addition, the Dutch National Health Care Institute commented on usefulness for decision makers. One thousand four hundred and sixty-two experts could comment during a workshop at ISPOR Montreal 2014. RESULTS: 35 Validation techniques were identified and grouped into four categories: conceptual model validation, computerized model validation, data validation and operational validation. Around 30 HE experts commented in each of the first three Delphi rounds, resulting in a 15 item draft. A fourth round resulted in 17 responses. This led to a refined version containing 16 items, which is currently sent out for a final, fifth round. CONCLUSIONS: When filled out by the modellers, ADVISER (Assessment of the Validation Status of Health Economic decision models) supports model users in assessing the validation status of a model. It will be useful as part of reimbursement dossiers, by providing systematic and transparent insight into the validation efforts performed and their results.

PBM08
MODELLING SURVIVAL IN THE PRESENCE OF DIFFERENT MECHANISMS OF ACTION: IPILIMUMAB AND VEMURAFENIB IN ADVANCED MELANOMA
Lee O1, Porter J2, Herbert W3, Hatwell AJ1
1Freelance, UK, 2Rivermead Health, UK, 3Urbisde, UK
OBJECTIVES: Traditional indirect treatment comparison methods assume the underlying survival profiles of treatments are similar (i.e. proportional hazards). This assumption is unlikely to hold for the comparison of ipilimumab and vemurafenib. Whereas vemurafenib exhibits improved short-term survival compared with ipilimumab, pooled study data for ipilimumab consistently show that patients achieve durable long-term survival. We present a method to compare across trials with different survival profile accounting for follow-on treatments and different baseline characteristics. METHODS: Comparative survival estimates for ipilimumab and vemurafenib were produced using patient-level data from trial CA184-024 for ipilimumab and survival curve data for vemurafenib. The BRIM-3 vemurafenib overall survival curve was adjusted to account for (a) the effect of second-line ipilimumab (via a tunnel-state methodology) and (b) patient baseline characteristics using KRTB 3 and CA184-024, by means of a model (Korn model), constructed to predict the outcomes for dacarbazine-treated patients. The resulting survival estimates were compared with naive unadjusted survival curves, and estimates produced using a hazard ratio model (in this case, in (b), the comparison to the ipilimumab data). RESULTS: Estimated survival for ipilimumab was 3.3 years (mean). Predicted survival for vemurafenib, using a naive comparison, was 3.0 years (mean). Adjusting for second-line ipilimumab and different baseline characteristics resulted in an estimate of 2.8 years for vemurafenib. When a hazard ratio was applied to the ipilimumab data, which underlies the here strong assumption that the vemurafenib overall survival profile is similar to that of ipilimumab, predicted survival for vemurafenib increased to 4.2 years. CONCLUSIONS: Based on ongoing research we find that using the methodology used, the mean predicted survival for vemurafenib varied from 2.8 to 4.2 years. Alternative methods that incorporate the long-term survival profile of ipilimumab (naive comparison or more sophisticated ad hoc methodology) demonstrate a higher number of life years with ipilimumab versus vemurafenib.

PBM01
HEALTH ECONOMIC MODELS IN ALZHEIMER’S DISEASE: A CRITICAL ASSESSMENT
Weiler S1, Droschel D2, Kaiser K1
1M&A Market Access & Pricing Strategy GmbH, Wulm, Rhein, Germany, 2University of Freiburg, Freiburg, Germany
OBJECTIVES: Alzheimer’s Disease destroys brain cells, causing problems with memory, thinking, and behavior severe enough to affect work, family and social relationships. Currently, the best available treatments to slow progression of disease are not available. Alternative options have been introduced and evaluated from an economic perspective. However, given the specific characteristics of the disease an evaluation of existing models is needed. METHODS: The following databases were searched systematically: PubMed, Health Technology Assessment Database, NHS Economic Evaluation Database, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, DAHTA-database, PSYINDEX and PsychINFO. For the abstracts that met the pre-defined inclusion criteria, full text articles were obtained and evaluated for inclusion in the assessment. RESULTS: After eliminating duplicates the search identified 2'219 articles of which 940 were excluded based on the title selection. Finally 59 articles have been reviewed in full text after abstract review. Out of those 39 articles were deemed to be relevant based on the research question. The majority of models (48%) have been Markov models, other methods being used were various statistical analysis applications, micro-simulation, and discrete-event simulations. Limitations of existing models include the following: Focus on cognitive function as disease progression only, lack of inclusion of correlations between disease progression and other factors (e.g. residential status), lack of complete structure of diagnosis and treatment of disease (e.g. including non-drug treatments). Based on the Drummond checklist for health economic models the quality of models proved generally to be high but the majority of those lack presentation of assumptions and/or expert judgement. Potential new models need to take the disease characteristics and specifics more into account. OBJECTIVES: Within health economic models of metastatic cancer therapies assumptions for progression-free survival (PFS) and overall survival (OS) are typically required, notably when OS data are immature or unavailable. A review was undertaken to identify the methods that have been used within health economic models regarding this relationship and to identify the methods that are best suited for the situation where OS data were not available or immature. METHODS: All NICE technology appraisals in the advanced and/or metastatic cancer setting completed by December 2013 were reviewed. The review included all relevant appraisal documents publicly available on the NICE website containing information on the methods used and/or rationale for the approach taken to model the relationship between OS and PFS/TPF within the health economic model. This included the sponsor submission and updated analyses, the NICE Appraisal Report, and other supporting analyses/reports to the appraisal process. RESULTS: In those instances where OS data were immature or not available, PFS/TPF was typically assumed to be a valid surrogate of OS. Justification for this assumption was inconsistently reported. In some cases, a model assumes a quantification of the assumed relationship was informed by published evidence and/or expert judgement. In some cases attempts were made to explore the potential impact of this relationship in sensitivity analysis. CONCLUSIONS: The methods and rationale for the approach for the model to relationship between OS and PFS/TPF in health economic models has been inconsistently reported and justified. Whilst some health economic models attempted to quantify this relationship, further transparency is required. A consensus needs to emerge on the most appropriate approaches to be used within health economic models to quantify this relationship, specifically when OS data are not available or immature and to identify the circumstances when particular approaches may be most relevant.

PBM03
COMPARISON OF METHODS TO ESTIMATE HEALTH STATE UTILITIES IN METASTATIC BREAST CANCER (MBC)
Hudgens S1, Briggs A2, Tremblay G2, Forsythe A1, Lloyd A4
1Clinical Outcomes Solutions, Tucson, AZ, USA, 2University of Glasgow, Glasgow, UK, 3Eisai Inc, Washington, USA, 4ABT
OBJECTIVES: Patient-level utility values for different stages of MBC and toxicities commonly associated with chemotherapy regimens are useful for health economic assessments. Three methods to estimate utilities exist when direct utility data are not available: using utility mapping or developing utility decision-specific studies to describe the health states or derivation of preference-based measures from an existing condition-specific specific. This study compares utility estimates in MBC utilizing the above methods. METHODS: Based on data from a phase 3 clinical trial in MBC (N=1102) utility mapping was conducted using a published regression algorithm to convert the EORTC QLQ-C30 questionnaire to the EQ-5D utility. Mean utility values were estimated for relevant health states: stable disease (SD), tumor response (TR), tumor progression (TP), disease progression (DP) and death. RESULTS: Utilization of different methods to estimate utilities in MBC may lead to a wide range of estimated values with potentially significant implications for health economic evaluation. Caution must be exercised when comparing utility values derived using different methods. It is preferable to base much data from patients directly and use vignettes as a last resort.

PBM04
COST-EFFECTIVENESS MODELS FOR CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): CROSS-MODEL COMPARISON OF HYPOTHETICAL TREATMENT SCENARIOS
Hoogendoorn M1, Fenestra T2, Aaijus Y2, Borg S2, Hansen RN1, Janssens SA1, Samyshkin Y2, Wacker A1, Briggs A2, Lloyd A1, Sullivan SP2, Rutten-van Mölken MP1
1Erasmus University Rotterdam, Rotterdam, The Netherlands, 2BIVVM /UICMC, Bihlholm, The Netherlands, 3IMS Health, Economics and Outcomes Research, London, UK, 4The Södertörn Institute for Health Economics, Lund, Sweden, School of Pharmacy, University of Washington, Seattle, WA, USA, 5The OLIN Studies, Luleå, Sweden, 6Helmholtz Zentrum München, Neuherberg, Germany, 7University of Glasgow, Glasgow, UK, 8University of Washington, Pharmaceutical Outcomes Research and Policy Group, Seattle, WA, USA
OBJECTIVES: To compare different COPD cost-effectiveness models with respect to structure and input parameters and to cross validate the models by running the same hypothetical treatment scenarios. METHODS: COPD modeling groups simulated four hypothetical interventions with their model and compared the results with a reference scenario of no intervention. The four interventions modeled assumed: 1) 20% reduction in decline in lung function, 2) 25% reduction in exacerbation frequency, 3) 10% exacerbation frequency, 4) 10% exacerbation frequency, 3) 10% reduction in all-cause mortality and 4) all these effects combined. The interventions were simulated for a five-year and lifetime horizon. The interventions were compared with the reference scenario by running them through each of the four models. RESULTS: Seven out of nine contacted COPD modeling groups agreed to participate. Differences in 5-year QALY gains ranged from -0.0020 to 0.039 for intervention 1; 0.0089 to 0.075 for intervention 2; 0.0021 to 0.041 for intervention 2, and 0.0021 to 0.041 for intervention three. The difference in costs ranged from €561 to €912 for intervention one, €739 to €1350 for intervention two and €1410 to €1618 for intervention three. The 5-year cost-effectiveness ratios (ICERs) for the most comprehensive intervention, intervention four, was €17,000/QALY for two models, €25,000+ €28,000/QALY for three models.