1,1)0 + α(2)∂2
τ3

Lk(0,0,2)0.

The linear equations are

(k + 2)(k + 1)k(k − 1)

4
α(0) =k(k − 1),

− (k + 1)k(k − 1)

2
α(0)+k3α(1) =k − 2k2,

k(k − 1)

8
α(0)− k2

2
α(1)+ k(k − 1)

2
α(2)=k

(
k − 1

2

)
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and from this

D
0
k,2 = 4

(k + 2)(k + 1)
Lk(2,2,0)0 + −1 − 2k

(k + 2)k
∂τ3 Lk(1,1,1)0

+ 2k3 + 3k2 − 3k − 2

(k + 2)(k + 1)(k − 1)
∂2
τ3

Lk(0,0,2)0.

2. Pullback formulas with differential operators I: the Arakawa side

2.1. Jacobi– and Siegel–Eisenstein series

We first define the degree n Siegel–Eisenstein series:

En
k(Z) :=

∑
M∈Sp(n,Z)∞\Sp(n,Z)

j(M, Z)−k (k > n + 1, Z ∈ Hn).

Also we recall the definition of the degree n Jacobi–Eisenstein series: For

Z =
(∗ ∗

∗ τ3

)
∈ Hn+1 (τ3 ∈ H)

we start from the function (with m ∈ N)

em :

{
H3 −→ C

Z 	−→ e2π imτ3

and we put (for k > n + 2)

En
k,m(Z) :=

∑
M∈(Gn)∞\Gn(Z)

em|k M.

More explicitly, the summation runs over

{
M = [λ,0,0] · R↑ ∣∣ R ∈ Sp(n,Z)∞\Sp(n,Z), λ ∈ Z

n},
where as usual we use [λ,μ,κ] as notation for an element of the Heisenberg part of Gn:

[λ,μ,κ] :=
⎛
⎜⎝

1n 0 0 μ′
λ μ 0 κ
0 0 1n −λt

0 0 0 1

⎞
⎟⎠ (

λ,μ ∈ R
n, κ ∈ R

)
.

These two Eisenstein are connected via the Fourier–Jacobi expansion of En+1
k :

En+1
k (Z) =

∞∑
m=0

en
k,m(τ1, z)e2π imτ3 .

If m is squarefree the relation is quite simple, see [2]:

en
k,m(τ , Z)e2π imτ3 = Ak · σk−1(m)En

k,m(Z)
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with

Ak := 2

ζ(1 − k)

and σk−1(m) =∑d|m dk−1.

2.2. The pullback formula of Arakawa

We need a general pullback formula for D0
k,ν E2

k,m . The case of plain restriction (i.e. ν = 0) and
index m = 1 was worked out by Arakawa [1] and in a refined version by the second author [19,10]
for squarefree index m.

A key tool in Arakawa’s pullback formula is a double coset decomposition due to Garrett [15]:
A complete set of representatives for

Sp(2,Z)∞\Sp(2,Z)/SL(2,Z)↑ × SL(2,Z)↓

is given by

{γd | d � 0}

with

γd =
(

12 02
0 d
d 0

12

)
.

Note that the γ
↑

d ∈ Sp(3,Z) are not compatible with the differential operators D0
k,ν in the sense

that the theorem of the previous section does not apply to the γ
↑

d .

We first consider the action of Dk on em|k[λ,02,0]|kγ ↑
d .

To study this, we remark that [λ,02,0] and γ
↑

d commute and therefore we just have to study

Dk(em|γ ↑
d ).

The key result is

Proposition 2.1. For all k, d we have

Dk
(
em|kγ ↑

d

)= (k − 1

2

)
(k − 1)md(−2π i)em|k+1γ

↑
d .

Corollary 2.1. For all ν > 0 we get

Dk,ν

(
em|kγ ↑

d

)= 2−2ν(−2π i)ν
Γ (2k + 2ν − 2)

Γ (2k − 2)
(md)νem|k+νγ

↑
d .

It is clear that we could prove this proposition by direct computation. However, we prefer to follow
Lemma 10 of [3], which can (hopefully) be generalized to higher degree cases.
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Using the matrix J(x) :=

⎛
⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 x

⎞
⎟⎟⎠ and J := J(0) we put (for d > 0)

Md := J · γ ↑
d ·
(

0 −d−1

d 0

)+

=
⎛
⎝ ∗ ∗

d d 0
0 0 0
0 0 1

0 0 0
−1 1 0
0 0 0

⎞
⎠ .

Using the decomposition (1) for Z ∈ H3 we study the auxiliary function

hk,Md := 1|k Md = d−k(τ1τ3 + 2zτ3 + τ2τ3 − z2
1 − z2

2 − 2z1z2
)−k

.

We compute Dkhk (with hk := hk,M1 ), using the elementary formulas

∂z2 hk = −k

2
hk+1 · (−2z2 − 2z1),

∂z1∂z2 hk = k(k + 1)hk+2(z1 + z2)
2 + k

2
hk+1,

∂zhk = −khk+1τ3,

∂τ3∂zhk = −khk+1 + k(k + 1)hk+2(τ1 + 2z + τ2)τ3,

∂ [3]hk,M1 = 0.

The last equation follows from studying the linear map Z 	−→ CM Z + DM with det(CM) = 0.

In summary, this gives

Dkhk = (k − 1)

{
k

2
+ k

}
hk+1

+ (k − 1)
{
k(k + 1)(z1 + z2)

2 − k(k + 1)(τ1 + 2z + τ2)τ3
}

hk+2

= −k

(
k − 1

2

)
(k − 1)hk+1.

Then we get

Dkhk,Md = −k

(
k − 1

2

)
(k − 1) · d · hk+1,Md

and for Nd := J · γ ↑
d

Dk(1|k Nd) = −k

(
k − 1

2

)
(k − 1)d · (1|k+1Nd).

Here we may also include the case d = 0, because the formula above is analytic in d – this is in
accordance with the fact that these operators produce cusp forms (after restriction).
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To get from this a result about Dk(em|kγ ↑), we start from the identity

(−2π i)k

(k − 1)!
∞∑

m=1

mk−1em(τ3) =
∑
l∈Z

(τ3 + l)−k

and we apply to both sides first the operator |kγ ↑
d and then the differential operator Dk .

The left hand side then becomes

(−2π i)k

(k − 1)!
∑
m=1

mk−1
Dk(em|kγd).

Concerning the right side, we recall that (τ3 + l)−k = j(J(l), Z)−k and J(l) = J · T(l) for an appro-
priate translation T(l), hence we can view Dk((τ3 + l)−k|γ ↑

d ) as

Dk
(
1|kJ(l)γ ↑

d

)= Dk
(
1|kJγ

↑
d T(l)

)
= Dk

(
1|kJγ

↑
d

)∣∣
kT(l)

= Dk(1|k Nd)|T(l)

= −k

(
k − 1

2

)
(k − 1)d · 1|k+1Nd|kT(l)

= −k

(
k − 1

2

)
(k − 1)d(τ3 + l)−k−1|k+1γ

↑
d .

Comparison of both sides gives

Dk
(
em|kγ ↑

d

)= (k − 1

2

)
(k − 1)dm(−2π i)em|k+1γd.

This proves the proposition.
The proposition and its corollary allow us immediately to generalize Arakawa’s pullback formula

to the case of D0
k,ν E2

k,m. The reason is that the differential operator commutes with all substitutions
entering into the definition of the Jacobi–Eisenstein series (when written in terms of representatives
arising from Garrett’s double coset decomposition) except the γ

↑
d ; for these substitutions, we use the

corollary above.
Furthermore, we recall that (at least if the index m is squarefree) the space J cusp

k,m of Jacobi cusp
forms of index m and weight k has an (orthogonal) basis {Φi} consisting of eigenforms of the Jacobi–
Hecke operators given by the double cosets

G1(Z) · diag
(
1,n−1,1,n

) · G1(Z) (n ∈ N).

The corresponding eigenvalues will be denoted by λ(Φi,n). We associate to these eigenforms Φi the
zeta functions

Z J (s,Φi) =
∑ λ(Φi,n)

ns
,

which were studied in [1,19].
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With these facts at hand, the generalization of Arakawa’s pullback formula is just a formal manip-
ulation following the original computation [1,10,19] line by line; our version here is the analogue of
[10, Proposition 4.1].

Theorem 2.1. Let m be a squarefree positive integer and ν a non-negative integer. We denote by {Φi} an
orthogonal Hecke eigenbasis of the space of Jacobi cusp forms of index m and weight k + ν . Then

(
D

0
k,ν E2

k,m

)
(τ1, z2, τ2, z, τ3) = δν,0 E1

k,m(τ1, z1) × E1
k,m(τ2, z2)e2π imτ3

+ β(k, ν)
∑

i

Z J (k,Φi)

‖Φi‖2
Φi(τ1, z1) × Φ(τ2, z2)e2π imτ3 .

Here we have changed the notion of Jacobi forms: They appear now as functions on H × C. Fur-
thermore ‖ ‖ denotes the Petersson norm of the Jacobi form Φ (as explained e.g. in [1, Section 2])
and

β(k, ν) = 2−2ν(−2π i)ν
Γ (2k + 2ν − 2)

Γ (2k − 2)
mν (−1)

k+ν
2 π21−k−ν

m(k + ν − 3
2 )

.

Comment. The first part of the constant β(k, ν) comes from the corollary above, the second part
comes from [10, Proposition 4.1] with k replaced by k + ν . Furthermore, we should point out that
factor dν on the right side of the corollary is responsible for changing the critical point of the zeta
function Z J (s,Φi) from k + ν to k.

Remark. For a reinterpretation of the zeta function Z J (s,Φ) in terms of L-functions for elliptic mod-
ular forms we refer the reader to Section 5.

2.3. The final restriction to H × H

We may now apply the operators D0
k+ν,t to the Jacobi forms of the theorem: Formally we get the

spectral decomposition

D0
k+ν,t

(
Φi · e2π imτ3

)=∑
{ f }

I(t)(Φi, f ) · f · e2π imτ3

where the f run over an orthogonal basis of Sk+ν+t , e.g. a basis of normalized Hecke eigenforms. By
abuse of notation, we write

D0
k+ν,t(Φi) := D0

k+ν,t

(
Φi · e2π imτ3

)
e−2π imτ3 .

Due to reasons to be explained later, we call

I(t)(Φi, f ) := 〈D0
k+ν,t(Φi), f 〉

〈 f , f 〉
an Ichino period for the Jacobi form Φi .

Theorem 2.1 (Final general pullback formula for the Arakawa–Ichino side (first version)). For integers k > 4,
m > 0, m squarefree, ν, t1, t2 � 0 we have
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D
t1,t2,0
k,ν E2

k,m = δν,0 X

+ β(k, ν)
∑

i

Z J (k,Φi)

‖Φi‖2

∑
{ f }

∑
{g}

I(t1)(Φi, f ) · I(t2)(Φi, g) f ⊗ g · e2π imτ3 ,

where the f run over an orthogonal basis of Sk+ν+t1 and the g over an orthogonal basis of Sk+ν+t2 . The
contribution X only occurs for ν = 0; it equals

X =
(

δt,0 Ek + κ(k, t1)

Akσk−1(m)ζ(k)ζ(2k − 2)
×
∑
{ f }

a f (m)
D( f ,k − 1)

〈 f , f 〉 f

)

⊗
(

δk,t2 Ek + κ(k, t2)

Akσk−1(m)ζ(k)ζ(2k − 2)

∑
{g}

ag(m)
D(g,k − 1)

〈g, g〉 g

)
e2π imτ3 .

As for the contribution X we recall that

〈
D0

k,t

(
E2

k

)(∗ 0
0 τ ′

)
, f

〉
= κ(k, t)

D( f ,k − 1)

ζ(k)ζ(2k − 2)
f
(−τ̄ ′)

for a Hecke eigenform in Sk+t . This is a version of the doubling method with differential operators as
in [4]. The constant is a natural product of three factors

κ(k, t) = (−1)
k+t

2 23−k−tπ

k + t − 1
×

t−1∏
i=0

(−k − i) ×
t−1∏
i=0

(
−k − i + 1

2

)
.

Again the first factor comes from the analogous formula for weight (k + t) without differential
operator, the second factor comes from the iteration of the formula ∂12(z11 + 2z12 + z22)

−k =
(−k)(z11 + 2z12 + z22)

−k−1, which arises naturally in the doubling method (see [3,4]), and the third
factor comes from the normalization of the differential operator Dk,t .

We can reformulate this for the Jacobi–Eisenstein series as

〈
D0

k,t

(
E1

k,m

)
, f
〉= κ(k, t)

Akσk−1(m)

D( f ,k − 1)

ζ(k)ζ(2k − 2)
a f (m).

The formula above is the final general Arakawa–Ichino side of our identity. The summands will be
rewritten in Section 5.

3. Pullback formulas with differential operators II: the Garrett side

In Section 1.4 we introduced differential operators Lk(μ1,μ2,μ3), which were defined by means
of a generating series. We have used these differential operators in the Garrett integral representation
for triple product L-functions already in previous works [7,6]. In [7,6] we only considered the inte-
grals against cusp forms, here however we need the exact pullback formula including also possible
contributions from Eisenstein series:

We have to study Lk(μ1,μ2,μ3)(E3
k ) in detail. We start with a few remarks concerning the non-

cuspidal part:

• Lk(μ1,μ2,μ3)(F ) is cuspidal in all three variables unless two of the μi are zero; this is true for
any degree 3 Siegel modular form F of weight k by a reasoning similar to the one given in the
proof of the theorem in Section 1.
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• For the remaining case (say e.g. μ1 = μ2 = 0) we recall that Lk(0,0,μ)0 = Gμ
2k(∂z, ∂τ1∂τ2 )|z=0, so

Lk(0,0,μ)0 acts on F like Lk,μ acts on F
(( Z 0

0 τ3

))
, when viewed as a function of Z = ( τ1 z

z τ2

)
.

• Over any field K there are 5 orbits of

Sp(3, K )∞\Sp(3, K )/SL(2, K )3,

given by

O0 := 16, O1 :=
⎛
⎝ 13 03

0 0 0
0 0 1
0 1 0

13

⎞
⎠ , O2 :=

⎛
⎝ 13 03

0 0 1
0 0 0
1 0 0

13

⎞
⎠ ,

O3 :=
⎛
⎝ 13 03

0 1 0
1 0 0
0 0 0

13

⎞
⎠ , Omain =

⎛
⎝ 13 03

0 0 0
0 0 0
1 1 1

13

⎞
⎠ .

Applying the differential operators Lk(μ1,μ2,μ3) to the degree three Siegel–Eisenstein series, we
first notice, which orbits (and their contributions to the pullbacks) get killed. If at least two of the μi
are non-zero, then only the “main orbit” Omain remains. If only μi is different from zero, then the
two orbits Oi and Omain survive.

With the remarks from above and using the results from [15,14,7,6,20] we get

Proposition 3.1. Let k be an even integer, k > 4 and let μ1,μ2,μ3 be any non-negative integers. Then

Lk(μ1,μ2,μ3)
(

E3
k

)= δ0,μ1δ0,μ2δ0,μ3 Ek ⊗ Ek ⊗ Ek

+ δ0,μ1δ0,μ2

κ(k,μ3)

c(k,μ3)

∑
g∈Sk+μ3

D(g,k − 1)

〈g, g〉 g ⊗ g ⊗ Ek

+ δ0,μ1δ0,μ3

κ(k,μ2)

c(k,μ2)

∑
g∈Sk+μ2

D(k − 1, g)

〈g, g〉 g ⊗ Ek ⊗ g

+ δ0,μ2δ0,μ3

κ(k,μ1)

c(k,μ1)

∑
g∈Sk+μ1

D(k − 1, g)

〈g, g〉 Ek ⊗ g ⊗ g

+ γ (k,μ1,μ2,μ3)

ζ(k)ζ(2k − 2)

∑
f ,g,h

L( f ⊗ g ⊗ h,2k + μ1 + μ2 + μ3 − 2)

〈 f , f 〉〈g, g〉〈h,h〉 f ⊗ g ⊗ h.

The last sum goes over a normalized basis of Hecke eigenforms for Sk+μ2+μ3 , Sk+μ1+μ3 and
Sk+μ1+μ2 and

γ (k,μ1,μ2,μ3) = (i)−k+μ1+μ2+μ3 2−5k+8−4μ1−4μ2−4μ3π3−2k−μ1−μ2−μ3

× Γ (2k + μ1 + μ2 + μ3 − 2)

Γ (2k − 2)Γ (k)

× Γ (μ1 + μ2 + k − 1)Γ (μ1 + μ3 + k − 1)Γ (μ2 + μ3 + k − 1)

μ1!μ2!μ3! .

We extract this archimedian factor from the computation in [7, (2.41)]. The simple form of this fac-
tor comes out only after some tedious calculations. The reason is that the archimedian integral is not
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computed directly for the differential operator Lk(μ1,μ2,μ3), but for a composition of (not neces-
sarily holomorphic) differential operators (Maaß type operators together with the operators from [8])
whose “holomorphic component” is then up to a factor equal to Lk(μ1,μ2,μ3). This procedure avoids
a lot of combinatorial problems.

Remark. The critical point which appears in the proposition above is the largest critical point for the
triple L-function only if at least one of he μi is zero. Note also that we do not get the central critical
value (because k = 2 is not allowed!).

4. Comparison: first version via periods

We follow the basic strategy of [20]: We fix an even number k > 4, non-negative integers ν, t1, t2
and a squarefree positive integer m and also we choose normalized Hecke eigenforms f ∈ Sk+ν+t1

and g ∈ Sk+ν+t2 . Starting from the Siegel–Eisenstein series E3
k of degree 3 we first pick out the m-

th Fourier–Jacobi coefficient. As mentioned at the beginning of Section 2, this m-th Fourier–Jacobi
coefficient equals

Akσk−1(m) · E2
k,m,

i.e. it equals, up to a factor, the Jacobi–Eisenstein series of index m defined earlier.
We apply the differential operator D

t1,t2,0
k,ν to E2

k,m and pick out the coefficient of f ⊗ g · e2π imτ3 .
According to Theorem 2.2 this coefficient is equal to

δν,0

(
κ(k, t1)κ(k, t2)a f (m)ag(m)

Akσk−1(m)ζ(k)2ζ(2k − 2)2

D( f ,k − 1)

〈 f , f 〉
D(g,k − 1)

〈g, g〉
)

+ β(k, ν)
∑

i

Z J (k,Φi)

‖Φi‖2
I(t1)(Φi, f )I(t2)(Φi, g).

On the other hand,

D
t1,t2,0
k,ν =

ν+Min(t1,t2)∑
w=0

αk,ν,t1,t2(w)∂ w
τ3

· Lk(ν + t2 − w, ν + t1 − w, w)0.

We may as well apply the operators Lk(. . .)
0 to E3

k , use Garrett’s pullback formula (Proposition 3.1)
and then pick out the m-th Fourier coefficient with respect to τ3. If f and g are different, we get

∑
k,ν,t1,t2

αk,ν,t1,t2(w)(2π im)w
∑

h∈Sk+2ν+t1+t2−2w

γ (k, ν + t2 − w, ν + t1 − w, w)

× ah(m)
L( f ⊗ g ⊗ h,2k + 2ν + t1 + t2 − w − 2)

〈 f , f 〉〈g, g〉〈h,h〉 .

The case f = g is slightly more complicated, because an additional term may arise if t1 = t2 = t
and w = ν + t . The additional term is

δt1,t2αk,ν,t,t(ν + t)(2π im)ν+t κ(k, ν + t) Akσk−1(m) D(g,k − 1)
,

c(k, ν + t) ζ(k)ζ(2k − 2) 〈g, g〉
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where the last factor in front of the L-function comes from the Fourier expansion of the Eisenstein
series:

Ek = 1 + Ak

∑
σk−1(n)e2π inz.

Summarizing this, we obtain

Main Theorem 4.1. Let k be an even integer with k > 4 and let ν, t1, t2 be arbitrary non-negative integers such
that k + ν + t1 and k + ν + t2 are even; furthermore let m be a squarefree positive integer. Let f ∈ Sk+ν+t1

and g ∈ Sk+ν+t2 be normalized Hecke eigenforms and denote by (Φi)i∈I an orthogonal Hecke eigenbasis of
J cusp
k+ν,m. Then we have the identity

δν,0
κ(k, t1)κ(k, t2)a f (m)ag(m)

Akσk−1(m)ζ(k)2ζ(2k − 2)2

D( f ,k − 1)

〈 f , f 〉
D(g,k − 1)

〈g, g〉

+β(k, ν)Akσk−1(m)
∑

i

Z J (k,Φi)

‖Φi‖2
I(t1)(Φi, f )I(t2)(Φi, g)

= δt1,t2δ f ,gαk,ν,t,t(ν + t)(2π im)ν+t κ(k, ν + t)

c(k, ν + t)
Akσk−1(m)

D(g,k − 1)

ζ(k)ζ(2k − 2)〈g, g〉

+
ν+Min(t1,t2)∑

w=0

αk,ν,t1,t2(w)(2π im)w γ (k, ν + t2 − w, ν + t1 − w, w)

ζ(k)ζ(2k − 2)

×
∑

h∈Sk+2ν+t1+t2−2w

ah(m)
L( f ⊗ g ⊗ h,2k + 2ν + t1 + t2 − w − 2)

〈 f , f 〉〈g, g〉〈h,h〉 .

Here h runs over a normalized Hecke eigenbasis of Sk+2ν+t1+t2−2w and we write t for ti if t1 = t2.

This is our most general identity; its significance depends on understanding (by reinterpretation)
the left hand side, in particular the periods I(t)(Φ, g); one can however as well consider such periods
as objects of independent interest.

Remark. To have an identity with algebraic summands, we should divide both sides of the identity
above by (2π i)2ν+t1+t2 . The reason is that we should have normalized our differential operators from
the beginning in such a way that the application to Fourier series with algebraic coefficients gives
again Fourier series with algebraic coefficients.

5. Comparison: final version via central values of L-functions

It is desirable to rewrite the Arakawa–Ichino side of our main identity in terms of elliptic modular
forms (rather than Jacobi forms). In principle, this should be possible in general, definite results how-
ever are available only for m = 1, t1 = t2 = 0. We will briefly indicate where the problems are for the
general case, but then we will concentrate on the cases where definite results are available.

5.1. How to rewrite the Z J (k,Φi)

Here a general solution is available, which we briefly sketch: By choosing the basis {Φi} of J cusp
k+ν,m

properly, it is possible to associate to each Φi an elliptic cusp form ϕi in the space Mnew,−
2k+2ν−2(m

′),
which was introduced by Skoruppa and Zagier [29]; here m′ is a suitable divisor of m. Then one can
express Z J (s,Φi) in terms of L(ϕi, s), we refer to [19,10] for details.
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Now we stick to the case m = 1: here the correspondence between the Φi ∈ J cusp
k+ν,1 and the ϕi ∈

S2k+2ν−2 is already described in [11]. Moreover in this case [1,19]

Z J (s,Φi) = L(ϕi, s + k + ν − 3)

ζ(2s − 2)
.

5.2. How to rewrite the Ichino periods

To give an appropriate reformulation of the Ichino periods I(t)(Φ, f ) in general, we would need
a version of Ichino’s result involving differential operators; such a result is likely to be true (see [9]
for the case of Yoshida lifts); we would also need a version, which allows us to treat Jacobi forms of
index m > 1; it is not clear what in that case the analogue of Ichino’s result should look like.

The case m = 1, t1 = t2 = 0 was already considered in [20]; it uses Ichino’s result in a crucial way:

I(Φi, f )2 = 2−k−ν ‖ϕ̃i‖2

‖ϕi‖2‖ f ‖4
L̂
(
ϕi ⊗ Sym2( f ),2k + 2ν − 2

)
,

where ϕ̃i is the modular form of half-integral weight corresponding to Φi and the hat indicates the
completion of the L-function. We should also mention here the identity of Petersson’s products [25]

‖Φi‖2 = 22k+2ν−3‖ϕ̃‖2.

5.3. The main identity using L-functions

Using the results from above, we can now reformulate our Main theorem 4.1 entirely in terms of
elliptic modular forms and L-functions. We do this for f = g , otherwise we would need square roots
of the central critical values; also we have (at the moment) to restrict ourselves to t1 = t2 = 0.

Theorem 5.1. Let f be a normalized Hecke eigenform of weight k + ν with k > 4. Then

δν,0
κ(k,0)2

Akζ(k)2ζ(2k − 2)2

(
D( f ,k − 1)

〈 f , f 〉
)2

+ 2−3k−3ν+3 Akβ(k, ν)
∑

ϕ∈S2k+2ν−2

L(ϕ,2k + ν − 3)L̂(ϕ ⊗ Sym2( f ),2k + 2ν − 2)

ζ(2k − 2)‖ϕ‖2‖ f ‖4

= αk,ν,0,0(ν)(2π i)ν
κ(k, ν)

c(k, ν)
Ak

D( f ,k − 1)

ζ(k)ζ(2k − 2)〈 f , f 〉

+
ν∑

w=0

αk,ν,0,0(w)(2π i)w γ (k, ν − w, ν − w, w)

ζ(k)ζ(2k − 2)

×
∑

h∈Sk+2ν−2w

L( f ⊗ f ⊗ h,2k + 2ν − w − 2)

〈 f , f 〉2〈h,h〉 .

Remarks.

A) As in the case ν = 0 discussed in [20] our identity connects central critical values to critical values
in the range of convergence. It should be possible to extract information about the central critical
values from this identity.

B) It would be desirable to include the case k = 4 here (by Hecke summation).
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C) The (excluded) case k = 2 is also remarkable: Then for ν = 0 the contributions on both sides are
the same (say, for a congruence subgroup Γ0(p)). For a completely different approach to such
averages for weight 2 we refer to the work of Feigon and Whitehouse [12].

6. A degenerate case

6.1. The case ν odd

There are no Jacobi forms of index one and odd weight on H × C, see [11, Theorem 2.2]; therefore
we get for all odd positive integers ν

D
0
k,ν E2

k,1 = 0.

Nevertheless we may apply our comparison procedure using differential operators D
t1,t2,0
k,ν for

ν, t1, t2 all odd. The left hand side of our Main theorem 4.1 then degenerates and we get

Corollary 6.1. Let f , g,k, ν, t1, t2 be as in our main theorem but with the additional condition that ν, t1, t2
are all odd and the index m is one; then

δt1,t2δ f ,gαk,ν,t,t(ν + t)(2π i)ν+t κ(k, ν + t)

c(k, ν + t)
Ak

D(g,k − 1)

ζ(k)ζ(2k − 2)〈g, g〉

+
ν+Min(t1,t2)∑

w=0

αk,ν,t1,t2(w)(2π i)w γ (k, ν + t2 − w, ν + t1 − w, w)

ζ(k)ζ(2k − 2)

×
∑

h∈Sk+2ν+t1+t2−2w

ah(m)
L( f ⊗ g ⊗ h,2k + 2ν + t1 + t2 − w − 2)

〈 f , f 〉〈g, g〉〈h,h〉 = 0.

6.2. An example

It may be of interest to consider simple examples of our identities, where only a few terms appear.
The simplest possible case of the corollary above is k = 10, ν = t1 = t2 = 1. With f = g = � ∈ S12,

only w = 1 gives a contribution, again with h = � as the only contributing h. Then the corollary gives

α10,1,1,1(2)
(
2π(−1)1/2)A10

κ(10,2)

c(10,2)
π29 D(�,9)

π29‖�‖2

= (−1)α10,1,1,1(1)γ (10,1,1,1)π51 L(� ⊗ � ⊗ �,21)

π51‖�‖6
(∗)

where we have divided the L-values by appropriate powers of π to obtain algebraic values.
We confirm the identity (∗) numerically, use the explicit values:

α10,1,1,1(2) = − ( 1
2 + k)2

k(k + 1)
= − 32 · 72

23 · 5 · 11
,

α10,1,1,1(1) = − ( 1
2 + k)2(k − 1)

k2(k + 2)
= −33 · 72

26 · 52
,

A10 = −23 · 3 · 11,

κ(10,2) = 3 · 5 · 7 · 19
10

· π,

2
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c(10,2) = 7

3
,

D(�,9)

π29‖�‖2
= 2 · 420

245 · 20! = 223

38 · 55 · 74 · 11 · 13 · 17 · 19
,

γ (10,1,1,1) = (−1)(3−k)/2π−2k (k!)3(2k)!
25k+4(k − 1)!(2k − 3)!

= (−1)−7/2π−20 310 · 56 · 72 · 19

234
,

L(� ⊗ � ⊗ �,21)

π51‖�‖6
= 254

316 · 59 · 76 · 11 · 13 · 17 · 19
.

Here the values of D(�,9) and L(� ⊗ � ⊗ �, 21) are taken from [30] and [28] respectively.
With these values we can compute both sides of (∗) independently and obtain on both sides the

same value

i · π31 × 214

33 · 55 · 72 · 11 · 13 · 17
.

More examples will be considered in subsequent work.
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