
Science of Computer Programming 43 (2002) 129–159
www.elsevier.com/locate/scico

Polytypic values possess polykinded types
Ralf Hinze

Institute of Information and Computing Sciences, Utrecht University, P.O.Box 80.089, 3508 TB
Utrecht, Netherlands

Abstract

A polytypic value is one that is de)ned by induction on the structure of types. In Haskell types
are assigned so-called kinds that distinguish between manifest types like the type of integers and
functions on types like the list type constructor. Previous approaches to polytypic programming
were restricted in that they only allowed to parameterize values by types of one )xed kind.
In this paper, we show how to de)ne values that are indexed by types of arbitrary kinds. It
turns out that these polytypic values possess types that are indexed by kinds. We present several
examples that demonstrate that the additional 0exibility is useful in practice. One paradigmatic
example is the mapping function, which describes the functorial action on arrows. A single
polytypic de)nition yields mapping functions for data types of arbitrary kinds including )rst-
and higher-order functors.

Haskell’s type system essentially corresponds to the simply typed lambda calculus with kinds
playing the role of types. We show that the specialization of a polytypic value to concrete
instances of data types can be phrased as an interpretation of the simply typed lambda calculus.
This allows us to employ logical relations to prove properties of polytypic values. Among other
things, we show that the polytypic mapping function satis)es suitable generalizations of the
functorial laws. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

It is widely accepted that type systems are indispensable for building large and reli-
able software systems. Types provide machine checkable documentation and are often
helpful in )nding programming errors at an early stage. Polymorphism complements
type security by 0exibility. Polymorphic type systems like the Hindley–Milner system
[26] allow the de)nition of functions that behave uniformly over all types. However,
even polymorphic type systems are sometimes less 0exible that one would wish. For
instance, it is not possible to de)ne a polymorphic equality function that works for all
types—the parametricity theorem [35] implies that a function of type ∀A : A→A→Bool
must necessarily be constant. As a consequence, the programmer is forced to program
a separate equality function for each type from scratch.
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Polytypic programming [3,2] addresses this problem. Actually, equality serves as
a standard example of a polytypic function that can be de)ned by induction on the
structure of types. In a previous paper [12], the author has shown that polytypic func-
tions are uniquely de)ned by giving cases for primitive types, the unit type, sums, and
products. Given this information a tailor-made equality function can be automatically
generated for each user-de)ned type.

Another useful polytypic function is the so-called mapping function. The mapping
function of a unary type constructor F applies a given function to each element of type
A in a given structure of type F A—we tacitly assume that F does not include function
types. Unlike equality the mapping function is indexed by a type constructor, that is,
by a function on types. Now, mapping functions can be de)ned for type constructors of
arbitrary arity. In the general case, the mapping function takes n functions and applies
the ith function to each element of type Ai in a given structure of type F A1 : : : An.
Alas, current approaches to polytypic programming [16,12] do not allow to de)ne these
mapping functions at one stroke. The reason is simply that the mapping functions have
diDerent types for diDerent arities.

This observation suggests a natural extension of polytypic programming: it should
be possible to assign a type to a polytypic value that depends on the arity of the
type-index. Actually, we are more ambitious in that we consider not only )rst-order
but also higher-order type constructors. A type constructor is said to be higher-order
if it operates on type constructors rather than on types. To distinguish between types,
)rst- and higher-order type constructors, they are often assigned so-called kinds [22],
which can be seen as the ‘types of types’. Using the notion of kind we can state the
central idea of this paper as follows: polytypic values possess types that are de)ned
by induction on the structure of kinds. It turns out that the implementation of this idea
is much simpler than one would expect.

The rest of this paper is organized as follows. Section 2 illustrates the approach
using the example of mapping functions. Section 3 introduces the language of kinds
and types, which is based on the simply typed lambda calculus. Section 4 introduces
the language of terms, which is based on the polymorphic lambda calculus. Section 5
explains how to de)ne polytypic values and polykinded types. Section 6 shows how
to specialize a polytypic value to concrete instances of data types. Section 7 presents
several examples of polytypic functions with polykinded types, which demonstrate that
the extension is useful in practice. Polytypic values enjoy polytypic properties. Sec-
tion 8 shows how to express polytypic laws using logical relations. Among other
things, we show that the polytypic mapping function satis)es suitable generaliza-
tions of the functorial laws. Finally, Section 9 reviews related work and Section 10
concludes.

2. A worked-out example: mapping functions

This section illustrates the central idea by means of a worked-out example: mapping
functions. For concreteness, the code will be given in the functional programming
language Haskell 98 [31]. However, for reasons of coherence we will slightly deviate
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from Haskell’s lexical syntax: both type constructors and type variables are written with
an initial upper-case letter (in Haskell type variables begin with a lower-case letter)
and both value constructors and value variables are written with an initial lower-case
letter (in Haskell value constructors begin with an upper-case letter). This convention
helps to easily identify values and types.

Before tackling the polytypic mapping function let us )rst take a look at diDerent
data types and associated monotypic mapping functions. As an aside, note that the
combination of a type constructor and its mapping function is often referred to as a
functor.

As a )rst, rather simple example consider the list data type (data introduces a new
type and value constructors over that type).

data List A = nil | cons A (List A)

Actually, List is not a type but a unary type constructor. In Haskell the ‘type’ of a
type constructor is speci)ed by the kind system. For instance, List has kind ?→?. The
‘?’ kind represents manifest types like Int or Bool. The kind T→U represents type
constructors that map type constructors of kind T to those of kind U. The mapping
function for List, called mapList, is given by

mapList :: ∀A1 A2 : (A1 → A2) → (List A1 → List A2)

mapList mapA nil = nil

mapList mapA (cons a as) = cons (mapA a) (mapList mapA as):

The mapping function takes a function and applies it to each element of a given list.
It is perhaps unusual to call the argument function mapA. The reason for this choice
will become clear as we go along. For the moment it suIces to bear in mind that the
de)nition of mapList rigidly follows the structure of the data type.

The List type constructor is an example of a so-called regular or uniform type.
Brie0y, a regular type is one that can be de)ned as the least )xed point of a functor.
Interestingly, Haskell’s type system is expressive enough to rephrase List using an
explicit )xed point operator [24]. We will repeat this construction in the following as
it provides us with interesting examples of data types and associated mapping functions.
First, we de)ne the so-called base or pattern functor of List.

data ListF A B = nilF | consF A B

The type ListF has kind ? → (? → ?), which shows that binary type constructors are
curried in Haskell. The following de)nition introduces a )xed point operator on the
type level (newtype is a variant of data introducing a new type that is isomorphic to
the type on the right-hand side).

newtype Fix F = in (F (Fix F))

The kind of the type constructor Fix is (? → ?) → ?, a so-called second-order
kind. In general, the order of a kind is given by order(?) = 0 and order(T → U) =
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max{1 + order(T); order(U)}. It remains to de)ne List as a )xed point of its base
functor (type de)nes a type synonym).

type List′ A = Fix (ListF A)

Now, how can we de)ne the mapping function for lists thus de)ned? For a start, we
de)ne the mapping function for the base functor.

mapListF :: ∀A1 A2 : (A1 → A2) →∀B1 B2 : (B1 → B2)

→ (ListF A1 B1 → ListF A2 B2)

mapListF mapA mapB nilF = nilF

mapListF mapA mapB (consF a b)

= consF (mapA a) (mapB b)

Since the base functor has two type arguments, its mapping function takes two func-
tions, mapA and mapB, and applies them to values of type A1 and B1, respectively.
Even more interesting is the mapping function for Fix

mapFix :: ∀F1 F2 : (∀A1 A2 : (A1 → A2) → (F1 A1 → F2 A2))

→ (Fix F1 → Fix F2)

mapFix mapF (in v) = in (mapF (mapFix mapF) v);

which takes a polymorphic function as argument. In other words, mapFix has a so-
called rank-2 type signature [21]. Though not in the current language de)nition of
Haskell, rank-2 type signatures are supported by recent versions of the Glasgow Haskell
Compiler GHC [34] and the Haskell interpreter Hugs [20]. The argument function,
mapF , has a more general type than one would probably expect: it takes a function of
type A1 → A2 to a function of type F1 A1 → F2 A2. By contrast, the mapping function
for List (which like F has kind ? → ?) takes A1 → A2 to List A1 → List A2. The
de)nition below demonstrates that the extra generality is vital.

mapList′ :: ∀A1 A2 : (A1 → A2) → (List′ A1 → List′ A2)

mapList′ mapA = mapFix (mapListF mapA)

The argument of mapFix has type ∀B1 B2 : (B1 → B2) → (ListF A1 B1 → ListF A2 B2),
that is, F1 is instantiated to ListF A1 and F2 to ListF A2.

The list data type is commonly used to represent sequences of elements. An alter-
native data structure, which supports logarithmic access, is Okasaki’s type of binary
random-access lists [30].

data Fork A = fork A A

data Sequ A = empty | zero (Sequ (Fork A)) | one A (Sequ (Fork A))

Since the type argument is changed in the recursive calls, Sequ is an example of a
so-called nested or non-regular data type [4]. Nested data types have recently received
a great deal of attention since they can capture data-structural invariants in a way
that regular data types cannot. For instance, Sequ captures the invariant that binary
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random-access lists are sequences of perfect binary leaf trees stored in increasing order
of height. Though the type recursion is nested, the de)nition of the mapping function
is entirely straightforward.

mapFork :: ∀A1 A2 : (A1 → A2) → (Fork A1 → Fork A2)

mapFork mapA (fork a1 a2) = fork (mapA a1) (mapA a2)

mapSequ :: ∀A1 A2 : (A1 → A2) → (Sequ A1 → Sequ A2)

mapSequ mapA empty = empty

mapSequ mapA (zero as) = zero (mapSequ (mapFork mapA) as)

mapSequ mapA (one a as) = one (mapA a) (mapSequ (mapFork mapA) as)

Note that mapSequ requires polymorphic recursion [29]: the recursive calls have type
∀A1 A2 : (Fork A1 → Fork A2) → (Sequ (Fork A1) → Sequ (Fork A2)), which is a
substitution instance of the declared type. Haskell allows polymorphic recursion only
if an explicit type signature is provided. The rationale behind this restriction is that
type inference in the presence of polymorphic recursion is undecidable [10].

Since Sequ is a nested type, it cannot be expressed as a )xed point of a functor.
However, it can be rephrased as a )xed point of a higher-order functor [4]. Again, we
will carry out the construction to generate examples of higher-order kinded data types.
The higher-order base functor associated with Sequ is

data SequF S A = emptyF | zeroF (S (Fork A)) | oneF A (S (Fork A)):

Since Sequ has kind ?→?, its higher-order base functor has kind (?→?)→ (?→?).
The )xed point operator for functors of this kind is given by

newtype HFix H A = hin (H (HFix H) A):

Since the )xed point operator takes a second-order kinded type as argument, it has a
third-order kind: ((? → ?) → (? → ?)) → (? → ?). Finally, we can de)ne Sequ as the
least )xed point of SequF .

type Sequ′ = HFix SequF

As a last stress test let us de)ne a mapping function for Sequ′. As before we begin
by de)ning mapping functions for the component types.

mapSequF :: ∀S1 S2 : (∀B1 B2 : (B1 → B2) → (S1 B1 → S2 B2))

→ ∀A1 A2 : (A1 → A2) → (SequF S1 A1 → SequF S2 A2)

mapSequF mapS mapA emptyF

= emptyF

mapSequF mapS mapA (zeroF as)

= zeroF (mapS (mapFork mapA) as)

mapSequF mapS mapA (oneF a as)

= oneF (mapA a) (mapS (mapFork mapA) as)
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This example indicates why argument maps of kind ?→? must be polymorphic: both
calls of mapS are instances of the declared type. In general, the argument mapping
function may be applied to many diDerent types. Admittedly, the type signature of
mapSequF looks quite puzzling. However, we will see in a moment that it is fully
determined by SequF ’s kind. Even more daunting is the signature of mapHFix, which
has rank 3. Unfortunately, no current Haskell implementation supports rank-3 type
signatures. Hence, the following code cannot be executed.

mapHFix :: ∀H1 H2 : (∀F1 F2 : (∀C1 C2 : (C1 → C2) → (F1 C1 → F2 C2))

→∀B1 B2 : (B1 → B2)

→ (H1 F1 B1 → H2 F2 B2))

→∀A1 A2 : (A1 → A2)

→ (HFix H1 A1 →HFix H2 A2)

mapHFix mapH mapA (hin v)

= hin (mapH (mapHFix mapH ) mapA v)

Finally, applying mapHFix to mapSequF we obtain the desired function.

mapSequ′ :: ∀A1 A2 : (A1 → A2) → (Sequ′ A1 → Sequ′ A2)

mapSequ′ = mapHFix mapSequF

Now, let us de)ne a polytypic version of map. The monotypic instances above
already indicate that the type of the mapping function depends on the kind of the
type index. In fact, the type of map can be de)ned by induction on the structure of
kinds. A note on notation: we will write type and kind indices as subscripts. Hence,
mapT :: T denotes the application of the polytypic map to the type T of kind T. We
use essentially the same syntax both for polytypic values and for polykinded types.
However, they are easily distinguished by their ‘types’, where the ‘type’ of kinds is
given by the superkind ‘ ’ (‘?’ and ‘ ’ are sometimes called sorts).

What is the type of map if the type-index has kind ?? For a manifest type, say, T ,
the mapping function mapT :: ? equals the identity function. Hence, its type is T→T . In
general, the mapping function mapT :: T has type MapT T T; where MapT is inductively
de)ned as follows.

MapT :: :: T → T → ?

Map? T1 T2 = T1 → T2

MapA → B T1 T2 = ∀X1 X2 :MapA X1 X2 →MapB (T1 X1) (T2 X2)

The )rst line of the de)nition is the so-called kind signature, which makes precise that
MapT :: maps two types of kind T to a manifest type. In the base case Map? T1 T2

equals the type of a conversion function. The inductive case has a very characteristic
form, which we will encounter time and again. It speci)es that a ‘conversion function’
between the type constructors T1 and T2 is a function that maps a conversion function
between X1 and X2 to a conversion function between T1 X1 and T2 X2, for all possible
instances of X1 and X2. Roughly speaking, MapA → B T1 T2 is the type of a ‘conversion
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function’-transformer. It is not hard to see that the type signatures we have encountered
before are instances of this scheme. Furthermore, from the inductive de)nition above
we can easily conclude that the rank of the type signature corresponds to the kind of
the type index: the map for a third-order kinded type, for instance, has a rank-3 type
signature.

How can we de)ne the polytypic mapping function itself? It turns out that the
technique described in [12] carries over to the polykinded case, that is, to de)ne a
polytypic value it suIces to give cases for primitive types, the unit type ‘1’, sums
‘+’, and products ‘×’. To be able to give polytypic de)nitions in a pointwise style,
we treat 1, ‘+’, and ‘×’ as if they were given by the following data type declarations.

data 1 = ()

data A + B = inl A | inr B

data A× B = (A; B)

Assuming that we have only one primitive type, Int, the polytypic mapping function
is given by

mapT :: T :: MapT T T

map1 () = ()

mapInt i = i

map+ mapA mapB (inl a) = inl (mapA a)

map+ mapA mapB (inr b) = inr (mapB b)

map× mapA mapB (a; b) = (mapA a;mapB b):

This straightforward de)nition contains all the ingredients needed to derive map for
arbitrary data types of arbitrary kinds (see Section 6). And, in fact, all the de)nitions
we have seen before were automatically generated using a prototype implementation
of the polytypic programming extension described in the subsequent sections. Finally,
note that we can de)ne map even more succinctly if we use a point-free style—as
usual, the maps on sums and products are denoted (+) and (×).

map1 = id

mapInt = id

map+ mapA mapB = mapA + mapB
map× mapA mapB = mapA ×mapB

3. The simply typed lambda calculus as a type language

This section introduces the language of kinds and types that we will use in the
theoretical part of the paper. The type system is essentially that of Haskell smooth-
ing away some of its irregularities. Recall that Haskell oDers one basic construct
for de)ning new types: data type declarations. In general, a data declaration has the
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following form.

data B A1 : : : Am = k1 T11 : : : T1m1 | · · · | kn Tn1 : : : Tnmn :

This de)nition simultaneously introduces a new type constructor B and n value con-
structors k1; : : : ; kn. The data construct combines no less than four diDerent features:
type abstraction, type recursion, n-ary sums, and n-ary products. The types on the
right-hand side are built from type constants (that is, primitive type constructors), type
variables, and type application. Thus, Haskell’s type system essentially corresponds to
the simply typed lambda calculus with kinds playing the role of types.

In the sequel we review the syntax and the semantics of the simply typed lambda
calculus. A basic knowledge of this material will prove useful both for specializing
polytypic values and for proving properties of polytypic values. Most of the de)nitions
are taken from the excellent textbook by Mitchell [27]. Cognoscenti may safely skip
Sections 3.1, 3.3 and 3.4 except perhaps for notation.

3.1. Syntax

Syntactic categories: The simply typed lambda calculus has a two-level structure
(kinds and types—since we will use the calculus to model Haskell’s type system we
continue to speak of kinds and types).

kind terms T;U ∈ Kind

type constants C;D ∈ Const

type variables A; B ∈ var

type terms T; U ∈ Type

Note that we use upper-case Fraktur letters for kinds and upper-case Roman letters for
types.
Kind terms: Kind terms are formed according to the following grammar.

T;U ∈ Kind ::= ? kind of types

| (T → U) function kind

As usual, we assume that ‘→’ associates to the right.
Type terms: Pseudo-type terms are built from type constants and type variables using

type application and type abstraction.

T; U ∈ Type ::= C type constant

| A type variable

| (�A :: U : T ) type abstraction

| (T U ) type application

We assume that type abstraction extends as far to the right as possible and that type
application associates to the left. For typographic simplicity, we will often omit the kind
annotation in �A::U : T (especially if U = ?). Finally, we abbreviate nested abstractions
�A1 : : : : �Am : T by �A1 : : : Am : T .
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� � C :: Const(C)
(T-CONST)

� � A :: �(A)
(T-VAR)

�; A :: U � T :: T
� � (�A :: U : T ) :: (U→ T)

(T- → -INTRO)

� � T :: (U→ T) � � U :: U

� � (T U ) :: T
(T- → -ELIM)

Fig. 1. Kinding rules.

� � (�A :: U : T ) U=T [A := U ] :: T
(T-�)

A not free in T
� � �A :: U : T A = T :: (U→ T)

(T-�)

� � FixT T = T (FixT T ) :: T
(T-FIX)

Fig. 2. Equational proof rules (the usual ‘logical’ rules for re0exivity, symmetry, transitivity, and congruence
are omitted).

The choice of Const, the set of type constants, is more or less arbitrary. In order
to model Haskell’s data declarations we assume that Const comprises at least the
constants Int, ‘1’, ‘+’, ‘×’, and Fix:

Const ⊇ {Int :: ?; 1 :: ?; (×) :: ? → ? → ?; (+) :: ? → ? → ?}
∪{FixT :: (T → T) → T |T ∈ Kind}:

As usual, we write binary type constants in)x. We assume that ‘×’ and ‘+’ associate to
the right and that ‘×’ binds more tightly than ‘+’. The set of type constants includes a
family of )xed point operators indexed by kind: Fix? corresponds to Fix and Fix? → ?

to HFix introduced in Section 2. We use ‘0’ as an abbreviation for Fix? Id . In the
examples, we will often omit the kind annotation in FixT.

A context is a )nite set of kind assumptions of the form A :: T. It is convenient to
view a context � as a )nite map from type variables to kinds and write dom(�) for
its domain. Likewise, we view Const as a )nite map from type constants to kinds. A
pseudo-type term T is called a type term if there is a context � and a kind T such
that � �T :: T is derivable using the rules depicted in Fig. 1.

The equational proof system of the simply typed lambda calculus is given by the
rules in Fig. 2. If E is a possibly empty set of equations between type terms, we write
� �E T1 =T2 ::T to mean that the type equation T1 =T2 is provable using the rules and
the equations in E.

The equational proof rules identify a recursive type FixT T and its unfolding
T (FixT T ). In general, there are two varieties of recursive types: equi-recursive
types and iso-recursive types, see [8]. In the latter system FixT T and T (FixT T )
must only be isomorphic rather than equal. The development in this paper is largely
independent of this design choice. We use equi-recursive types because they simplify
the presentation somewhat.
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3.2. Modelling data declarations

Using the simply typed lambda calculus as a type language we can easily translate
data type declarations into type terms. For instance, the type B de)ned by the schematic
data declaration in the beginning of Section 3 is modelled by (we tacitly assume that
the kinds of the type variables have been inferred)

Fix (�B :�A1 : : : Am : (T11 × · · · × T1m1 ) + · · · + (Tn1 × · · · × Tnmn));

where T1 × · · · ×Tk = 1 for k = 0. For simplicity, n-ary sums are reduced to binary
sums and n-ary products to binary products. For instance, the data declaration

data List A = nil | cons A (List A)

is translated to

Fix (�List : �A : 1 + A× List A):

Interestingly, the representation of regular types such as List can be improved by
applying a technique called lambda-dropping [6]: if Fix (�F :�A : T ) is regular, then
it is equivalent to �A :Fix (�B : T [F A :=B]) where T [T1 :=T2] denotes the type term,
in which all occurrences of T1 are replaced by T2. For instance, the �-dropped version
of Fix (�List : �A : 1+A×List A) is �A :Fix (�B : 1+A×B). The �-dropped version
employs the )xed point operator at kind ? whereas the �-lifted version employs the
)xed point operator at kind ?→?. Nested types such as Sequ are not amenable to this
transformation since the type argument of the nested type is changed in the recursive
call(s). As an aside, note that the �-dropped and the �-lifted version correspond to two
diDerent methods of modelling parameterized types: families of )rst-order )xed points
versus higher-order )xed points, see, for instance, [5].

3.3. Environment models

This section is concerned with the denotational semantics of the simply typed lambda
calculus. There are two general frameworks for describing the semantics: environment
models and models based on cartesian closed categories. We will use environment
models for the presentation since they are somewhat easier to understand.

The de)nition of the semantics proceeds in three steps. First, we introduce so-called
applicative structures, and then we de)ne two conditions that an applicative structure
must satisfy to qualify as a model.

De!nition 1. An applicative structure E is a tuple (E; app; const) such that

• E= (ET |T∈Kind) is a family of sets,
• app= (appT;U : ET → U → (ET → EU) |T;U∈Kind) is a family of maps, and
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• const :Const→ E is a mapping from type constants to values such that const(C)∈
EConst(C) for every C ∈ dom(Const).

The )rst condition on models requires that equality between elements of function
kinds is standard equality on functions.

De!nition 2. An applicative structure E = (E; app; const) is extensional, if ∀�1; �2 ∈
ET → U : (∀�∈ ET : app �1 �= app �2 �) ⊃ �1 =�2.

A simple example for an applicative structure is the set of type terms itself: Let
H be an in)nite context that provides in)nitely many type variables of each kind.
An extensional applicative structure (Type; app; const) may then be de)ned by letting
TypeT = {T |� � T ::T for some )nite �⊆H }, app T U = (T U ), and const(C) =C.

The second condition on models ensures that the applicative structure has enough
points so that every type term containing type abstractions can be assigned a meaning
in the structure. To formulate the condition we require the notion of an environment.
An environment � is a map from type variables to values. If � is a context, then we
say � satis)es � if �(A)∈ E�(A) for every A∈ dom(�). If � is an environment, then
�(A := �) is the environment mapping A to � and B to �(B) for B diDerent from A.

De!nition 3. An applicative structure E= (E; app; const) is an environment model if
it is extensional and if the clauses below de)ne a total meaning function on terms
� �T :: T and environments such that � satis)es �.

E <� � C :: Const(C)=� = const(C)

E <� � A :: �(A)=� = �(A)

E <� � (�A :: U : T ) :: (U → T)=�

= the unique � ∈ EU → T such that for all � ∈ EU

appU;T � � = E<�; A :: U � T :: T=�(A := �)

E<� � (T U ) :: T=� = appU;T (E <� � T :: (U → T) =�) (E <� � U :: U =�)

Note that extensionality guarantees the uniqueness of the element � whose existence
is postulated in the third clause.

The set of type terms can be turned into an environment model if we identify
type terms that are provably equal: Let E be a possibly empty set of equations be-
tween type terms. De)ne the equivalence class [T ] = {T ′ |� �E T =T ′ :: T for some
)nite �⊆H } and let TypeT=E= { [T ] |T ∈TypeT}, (app=E) [T ] [U ] = [T U ], and
(const=E) (C) = [C]. Then (Type=E; app=E; const=E) is an environment model.

The environment model condition is often diIcult to check. An equivalent, but
simpler condition is the combinatory model condition.

De!nition 4. An applicative structure E= (E; app; const) satis)es the combinatory
model condition if for all kinds T, U and V there exist elements KT;U ∈ ET → U → T
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and ST;U;V ∈ E(T → U → V) → (T→U) → T → V such that

app (app K X ) Y = X

app (app (app S X ) Y ) Z = app (app X Z) (app Y Z)

for all X; Y and Z of the appropriate kinds.

3.4. Logical relations

Logical relations are an important tool in the study of typed lambda calculi. We will
use them extensively in Section 8 to prove properties of polytypic values.

In presenting logical relations we restrict ourselves to the binary case. The extension
to the n-ary case is, however, entirely straightforward.

De!nition 5. Let E1 and E2 be applicative structures. A logical relation R= (RT |T∈
Kind) over E1 and E2 is a family of relations such that

• RT ⊆ ET
1 × ET

2 for each kind T,
• (const1(C); const2(C))∈RConst(C) for every type constant C ∈ dom(Const),
• RT → U is closed under type application and type abstraction:

(�1; �2) ∈ RT → U

≡ ∀�1 ∈ ET
1 ; �2 ∈ ET

2 :

(�1; �2) ∈ RT ⊃ (app1 �1 �1;app2 �2 �2) ∈ RU .

Usually, a logical relation is de)ned on the kind constant ? only; the third clause
of the de)nition then shows how to extend the relation to functional kinds.

Now, say, we are given two models of the simply typed lambda calculus. Then
Lemma 1 below shows that the meaning of a type term in one model is logically
related to its meaning in the other model. This lemma is sometimes called the Basic
Lemma of logical relations.

Lemma 1. Let E1 and E2 be two environment models and let R be a logical relation
over E1 and E2. Then

(E1<� � T :: T=�1;E2<� � T :: T=�2) ∈ RT;

for all environments �1 and �2, satisfying �, such that (�1(A); �2(A))∈R�(A) for all
A∈ dom(�).

4. The polymorphic lambda calculus

We have seen in the introduction that instances of map require )rst-class polymor-
phism in general. For instance, mapSequF takes a polymorphic argument to a poly-
morphic result. To make the use of polymorphism explicit we will use a variant of
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� � R :: ? � � S :: ?

� � (R → S) :: ?
(T-FUN)

�; A :: U � S :: ?

� � (∀A :: U : S) :: ?
(T-ALL)

Fig. 3. Additional kinding rules for type schemes.

the polymorphic lambda calculus [9] both for de)ning and for specializing polytypic
values. This section provides a brief introduction to the calculus. As an aside, note
that a similar language is also used as the internal language of the Glasgow Haskell
Compiler [32].
Syntactic categories: The polymorphic lambda calculus has a three-level structure

(kinds, type schemes, and terms) incorporating the simply typed lambda calculus on
the type level.

type schemes R; S ∈ Scheme

individual constants c; d ∈ const

individual variables a; b ∈ var

terms t; u ∈ term

We use lower-case Roman letters for terms.
Type schemes: Pseudo-type schemes are formed according to the following grammar.

R; S ∈ Scheme ::= T type term

| (R→ S) functional type

| (∀A :: U : S) polymorphic type

A pseudo-type scheme S is called a type scheme if there is a context � and a kind T
such that � � S :: T is derivable using the rules listed in Figs. 1 and 3.
Terms: Pseudo-terms are given by the grammar

t; u ∈ term ::= c constant

| a variable

| (�a :: S : t) abstraction

| (t u) application

| (�A :: U : t) universal abstraction

| (t R) universal application:

Here, �A :: U : t denotes universal abstraction (forming a polymorphic value) and t R
denotes universal application (instantiating a polymorphic value). Note that we use the
same syntax for value abstraction �a :: S : t (here a is a value variable) and universal
abstraction �A ::U : t (here A is a type variable). We assume that the set const of value
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� � c :: const(c)
(VAR)

� � a :: �(a)
(CONST)

�; a :: S � t :: R
� � (�a :: S : t) :: (S → R)

(→ -INTRO)

� � t :: (S → R) � � u :: S

� � (t u) :: R
(→ -ELIM)

�; A :: U � t :: S
� � (�A :: U : t) :: (∀A :: U : S)

(∀-INTRO)

� � t :: (∀A :: U : S) � � R :: U

� � (t R) :: S[A := R]
(∀-ELIM)

� � t :: R � � R = S :: ?

� � t :: S
(CONV)

Fig. 4. Typing rules.

constants includes at least the polymorphic )xed point operator

8x :: ∀A : (A→ A) → A

and suitable functions for each of the other type constants C in dom(Const) (such
as () for ‘1’, inl, inr, and case for ‘+’, and outl, outr, and (–,–) for ‘×’). We use
⊥ :: ∀A : A as an abbreviation for �A : 8x A id . To improve readability we will usually
omit the type argument of 8x and ⊥.

To give the typing rules we have to extend the notion of context. A context is a
)nite set of kind assumptions A :: T and type assumptions a :: S. We say a context �
is closed if � is either empty, or if � =�1; A :: T with �1 closed, or if � =�1; a :: S
with �1 closed and free(S)⊆ dom(�). In the following we assume that contexts are
closed. This restriction is necessary to prevent non-sensible terms such as �A :: ? : a ::A
where the value variable a carries the type variable A out of scope. A pseudo-term t
is called a term if there is some context � and some type scheme S such that � � t ::S
is derivable using the typing rules depicted in Fig. 4. Note that rule (CONV) allows us
to interchange provably equal types.

The equational proof system of the polymorphic lambda calculus is given by the rules
in Fig. 5. When we discuss the specialization of polytypic values we will
consider type schemes and terms modulo provable equality. Let H be an in)nite
context that provides type variables of each kind and variables of each type scheme
and let E be a set of equations between type schemes and=or between terms. Analo-
gous to TypeT, [T ] and TypeT=E we de)ne SchemeT = { S |� � S :: T for some )nite
�⊆H }, the equivalence class [S] = { S ′ |� �E S = S ′ :: T for some )nite �⊆H },
SchemeT=E= {[S] | S ∈SchemeT}, and TermS = { t |� � t ::S for some )nite �⊆H },
[t] = { t′ |� �E t = t′ ::S for some )nite �⊆H }, and TermS=E= {[t] | t ∈TermS}. Note
that [S1] = [S2] implies TermS1 =TermS2 because of rule (CONV). The set E of equations
might include, for instance, t =⊥ :: 0 to formalize that the type ‘0’ contains only a
single element.
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� � (�a :: S : t) u = t[a := u] :: R
(�)

a not free in t
� � �a :: S : t a = t :: (S → R)

(�)

� � (�A :: U : t) R = t[A := R] :: S[A := R]
(�)∀

A not free in t
� � �A :: U : t A = t :: (∀A :: U : S)

(�)∀

� � 8x R f = f (8x R f) :: R
(FIX)

Fig. 5. Equational proof rules (the usual ‘logical’ rules for re0exivity, symmetry, transitivity, and congruence
are omitted).

5. De!ning polytypic values

Let us now extend the polymorphic lambda calculus by polytypic de)nitions.
The de)nition of a polytypic value consists of two parts: a type signature, which

typically involves a polykinded type, and a set of equations, one for each type constant.
Likewise, the de)nition of a polykinded type consists of two parts: a kind signature and
one equation for kind ?. Interestingly, the equation for functional kinds need not be
explicitly speci)ed. It is inevitable because of the way type constructors of kind T→U
are specialized. We will return to this point in Section 6. In general, a polykinded type
de)nition has the following schematic form.

PolyT :: :: T → : : : → T → ?

Poly? = �X1 : : : Xn : : : :

PolyA → B = �X1 : : : Xn :∀A1 : : : An :PolyA A1 : : : An

→ PolyB (X1 A1) : : : (Xn An)

The kind signature makes precise that the kind-indexed type PolyT :: maps n types
of kind T to a manifest type (for MapT :: we had n= 2). The polytypic programmer
merely has to )ll out the right-hand side of the )rst equation.

Given the polykinded type a polytypic value de)nition takes on the following
schematic form.

polyT :: T :: PolyT T : : : T

poly1 = : : :

polyInt = : : :

poly+ = �A1 : : : An : �polyA :: (Poly? A1 : : : An) :

�B1 : : : Bn : �polyB :: (Poly? B1 : : : Bn) : : : :

poly× = �A1 : : : An : �polyA :: (Poly? A1 : : : An) :

�B1 : : : Bn : �polyB :: (Poly? B1 : : : Bn) : : : :
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Again, the polytypic programmer has to )ll out the right-hand sides. To be well-typed,
the polyC instances must have type PolyConst (C) C : : : C as stated in the type signature.

Using the syntax of the polymorphic lambda calculus the de)nition of the polytypic
mapping function takes on the following form.

MapT :: :: T → T → ?

Map? = �X1 X2 : X1 → X2

MapA → B = �X1 X2 :∀A1 A2 :MapA A1 A2 →MapB (X1 A1) (X2 A2)

map1 = �u :: 1 : u

mapInt = �i :: Int : i

map+ = �A1 A2 : �mapA :: (A1 → A2) : �B1 B2 : �mapB :: (B1 → B2) :

�s :: (A1 + B1) : case s of {inl a⇒ inl (mapA a);

inr b⇒ inr (mapB b)}
map× = �A1 A2 : �mapA :: (A1 → A2) : �B1 B2 : �mapB :: (B1 → B2) :

�p :: (A1 × B1) : (mapA (outl p);mapB (outr p))

6. Specializing polytypic values

This section is concerned with the specialization of polytypic values to concrete in-
stances of data types. We have seen in Section 2 that the structure of each instance of
mapT rigidly follows the structure of T . Perhaps surprisingly, the intimate correspon-
dence between the type and the value level holds not only for map but for all polytypic
values. In fact, the process of specialization can be phrased as an interpretation of the
simply typed lambda calculus. The polytypic programmer speci)es the interpretation of
type constants. Given this information the meaning of a type term—that is, the special-
ization of a polytypic value—is )xed: roughly speaking, type application is interpreted
by value application, type abstraction by value abstraction, and type recursion by value
recursion.

Before we discuss the formal de)nitions let us take a look at an example )rst. Con-
sider specializing map for the type Matrix given by �A :List (List A). The instance
mapMatrix is given by

mapMatrix :: ∀A1 A2 : (A1 → A2) → (Matrix A1 →Matrix A2)

mapMatrix = �A1A2 : �mapA :: (A1 → A2) :mapList (List A1) (List A2)

(mapList A1 A2 mapA):

The specialization of the type application List A is given by the lambda term mapList A1

A2 mapA, which is a combination of universal application and value application. Thus,
if we aim at phrasing the specialization of map as a model of the simply typed lambda
calculus we must administer both the actual instance of map and its type. This ob-
servation suggests to represent instances as triples (S1; S2;mapS) where S1 and S2 are
type schemes of some kind, say, T and mapS is a value term of type MapT S1 S2. Of
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course, we have to work with equivalence classes of type schemes and terms. Let E
be a set of equations specifying identities between type schemes and=or between terms.
The applicative structure M= (M; app; const) is then given by

MT = ([S1]; [S2] ∈ SchemeT=E;TermMapT S1 S2 =E)

appT;U ([R1]; [R2]; [t]) ([S1]; [S2]; [u])

= ([R1 S1]; [R2 S2]; [t S1 S2 u])

const(C) = ([C]; [C]; [mapC]):

Note that the semantic application function app uses both the type and the value
component of its second argument. It is not hard to see that the result term t S1 S2 u
is well-typed: t has type ∀A1 A2 :MapT A1 A2 → MapU (R1 A1) (R2 A2), S1 and S2

have kind T, and u has type MapT S1 S2. It is important to note that the de)nition of
MapT → U and app go hand in hand. This explains, in particular, why the de)nition
of PolyT → U is )xed for functional kinds.

Now, does M also constitute a model? To this end we have to show that M is
extensional and that is satis)es the combinatorial model condition. The )rst condition
is easy to check. To establish the second condition we de)ne combinators (omitting
type and kind annotations)

KT;U = ([KT;U]; [KT;U]; [�A1 A2 : �mapA : �B1 B2 : �mapB :mapA])

ST;U;V = ([ST;U;V]; [ST;U;V];

[�A1 A2 : �mapA : �B1 B2 : �mapB : �C1 C2 : �mapC :

(mapA C1 C2 mapC) (B1 C1) (B2 C2) (mapB C1 C2 mapC)])

where K and S are given by

KT;U = �A :: T : �B :: U : A

ST;U;V = �A :: (T → U → V) : �B :: (T → U) : �C :: T : (A C) (B C):

It is straightforward to prove that the combinatory laws are indeed satis)ed.
It remains to provide interpretations for the )xed point operators FixT. The de)nition

is essentially the same for all polytypic values. This is why the polytypic programmer
need not supply instances for FixT by hand. Here is the de)nition of mapFixT

.

mapFixT
= �F1 F2 : �mapF :: (MapT→T F1 F2) :

8x (mapF (FixT F1) (FixT F2))

Note that mapFixT
essentially equals 8x—if we ignore type abstractions and type

applications for a moment. Let us brie0y check that the de)nition of mapFixT
is well-

typed. The universal application mapF (FixT F1) (FixT F2) has type MapT (FixT

F1) (FixT F2) →MapT (F1 (FixT F1)) (F2 (FixT F2)). Since FixT Fi =Fi (FixT Fi),
we can use rule (CONV) to infer the type MapT (FixT F1) (FixT F2)→MapT (FixT F1)
(FixT F2). Consequently, 8x (mapF (FixT F1) (FixT F2)) has type MapT (FixT F1)
(FixT F2) as desired.
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Now, let us turn to the general case. The de)nitions for arbitrary polytypic values are
very similar to the ones for map. The applicative structure P= (P; app; const) induced
by the polytypic value polyT :: T :: PolyT T : : : T is given by

PT = ([S1]; : : : ; [Sn] ∈ SchemeT=E;TermPolyT S1 : : : Sn =E)

appT;U ([R1]; : : : ; [Rn]; [t]) ([S1]; : : : ; [Sn]; [u])

= ([R1 S1]; : : : ; [Rn Sn]; [t S1 : : : Sn u])

const(C) = ([C]; : : : ; [C]; [polyC])

where polyFixT
is de)ned

polyFixT
= �F1 : : : Fn : �polyF :: (PolyT→T F1 : : : Fn) :

8x (polyF (FixT F1) : : : (FixT Fn)):

Three remarks are in order. First, the value domain PT is a so-called dependent prod-
uct: the type of the last component depends on the )rst n components. A similar
structure has also been used to give a semantics to Standard ML’s module
system, see [28]. Second, if T is a closed type term, then P <∅ �T :: T =� is of the
form ([T ]; : : : ; [T ]; [polyT ]) where polyT is the desired instance. As an aside, note that
this is in agreement with poly’s type signature polyT :: T ::PolyT T : : : T . Third, a poly-
typic value can be specialized to a type but not to a type scheme. This restriction is,
however, quite mild. Haskell, for instance, does not allow universal quanti)ers in data
declarations.

Let us conclude the section by noting a trivial consequence of the specialization.
Since the structure of types is re0ected on the value level, we have

poly�A : F (G A) = �A1 : : : An : �polyA :

polyF (G A1) : : : (G An) (polyG A1 : : : An polyA):

Writing type and function composition as usual this implies, in particular, that mapF·G =
mapF ·mapG. Perhaps surprisingly, this relationship holds for all polytypic values, not
only for mapping functions. A similar observation is that poly�A : A = �A : �polyA : polyA
for all polytypic values. Abbreviating �A : A by Id we have, in particular, that mapId
= id . As an aside, note that these polytypic identities are not to be confused with
the familiar functorial laws mapF id = id and mapF (’ ·  ) =mapF ’ · mapF  (see
Section 8.1), which are base-level identities.

7. Examples

This section presents further examples of polytypic values with polykinded types
(for reasons of readability we use again Haskell notation).



R. Hinze / Science of Computer Programming 43 (2002) 129–159 147

7.1. Polytypic equality

The equality function equal serves as a typical example of a polytypic value. The
polykinded equality type is fairly straightforward: for a manifest type equalT has type
T → T → Bool, which determines the following de)nition.

EqualT :: :: T → ?

Equal? X = X → X → Bool

EqualA → B X = ∀A :EqualA A → EqualB (X A):

For ease of reference we will always list the equation for functional kinds even though
it is fully determined by the theory. Assuming that a suitable equality function for Int
is available, the polytypic equality function can be de)ned as follows.

equalT :: T :: EqualT T

equal1 u1 u2 = true

equalInt i1 i2 = equalInt i1 i2
equal+ equalA equalB (inl a1) (inl a2) = equalA a1 a2

equal+ equalA equalB (inl a1) (inr b2) = false

equal+ equalA equalB (inr b1) (inl a2) = false

equal+ equalA equalB (inr b1) (inr b2) = equalB b1 b2

equal× equalA equalB (a1; b1) (a2; b2) = equalA a1 a2 ∧ equalB b1 b2

Now, since equal has a kind-indexed type we can also specialize it for, say, unary
type constructors.

equalF :: ? → ? :: ∀A : (A→ A → Bool) → (F A→ F A→ Bool)

This gives us an extra degree of 0exibility: equalF op x1 x2 checks whether correspond-
ing elements in x1 and x2 are related by op. Of course, op need not be an equality
operator. PolyLib [17] de)nes an analogous function but with a more general type:

pequalF :: ? → ? :: ∀A1 A2 : (A1 → A2 → Bool) → (F A1 → F A2 → Bool):

Here, the element types need not be identical. And, in fact, equalT :: T can be assigned
the more general type PEqualT T T given by

PEqualT :: :: T → T → ?

PEqual? X1 X2 = X1 → X2 → Bool

PEqualA → B X1 X2 = ∀A1 A2 :PEqualA A1 A2 → PEqualB (X1 A1) (X2 A2);

which gives us an even greater degree of 0exibility.
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7.2. Mapping and zipping functions

In Section 2 we have seen how to de)ne mapping functions for types of arbitrary
kinds. Interestingly, the polytypic map subsumes so-called higher-order maps. A higher-
order functor operates on a functor category, which has as objects functors and as
arrows natural transformations. In Haskell we can model natural transformations by
polymorphic functions.

type F1
·→ F2 = ∀A : F1 A→ F2 A:

A natural transformation between functors F1 and F2 is simply a polymorphic func-
tion of type F1

·→ F2. A higher-order functor H then consists of a type constructor
of kind (? → ?) → (? → ?), such as SequF , and an associated mapping function of
type (F1

·→ F2) → (H F1
·→ H F2). Now, the polytypic map gives us a function of

type

mapH :: ∀F1 F2 : (∀B1 B2 : (B1 → B2) → (F1 B1 → F2 B2))

→ (∀A1 A2 : (A1 → A2) → (H F1 A1 → H F2 A2)):

Given a natural transformation � of type F1
·→ F2 there are basically two alternatives

for constructing the required function of type ∀B1 B2 : (B1 → B2) → (F1 B1 → F2 B2):
�h : � · mapF1

h or �h :mapF2
h · �. The naturality of �, however, implies that both

alternatives are equal. Consequently, the higher-order map is given by

hmapH :: (? → ?) → ? → ? :: ∀F1 F2 : (F1
·→ F2) → (H F1

·→ H F2)

hmapH (� :: F1
·→ F2) = mapH (�h : � ·mapF1

h) id :

Using polytypic de)nitions similar to the one in Section 2 we can also implement
embedding-projection maps [14] of type MapE? X1 X2 = (X1 → X2; X2 → X1), monadic
maps [7,25] of type MapM? X1 X2 =X1 →M X2 for some monad M , and arrow maps
[18] of type MapA? X1 X2 =X1 ❀X2 for some arrow type (❀).

Closely related to mapping functions are zipping functions. A binary zipping function
takes two structures of the same shape and combines them into a single structure. For
instance, the list zip takes a function of type A1 → A2 → A3, two lists of type List A1

and List A2 and applies the function to corresponding elements producing a list of
type List A3. The type of the polytypic zip is essentially a three parameter variant
of Map.

ZipT :: :: T → T → T → ?

Zip? X1 X2 X3 = X1 → X2 → X3

ZipA → B X1 X2 X3 = ∀A1 A2 A3 :ZipA A1 A2 A3

→ ZipB (X1 A1) (X2 A2) (X3 A3)
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The de)nition of zip is similar to that of equal.

zipT :: T :: ZipT T T T

zip1 () () = ()

zipInt i1 i2 = if equalInt i1 i2 then i1 else ⊥
zip+ zipA zipB (inl a1) (inl a2) = inl (zipA a1 a2)

zip+ zipA zipB (inl a1) (inr b2) = ⊥
zip+ zipA zipB (inr b1) (inl a2) = ⊥
zip+ zipA zipB (inr b1) (inr b2) = inr (zipB b1 b2)

zip× zipA zipB (a1; b1) (a2; b2) = (zipA a1 a2; zipB b1 b2)

Note that the result of zip is a partial structure if the two arguments have not the same
shape. Alternatively, one can de)ne a zipping function of type Zip? X1 X2 X3 =X1→X2

→Maybe X3, which uses the exception monad Maybe to signal incompatibility of the
argument structures, see [11].

7.3. Reductions

A reduction or a crush [23] is a polytypic function that collapses a structure of
values of type X into a single value of type X . This section explains how to de)ne
reductions that work for all types of all kinds. To illustrate the main idea let us start
with three motivating examples. The )rst one is a function that counts the number of
values of type Int within a given structure of some type.

Here is the type of the polytypic counter

CountT :: :: T → ?

Count? X = X → Int

CountA → B X = ∀A :CountA A → CountB (X A)

and here is its de)nition.

countT :: T :: CountT T

count1 u = 0

countInt i = 1

count+ countA countB (inl a) = countA a

count+ countA countB (inr b) = countB b

count× countA countB (a; b) = countA a + countB b:
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Next, let us consider a slight variation: the function sizeT de)ned below is identical to
countT except for T =Int, in which case size also returns 0.

sizeT :: T :: CountT T

size1 u = 0

sizeInt i = 0

size+ sizeA sizeB (inl a) = sizeA a

size+ sizeA sizeB (inr b) = sizeB b

size× sizeA sizeB (a; b) = sizeA a + sizeB b:

It is not hard to see that sizeT t returns 0 for all types T of kind ? (provided t is
)nite and fully de)ned). So one might be led to conclude that size is not a very useful
function. This conclusion is, however, too rash since size can also be parameterized
by type constructors. For instance, for unary type constructors size has type

sizeF :: ? → ? :: ∀A : (A → Int) → (F A→ Int)

Now, if we pass the identity function to size, we obtain a function that sums up a
structure of integers. Another viable choice is const 1; this yields a function of type
∀A : F A→ Int that counts the number of values of type X in a given structure of type
F X .

fsumF :: ? → ? :: F Int→ Int

fsumF = sizeF id

fsizeF :: ? → ? :: ∀A : F A→ Int

fsizeF = sizeF (const 1)

Using a similar approach we can also 0atten a structure into a list of elements. The
type of the polytypic 0attening function

FlattenZT :: :: T → ?

FlattenZ? X = X → [Z]

FlattenZA → B X = ∀A :FlattenZA A → FlattenZB (X A)

makes use of a simple extension: FlattenZT takes an additional type parameter, Z , that
is passed unchanged to the base case. One can safely think of Z as a type parameter
that is global to the de)nition. The code for <atten is similar to the code for size.

<attenT :: T :: ∀Z :FlattenZT T

<atten1 () = [ ]

<attenInt i = [ ]

<atten+ <attenA <attenB (inl a) = <attenA a

<atten+ <attenA <attenB (inr b) = <attenB b

<atten× <attenA <attenB (a; b) = <attenA a ++ <attenB b
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The function (++) :: ∀A :List A → List A → List A used in the last equation concate-
nates two lists. As before, <atten is pointless for types but useful for type constructors.

=attenF :: ? → ? :: ∀A : F A→ List A

=attenF = <attenF wrap where wrap a = cons a nil

The de)nitions of size and <atten exhibit a common pattern: the elements of a base
type are replaced by a constant (0 and nil, respectively) and the pair constructor is
replaced by a binary operator ((+) and (++), respectively). The polytypic function
reduce abstracts away from these particularities.

ReduceZT :: :: T → ?

ReduceZ? X = X → Z

ReduceZA → B X = ∀A :ReduceZA A→ ReduceZB (X A)

reduceT :: T :: ∀Z : Z → (Z → Z → Z) → ReduceZT T

reduceT e op = redT

where

redT :: T :: ReduceZT T

red1 () = e

redInt i = e

red+ redA redB (inl a) = redA a

red+ redA redB (inr b) = redB b

red× redA redB (a; b) = op (redA a) (redB b)

Note that we can de)ne the helper function red even more succinctly using a point-free
style.

red1 = const e

redInt = const e

red+ redA redB = redAOredB

red× redA redB = uncurry op · (redA×redB)

Here, (O) is the so-called junction operator [2]. The type of reduceF where F is a
unary type constructor is quite general.

reduceF :: ? → ? :: ∀Z : Z → (Z → Z → Z) → (∀A : (A→ Z) → (F A→ Z))

Fig. 6 lists some typical applications of reduceF and reduceG where G is a binary type
constructor. Further examples can be found, for instance, in [23] and [17].

8. Properties of polytypic values

This section investigates another important aspect of polytypism: polytypic reasoning.
If you want to prove a property of a polytypic value, you have to reason polytypically.
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fsumF ::? → ? :: ∀N : (Num N ) ⇒ F N → N

fsumF = reduceF 0 (+) id

fsizeF ::? → ? :: ∀A : (Num N ) ⇒ F A → N

fsizeF = reduceF 0 (+) (const 1)

fandF ::? → ? :: F Bool → Bool

fandF = reduceF true (∧) id

fallF ::? → ? :: ∀A : (A → Bool) → (F A → Bool)

fallF p = reduceF true (∧) p

=attenF ::? → ? :: ∀A : F A → [ A ]

=attenF = reduceF [ ] (++) wrap

bi<attenG::? → ? → ? :: ∀A B : G A B → [ A + B ]

bi<attenG = reduceG [ ] (++) (wrap · inl) (wrap · inr)
data Shape A = empty | var A | bin (Shape A) (Shape A)

shapeF ::? → ? :: ∀A : F A → Tree A

shapeF = reduceF empty bin var

Fig. 6. Examples of reductions.

Like the program the proof will be parametric in the underlying data type. This section
introduces a fundamental polytypic proof method based on logical relations. The section
is structured as follows. Section 8.1 shows how to generalize the functorial laws to
data types of arbitrary kinds and sketches the proof of correctness. Section 8.2 explains
how to deal with )xed point operators in a generic way. Further examples of polytypic
proofs are provided in Section 8.3.

8.1. Functorial laws

To classify as a functor the mapping function of a unary type constructor must
satisfy the so-called functorial laws (for reasons of readability we switch again to
Haskell syntax):

mapF id = id

mapF (’ ·  ) = mapF ’ ·mapF  ;

that is, mapF preserves identity and composition. If the type constructor is binary, the
functor laws take the form

mapG id id = id

mapG (’1 ·  1) (’2 ·  2) = mapG ’1 ’2 ·mapG  1  2:

How can we generalize these laws to data types of arbitrary kinds? Since mapT has a
kind-indexed type, it is reasonable to expect that the functorial properties are indexed
by kinds, as well. So, what form do the laws take if the type index is a manifest type,
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say, T? In this case mapT does not preserve identity; it is the identity.

mapT = id

mapT = mapT ·mapT

The pendant of the second law states that mapT is idempotent (which is a simple
consequence of the )rst law). These ‘base cases’ suggest to rephrase the functorial
laws as logical relations. Let M be the model induced by map. The polytypic version
of the )rst functorial law then states that M<T :: T=∈IT for all closed type terms T ,
where the unary logical relation I is given by (we write [t] simply as t)

IT ⊆ MT

(D; R;m) ∈ I? ≡ D = R ∩ m = id :: D → R:

Similarly, the polytypic version of the second functorial law expresses that (M<T :: T=;
M<T ::T=;M<T ::T=)∈CT for all closed type terms T , where the ternary logical relation
C is given by

CT ⊆ MT ×MT ×MT

((D1; R1;m1); (D2; R2;m2); (D3; R3;m3)) ∈ C?

≡ R1 = D2 ∩ D3 = D1 ∩ R3=R2 ∩ m2 · m1 = m3 :: D3 → R3:

The reader should convince herself that the monotypic functorial laws are indeed
instances of the polytypic laws.

Turning to the proof of the polytypic laws we must show that the logical relations I
and C relate type constants, that is, constM(C)∈IConst(C) and (constM(C); constM
(C); constM(C))∈CConst(C). It is straightforward to establish these conditions for the
type constants ‘1’, Int, ‘+’, and ‘×’ as the properties are either trivial or follow directly
from the functorial laws of ‘+’ and ‘×’. It remains to verify the conditions for the
)xed point operators. Recall that the specialization of the )xed point operator FixT is
the same for all polytypic values. This suggests that we ought to be able to construct a
generic proof that is independent of a particular logical relation. That is what we turn
our attention to now.

8.2. Fixed point operators

The usual approach is to impose two further conditions on logical relations: they
must be pointed and directed complete. 1 Then one can invoke )xed point induction
(also known as Scott induction) to show that )xed point operators are logically related.
However, one quickly realizes that the ordinary )xed point induction rule is not suf-
)cient for this purpose. Consider proving constM(FixT)∈IT: under the precondition
that mapT = id ⊃ mapF T T mapT = id for all mapT :: T → T we have to show that
8x (mapF (Fix F) (Fix F)) = id for all mapF :: ∀A1 A2 : (A1 → A2) → (F A1 → F A2).
Now, note that )xed points are formed both on the term and on the type level whereas
the standard )xed point induction rule deals with the term level only.

1 A relation R is pointed if ⊥∈R; it is directed complete if S ⊆R⊃⊔
S ∈R for every directed set S.
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A way out of this dilemma is to postulate the following variant of the )xed point
induction rule, which we call polytypic )xed point induction rule for want of a better
name. Let P be an equation or a conjunction of equations, then

� � P[A1 := 0; : : : ; An:=0; a :=⊥]

�; P[A1 :=C1; : : : ; An:=Cn; a := c] �
P[A1 :=F1 C1; : : : ; An :=Fn Cn; a :=f C1 : : : Cn c]

� � P[A1 = Fix F1; : : : ; An :=Fix Fn; a := 8x (f (Fix F1) : : : (Fix Fn))]

The )rst hypothesis formalizes that P is pointed. Note that in the second hypothesis
the type constants C1; : : : ; Cn and the term constant c must not appear in �. This is a
way of expressing universal quanti)cation in our equational setting. Given this rule it
is not hard to show that an arbitrary unary logical relation relates )xed points provided
the relation is pointed, that is, (0; : : : ; 0;⊥)∈R?. For k-ary logical relation we require
a k-argument generalization of the above rule.

Two remarks are in order. First, though the polytypic )xed point induction rule may
look unusual, it is, in fact, a special instance of the rule for simultaneous )xed points
(if we treat types and terms alike, see below). To highlight this connection consider
solving the recursion equations a1 =f1 a1; : : : ; an =fn an; a=f a1 : : : an a. Since the
a1; : : : ; an do not depend on each other or on a, we can solve the equations using
iterated )xed points: a1 = 8x f1; : : : ; an = 8x fn; a= 8x (f (8x f1) : : : (8x fn)). Now,
this is exactly the form used in the conclusion of the rule above.

Second, if we want to provide a model for our variant of the polymorphic lambda
calculus, then the model must, of course, satisfy the postulated polytypic )xed point
induction rule. Suitable models are, for instance, models based on universal domains
such as P!, see [1,27]. These models allow to interpret types as certain elements
(closures or )nitary projections) of the universal domain, so that type recursion can be
interpreted by the (untyped) least )xed point operator. Then the polytypic )xed point
induction rule is, in fact, a variant of the rule for simultaneous )xed points.

8.3. Examples

8.3.1. Mapping functions
The functorial laws are captured by the logical relations I and C, which we have

discussed at length in Section 8.1.

IT ⊆ MT

(D; R;m) ∈ I? ≡ D = R ∩ m = id :: D → R:

CT ⊆ MT ×MT ×MT

((D1; R1;m1); (D2; R2;m2); (D3; R3;m3)) ∈ C?

≡ R1 = D2 ∩ D3 = D1 ∩ R3=R2 ∩ m2 · m1 = m3 :: D3 → R3:
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It remains to show that I and C are pointed, that is, ⊥ = id :: 0→0 and ⊥ ·⊥ = ⊥ ::
0 → 0. The second equation is trivially true and the )rst is a simple consequence of
t =⊥ :: 0.

8.3.2. Reductions
Using a minor variant of C we can also relate reductions and mapping functions. Let

RZ be the applicative structure induced by reduce. Like the poly-kinded type ReduceZT
the structure is parameterized by the result type of reduce. The ternary logical relation
FZ is de)ned

FT
Z ⊆ RT

Z ×MT × RT
Z

((T ; r); (D; R;m); (U ; s)) ∈ F?
Z

≡ D = U ∩ R=T ∩ r · m = s :: U → Z:

Now, given an element e :: Z and an operation op :: Z → Z → Z , we have

(RZ; e;op <T :: T =;M <T :: T =;RZ; e;op<T :: T=) ∈ FT
Z :

Note that the interpretation is additionally parameterized by the element e and the
operation op. An immediate consequence of this property is

reduceF e op ’ ·mapF  = reduceF e op (’ ·  );

which shows how to fuse a reduction with a map. Now, in order to prove the polytypic
property we merely have to verify that the statement holds for every type constant
C ∈ dom(Const). Using the point-free de)nitions of map and red this amounts to
showing that

const e · id = const e

(’1O’2) · ( 1 +  2) = (’1 ·  1)O(’2 ·  2)

uncurry op · (’1 × ’2) · ( 1 ×  2) = uncurry op · ((’1 ·  1) × (’2 ·  2)):

All three conditions hold.
Previous approaches to polytypic programming [16,11] required the programmer

to specify the action of a polytypic function for the composition of two type con-
structors: for instance, for fsize the polytypic programmer had to supply the equation
fsizeF1·F2

= fsumF1
·mapF1

(fsizeF2
). Interestingly, using reduce-map fusion this equation

can be derived from the de)nitions of fsize and fsum given in Fig. 6.

fsizeF1·F2

= { de)nition fsize }
reduceF1·F2 0 (+) (const 1)

= { polyF1·F2
= polyF1

· polyF2
}

reduceF1 0 (+) (reduceF2 0 (+) (const 1))

= { de)nition fsize }
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reduceF1 0 (+) (fsizeF2
)

= { reduce-map fusion }
reduceF1 0 (+) id ·mapF1

(fsizeF2
)

= { de)nition fsum }
fsumF1

·mapF1
(fsizeF2

)

As a )nal example let us generalize the fusion law for reductions given by Meertens
in [23]. To this end we use the logical relation VZ; Z′ ; h de)ned by

VT
Z; Z′ ;h ⊆ RT

Z × RT
Z′

((T ; r); (U ; s)) ∈ V?
Z;Z′ ;h ≡ T = U ∩ h · r = s :: U → Z ′:

where Z and Z ′ are )xed types and h ::Z→Z ′ is a )xed function. The polytypic fusion
law, which gives conditions for fusing the function h with a reduction, then takes the
following form (to ensure that VZ; Z′ ; h is pointed h must be strict)

h ⊥ = ⊥
∩ h e = e′

∩ h (op x y)=op′ (h x) (h y)

⊃ (RZ;e;op<T :: T=;RZ′ ;e′ ;op′ <T :: T=) ∈ VT
Z; Z′ ;h:

We can apply this law, for instance, to prove that length ·=attenF = fsizeF .

9. Related work

The idea to assign polykinded types to polytypic values is, to the best of the author’s
knowledge, original. Previous approaches to polytypic programming [16,12] were re-
stricted in that they only allowed to parameterize values by types of one )xed kind.
Three notable exceptions are Functorial ML (FML) [19], the work of Ruehr [33], and
the work of Hoogendijk and Backhouse [15]. FML allows to quantify over functor
arities in type schemes (since FML handles only regular, )rst-order functors, kinds can
be simpli)ed to arities). However, no formal account of this feature is given and the
informal description makes use of an in)nitary typing rule. Furthermore, the polytypic
de)nitions based on this extension are rather unwieldy from a notational point of view.
Ruehr also restricts type indices to types of one )xed kind. Additional 0exibility is,
however, gained through the use of a more expressive kind language, which incorpo-
rates kind variables. This extension is used to de)ne a higher-order map indexed by
types of kind (A→?)→?, where A is a kind variable. Clearly, this mapping function
is subsumed by the polytypic map given in Section 2. Whether kind polymorphism
has other bene)ts remains to be seen. Finally, de)nitions of polytypic values that are
indexed by relators of diDerent arities can be found in the work of Hoogendijk and
Backhouse on commuting data types [15].

The results in this paper improve upon my earlier work on polytypic programming
[12] in the following respects. As remarked above the previous work considered only
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polytypic values indexed by types of one )xed kind. Furthermore, the approach could
only handle type indices of second-order kind or less and type constants (that is, prim-
itive type constructors) were restricted to )rst-order kind or kind ?. Using polykinded
types all these restrictions can be dropped.

An earlier version of this paper appeared in [13]. The main improvement over the
earlier version is that we phrase the specialization of a polytypic value as a model of
the simply typed lambda calculus. As a major bene)t of this approach we can now use
standard logical relations to state and to prove properties of polytypic values, whereas
in the conference version we had to introduce a tailor-made, but somewhat ad hoc
variant of logical relations. The de)nition of the applicative structure in Section 6 is
heavily inspired by Moggi’s module categories, see [28], which are used to provide a
category-theoretic explanation of Standard ML’s module system.

10. Conclusion

Haskell possesses a rich type system, which essentially corresponds to the simply
typed lambda calculus (with kinds playing the role of types). This type system presents
a challenge for polytypism: how can we de)ne polytypic values and how can we assign
types to these values? This paper oDers satisfactory answers to both questions. It turns
out that polytypic values possess polykinded types, that is, types that are de)ned by
induction on the structure of kinds. Interestingly, to de)ne a polykinded type it suIces
to specify the image of the base kind; likewise, to de)ne a polytypic value it suIces
to specify the images of type constants. Everything else comes for free. In fact, the
specialization of a polytypic value can be phrased as an interpretation of the simply
typed lambda calculus. This renders it possible to adapt one of the main tools for
studying typed lambda calculi, logical relations, to polytypic reasoning. To prove a
polytypic property it suIces to prove the assertion for type constants. Everything else
is taken care of automatically. We have applied this framework to show among other
things that the polytypic map satis)es polytypic versions of the two functorial laws.
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