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Abstract

We study some algebraic properties of a class of group presentations depending on a finite num-
ber of integer parameters. This class contains many well-known groups which are interesting from
a topological point of view. We find arithmetic conditions on the parameters under which the con-
sidered groups cannot be fundamental groups of hyperbolic 3-manifolds of finite volume. Then we
investigate the asphericity for many presentations contained in our family.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we shall consider a class of cyclically presented grGfjps, k, i), where
e=(a,b,r,s) e Z* n>2, and the integer parametersk andh are taken modula. The
groupsG;, (m, k, h) have generatorsy, ..., x, and defining relations

b K
XX X hm = (xirJrhxirer) (1.1)
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fori =1,...,n (subscripts moa). This class of groups contains well-known groups con-
sidered by several authors, and it is related to the topology of closed connected orientable
3-manifolds. We first illustrate some examples of this connection.

(1) fa=b=s=1,r =2 andh =0, then the group&,(m, k, h) have defining rela-
tions

XiXigm = Xiyk-

This class of groups was introduced in [5], and subsequently studied in [1] and [6]. It con-
tains many well-known groups, e.g., tRbonacci groupsF (2, n), form =1 andk = 2,
the Sieradski groups (n), for m = 2 andk = 1, and theGilbert—Howie groupsfor k = 1
(see [8], [21] and [9], respectively). Far> 4 even, the groug (2, n) is the fundamen-
tal group of a closed connected orientable 3-manifold. This manifold can be represented
as then/2-fold cyclic covering of the 3-sphere branched over the figure-eight knot [13].
Moreover, the manifold has a hyperbolic structure for evepy 8 (even) [11]. On the
other hand, ifz is odd, thenF (2, n) cannot be the fundamental group of any hyperbolic
3-orbifold (in particular, 3-manifold) of finite volume [15]. For every= 2, the groups(n)
is the fundamental group of thefold cyclic covering of the 3-sphere branched over the
trefoil knot [4]. Arithmetic conditions on the parametersandm for which the Gilbert—
Howie groups are aspherical can be found in [9].

(2) If h =k =5 =0 andm =1, then the group&? (m, k, h) have defining relations

xip le{iﬂ

wherep = a+b andg = —a are integers. This class of groups was studied by Heil in [10].

He proved that if p| # |¢|, |p| # 1 and|q| # 1, then for every: > 3 the group is not the

fundamental group of any 3-manifold (see Proposition 1 of [10]).
@)Ifh=k=r=s5s=1,m=0andb =1 - a, then the groups? (m, k, h) have

defining relations

a 1
X = xi+1x,-xi+l.

Fora = 2, these groups were first introduced by Higman in [12] (see also [18, pp. 546—
548]). In [20] Schafer proved that far= 4 the Higman group is not a 3-manifold group.
Settingy; = xlfl, the initial group have the defining relations

- 1. -1
Vi = Yig1Yi Yi+1-

Fora = —2, these groups were first considered by Mennicke in [17]. Therefore, we call
the groups in (3) théligman—Mennicke groupslenoted byHM,, (a).

@) It h=m=s=1,k=0 andb = —2a, then the group&< (m, k, h) have defining
relations

a,2r __ .a
XiXip1 = Xiq2:
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These groups form a subclass of fr&ctional Fibonacci groupstudied in [14], and are
denoted byF%/4(n). Forn > 4 even and 2 coprime toa, F%/%(n) is the fundamental
group of a closed connected orientable 3-manifold. This manifold can be obtained by Dehn
surgery with rational coefficients-2a and—2r/a on the components of an oriented link in
the 3-sphere. The link is formed by a chaimafeven) unknotted circles, each one of them
is linked with exactly two adjacent components with alternating crossings. If furthet,
then these manifolds are examplesgyeheralised Fibonacci manifold46]. Moreover, it
was proved in [16] that such manifolds are hyperbolic for almost.all

(5) If h=k=m =s =1 anda = 2r, then the group&;¢ (m, k, h) have defining rela-
tions
p+q _ . —q9.4q

X X

—-q
Xig1 =X Xip1¥Xip2

whereq =2r andp = b — 2r. If p andq are coprime, then these groups are fundamen-
tal groups of closed connected orientable 3-manifolds which are examplekaliashi
manifolds(see [19] and [22]). Such manifolds can be representedfak] branched cov-
erings of the lens spade(p + 24, ¢) (including the 3-sphere whem+ 2g = +1). Setting

yi = xlfl gives the defining relations

-P—q _ 49,749 .49
Yigr T Vi Vig1Vig2
Taking the inverse relation we get

=y
If p=4r —1 andg =1 — 2r, then we obtain the defining relations of the groups
Gi(m,k,h),forh=k=m=—-s=—-1anda =—-b=2r — 1, that s,
2r—1_—2r+1_2r-—1 2
Yiv1 Vi - Vil =y
For r > 1, these groups are fundamental groups of iHeld cyclic coverings of the
3-sphere branched over the 2-bridge k@&t — 3)/2 (see [7]). In particular, i = 1,

then the knot p2 is the figure-eight knot, so we again obtain the Fibonacci manifolds.
Furthermore, the manifolds are hyperbolicfox 2,n >3 andr=1,n > 4.

2. Algebraic properties

In this section we present some algebraic properties of the giG{ips, k, i), where
e=(a,b,r,s)€Z* n>2, andk, h andm are reduced mod. We consider repetitions
within the family and prove that in some cases our groups decompose into non-trivial free
products.

Lemma 2.1. There are isomorphisms

Gim,k,h)ZGi(n—m,k+2n—h—m,n—h).
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Proof. Let us denotg; = xlfl fori =1,...,n. Taking the inverse relation of (1.1) gives

-1 a; —1\b; —1\a —1 \r [ —1\FN\§
() () ()" = () (45))
hence
b K
YitthtmYiskYi = (yir+m)’ir+h) :
Settingj =i + h + m we can write the system of the defining relations in the form
b s
y;lyj+k—h—my?—h—m = (y;—hy;—m)

wherej =1,...,n (subscripts mod:). Since the lower indices are taken medve can
write

b K
yj'lyj+k+2n—h—my?+2n—h—m = (y;+nfhy;+n7m)
which defines the groupSé(n —m,k+2n—h—m,n —h). O

Lemma 2.2. If n and k are coprime, then the grouli (m, k, h) is isomorphic to
G¢ (£mk’, 1, £hk’), wherekk’ = +1 (mod n).

Proof. Let n andk be coprime. Then we can re-order the generator§iin, k, 1) by
defining

Vi = X14+(-1k

fori =1,...,n. Of course, the setys, ..., y,} coincides with the sefxy, ..., x,}. The
relations ofG¢ (m, k, h) can be written in the form

b s
xﬁ( J—DkY 14 jkxir( J—DkEh+m)kk’ = (x£+(j—1)kihkk'x£+(,/—1)kimkk')
hence
b r s
y?yj+1y?:|:(h+m)k’ = (yjihk/y;imk/)
for j=1,...,n (subscripts moa). These relations defin@: (xmk’, 1, £hk’). O
Lemma2.3.1f gcd(n, h) = 1or gcdn, m) = 1, then there are isomorphisndg, (m, k, h) =
G:(E£mh', +kh', 1) or G5 (m, k, h) = G5 (1, £km', £hm'), wherehh' = +1 (mod n) or
mm’' =41 (modn), respectively.

The proof of Lemma 2.3 is analogous to that of Lemma 2.2.

Lemma 2.4. For any positive integet, the groupG¢ ,(m¢, k¢, ht) is isomorphic to the
free product of copies ofG: (m, k, h).
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Proof. Foreachj =1,...,¢, let Gi be the subgroup of ,(m¢, k¢, he) generated by the
elements

Xjo Xjtts oo Xjp(n—1)e

which may be not all distinct. The@® is isomorphic toG¢ (m, k, h). Of course, ifj # j’,
then the sets of generators of the grod@sandG*’., are disjoint. From the presentation of
the groupG;,,(m¢, k¢, ht), it follows that it is isomorphic to the free produGt] * - - - x
G;. O

¢

By Lemma 2.4 we shall only consider group$ (m, k, h) whose parameters (taken
mod n) satisfy 0< m, k, h,m + h < n and gcdn, m, k, h) = 1 (also without an explicit
mention).

Lemma 2.5. For a given groupG¢ (m, k, h), denoteu = gcd(n, k, h), i = gcdn, k),
v=gcdu,k — h —m), and v = gcdu, k — m,k — h). If gcdu, v) > 1 (respectively
gcd(u, v) > 1), thenG? (m, k, h) decomposes into a non-trivial free product.

Proof. Suppose for example = gcdu, v) > 1. Then the integers, m, k andh havep
as a common divisor. So the statement follows from Lemma 2.4. The other case is analo-
gous. O

Theorem 2.6. Suppose thap = gcdn, kK — h — m) dividesk’ and there exist positive
integersw, B, y andé such that

a+Bk—h—m)=1—m (modn),
y+38k—h—m)y=1—h (modn),
a+pk=1+m’ (modn),
y+8k'=1+h (modn)

wherel <o,y < pandl< B,8 <n/p. ThenGé (m, k, h) is isomorphic toG% (m’, k', h').

Proof. By Lemma 2.1, the groufs;, (m, k, h) has a finite presentation with generators
¥1, ..., Yn, and defining relations

b K
yflyi+k—h—m>’ia—h—m = (Yir—hyz'r—m)

fori=1,...,n. We setl =n/p, wherep = gcdn,k — h —m). Then we separate the
generatorss, ..., y, into p setsAy, ..., A, of £ elements each one, where

Aj =y, Yjthk—h—ms s Yj+ =Dy k—h—m)}

for j=1,..., p. This gives a partition of the relations intosetsRy, ..., R, of £ elements
each one, wher®; is formed by
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a. b a e r K
YiYjtk—h—mYj—h—m = (yj—hyj—m) ,

a b a (. r s
Yitk—h—mYj+2(k—h—m)Yj+k—2(h-+m) = (yj+k7m—2hyj+k7h72m) ,

a b a _ r r N
Vit =1 (k—h—m)Y j+ele—h—m)Y j+(—Dk—(h+m) = (yj-i-(l—l)(k—m)—fhyj+(£—1)(k—h)—2m) .
Observe thabj¢k—n—m) = y; foreveryj=1,..., p becausék —h —m) = (n/p)(k —
h —m) is congruent to zero maod Therefore, for each relation &f; the first two terms on

the left side belong td ;. Let us consider the presentation@f(m’, k', ) with generators
71, ..., Zn, and defining relations

a_b a (. r s
i Ltk il ! = (Zi+h’zi+m’) .

We separate the generatess. . ., z, into p setsBy, ..., B, of £ elements each one, where
Bj=A{zj,2j1k'» s Zjre—1i'}

for every j = 1,...,p. As above, we obtain a partition of the defining relations of
G4 (m' k', h') into p setsSy, ..., S, of £ elements each one, wheSg is formed by

a_b a (T r s
ijj-i-k/zj—i-h/—i-m’ = (Zj+h’zj+m/) s

a b a . r s
Zj+k/zj+2k/zj+k/+h/+m/ = (Zj+k/+h/zj+k/+m/) )

a b a (. r s
i (0—D)k' % k' % ek +H m! = (Zj+(l—1)k’+h’Zj+(€—1)k’+m’) :
Sincep dividesk’, we haver ;¢ =z foreveryj =1, ..., p. Therefore, for each relation

of §; the first two terms on the left side belong®g. Let us define the correspondenge
from G¢ (m, k, h) onto G4 (m’, k', k') by its action on the generators, i.e.,

V(Y jtrk—h—m)) = Zj+k’
for 1< j < pand 0< v <€ — 1. We check that each defining relation®f (m, k, h) goes

undery to a defining relation oG¢ (m’, k', k'), hencey is a group homomorphism. Let
us consider the first relation &1, that is,

b K
YV kb Y1 = (yi—hyi—m) :
By hypothesis there exist positive integer,s8, y ands such that

a+Bk—h—m)=1—m (modn)
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and
y+8k—h—m)y=1—h (modn).

Therefore, the relation above can be written in the form

b N
VI YT 4k—h—m yZ+y—1+(ﬁ+5)(k—h_m) = (y)r/+8(kfhfm)ygz+ﬂ(kfhfm)) :

The image of this relation under is

a_b a (. r s
21204k Zo+y — 1+ (B+OK = (Zy+5k/za+/3k’) .

Using the hypotheses

a+Bk=1+m’ (modn),
y+8k'=1+n" (modn)

we get the relation

a_b a (. r K
L1204k 1m0 = (i) -

This is the first relation of, i.e., a defining relation o&¢ (m', k', h’). To complete the
proof, it suffices to observe that all the defining relationsGjfim, k, h) (respectively
Gé(m', k', n')) arise from the first one under cyclic permutations of the suffices. Therefore,
¥ is a group homomorphism. It is easily seen thjais invertible, so it is an isomor-
phism. O

If h =h' =0, then the conditions of Theorem 2.6 become

a+pBk—m)=1—m (Mmodn),

y+8k—m)=1 (modn),
a+pk'=1+m’ (modn),
y+8k'=1 (modn)

wherep = gcdn, k — m) dividesk’. So we can choosg =1 andé = n/p. This gives the
following result which extends [1, Theorem 2.1], for whi¢ls (1, 1, 2, 1).

Corollary 2.7. Suppose thab = gcd(n, k — m) dividesk’ and there exist positive integers
« and B such that

a+pBk—m)y=1—m (modn),
a+Bk=1+m’ (modn)
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wherel <o < p and1 < B < n/p. ThenGé (m, k, 0) is isomorphic toG (m’, k', 0) for
everye = (a, b, r,s) € Z*.

As a particular case of Corollary 2.7 we obtain a result which extends [9, Lemma 2.1],
for whiche is (1,1, 2, 1).

Corollary 2.8. Letn andm be positive integers such that< n andn is coprime tan — 1.
Letm’ be an integer such th&<m’ < n and (m — L)m’ =m (mod n). ThenG¢ (m, 1, 0)
andG¢ (m’, 1, 0) are isomorphic for any = (a, b, r, s) € z4.
Proof. Apply Corollary 2.7forp=a=k=k'=1andf=m'. O
Example. There are isomorphisms

7(2,6,3) = G%(3,2,1) = G%(1,3,5) = G%(6,4, 2).
Let n =7, (m,k,h) = (2,6,3), (m'.k',h') = (3,2,1), m", k", h") = (1,3,5), and

m"” k", ") = (6,4,2). Then we havep = gcdn, k —h —m) =gcd7,1) = 1. We can
takea =y =1, 8 =5 ands = 4 to satisfy the conditions of Theorem 2.6.

The following arises in a natural way from the arguments discussed above:

Problem 2.9. Find a finite system of arithmetic conditions on the parameters which com-
pletely determines the isomorphism type of the graijgm, k, h).

3. Groups G; (m, k, h) with r odd
The following is our main result.

Theorem 3.1. Suppose that and b are odd andn is coprime with2k — 2 — m. Then
the groupG, (m, k, h) cannot be the fundamental group of any hyperb8liarbifold (in
particular, 3-manifold) of finite volume.

Proof. Let Gi = G (m, k, h) be the fundamental group of a hyperbolic 3-dimensional
orbifold (in particular, 3-manifold) of finite volume. Then there is a faithful representation

f:GS — 1som(H3)

such thatF? = f(G?%) is a hyperbolic group, that is, a discrete group of finite covolume.
Of course,F;; admits the automorphisti which cyclically permutes the generators, i.e.,
0(x;) = x;+1 (subscripts mod). By abuse of language we denote the generatoxséof
and F} with the same symbols. By the Mostow rigidity theorem there exists an isometry
t € Isom(H?3) such tha® («) = ¢ ~1ur for everyu e F?. Let us consider the split extension

of F? by the cyclic group generated byand denote it byE?. ThenE; is the fundamental



A. Cavicchioli et al. / Journal of Algebra 286 (2005) 41-56 49

group of a hyperbolic 3-dimensional orbifold of finite volume. Sia€e= 1, " commutes
with all elements of the non-elementary Kleinian grokip. So¢” belongs to the center
of F? which is trivial by [2]. Thereforey is of ordern’, wheren’ dividesn. Substituting
xip1=1t"Yx;t =1 'xq¢" in the initial relation ofF?:
b N
XX XY g = (VL XT4m)
yields
xilt_kxl{tk_h_mxfthH” = (t_hxith_mxitm)s. (3.1)

Obviously, the split extensioft’ has a finite presentation with generategsandz, and
relations:” = 1 and(3.1). Let us consider the subgro&ﬁ;’)(z) generated by the squares
of the elements iEZ. If n (and hence’) is odd, therr € (E£)@. The element on the right
side of(3.1) belongs ta(E¢)®@ as

(l‘_hxith_mxitm)s — (l_h (xith—m)zt2m—h)5 c (Ersl)(Z)'
For the left side 0f3.1) we have

xit*kxllytkfhfmxfth+m
:xl—b(xg)Ztk(t—kxi:—a)Z(xiztk—h—m)2t2(h+m)—k c (Eﬁ)(z).

Since (x§)2rk (1= xb =2 (x§ k=h=my22htm—k ¢ (££)@ it follows that x; belongs to

(E2)@ whenb is odd. Therefore, the hypotheses im@ly = (E£)@, i.e., E¢ is a sub-

group of the group PSI2, C) of orientation-preserving isometries Bf. Let us denote by

P(A) the image in PS{2, C) of a matrixA € SL(2, C) under the 2-fold covering
P:SL(2,C) — PSL(2,C) =SL(2, C)/{=l2}.

Sincer is of ordern’, we can assume without loss of generality that

_p(¥ O
I_P(O sv‘l)

whereg is a primitive root of the unity irC of degree 2’. Let

a=r(i )

with xw — yz = 1. SinceF} is of finite covolume, we havez # 0. For anyj we have

x Yy ]: S;  YR;
z w ZR; T
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whose determinant is
SjTj —yszz-zl. (32)

Now we substitute the above matrices in relat{@rl). From the element on the left side
we get

1 1
A= %
“\d? 4?
1 492
(x -k 0 Xy b (pk h—m 0
“\z w O ok J\z w 0 Qhtm—k
(2 0) (%" o)
X —h—m
z w 0 17
_( Sa YR\ (e ON[( Sy yRy\[(&™ 0
= R, T, 0 (ﬂk ZRp T 0 (ph-i-m—k
o Sa YR\ ("M 0
ZR, 1 0 §0_h_m
(97 Sa YO'RA\ (TS ye" T ERY\ (9" TSe yeT" TR,
ZQO_kRa (kaa Z@k_h_m Rb §0h+m_ka Z(Ph+m Ra QO_h_m Ta
hence

ai = S28p + yz29* Ra Ry Sa + yz® "™ O R, Ry, S, + yzp? "™ R2T,,

az=yp MRS, Sy + y22@®* M RZR, + yo P RySu Ty + YR T, T,
a2 = 7Ry SuSp + 20% Ry S, Ty 4 yz2@® MM =R R2ZR, 4 22T R, T, T,

a3 = yzp 2" RZS) + yzp? "' Ry Ry Ta + y29” ¥ RaRy Ta + T T,

From the element on the right side @&1) we obtain

1 1
_(%1 %
A‘(a% 2)
Sr YRy g 0 Sr YRr o™ 0 ’
R, T, 0 " " )\zR T, 0 o™

az
Sy R, 'S ye" R\’
zw”R o"T, ) \z2®" "R, 7T,

( S2+yz(p2(m h)RZ yw_szrSr+y§0_2thTr>s

20?' R, S, ~|—Z<p R, T; yzwz(h_m)er—i— Tr2

(yw_szrSr ‘i‘_y(p_ZthTr)Es
(z¢?" R, S, +z<p R.T)R; T, '
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Equating the corresponding elements of the resulting matrix (and ysigg0) we
obtain

@ 2R, S, Sp + yzp? kMM RZRy, + "% Ry Sy Ty + RaTu Ty
= (¢ "R, S, + ¢ "R, T))R;,

RuSaSp + ¢* Ry ST, + yzp?htm=PR2R; 4 o?F ™ R, T, T,
= ((th RS, + 902m R, Tr)l_es .

Multiplying the first (respectively second) equation¢sf (respectivelyy—2") yields

@0 "Ry SaSp + yzp? KM R2R, + 92O RS, T, + 9P R, T, T,
= (<P2<h_m) RrSr + Rr Tr)l_zw

92" RaSaSp + 9? M Ry Sy Ty + yzp? " O RZR, + 0P R, T, Ty
= ((pz(h_m) R, Sy + R, Tr)ks-

Subtracting the equations we get
'O Ry (SaTa = y2RZ) — p®* ™ Ry(SaTa — y2RE) =0
hence

(¢2h=h) — G2h=m) R, 0,

by using(3.2). SinceF is of finite covolume andll’ e F?, we haveylef # 0. Thus the
last equation gives

2@k=h=m) _ 1
But ¢ is a primitive root of the unity irC of degree 2’, andr’ is coprime to 2 — h — m.

This gives a contradiction. Therefor@; cannot be the fundamental group of a hyperbolic
3-orbifold (respectively 3-manifold) of finite volume.o

Corollary 3.2. Suppose that the automorphigmhich cyclically permutes the generators
of G; (m, k, h) is exactly of orden. If n andb are odd and: does not divid&k — h — m,
then G¢ (m, k, h) cannot be the fundamental group of any hyperb8tarbifold (respec-
tively 3-manifold of finite volume.

The conditions of Corollary 3.2 are satisfied for example by the Fibonacci groups
F(2,n) = G (m,k,h), wheree = (a,b,r,s) = (1,1,2,1), m=1,k=2,h =0, andn
is odd and greater than 3. ¢f= 3, thenF (2, n) is a finite group.) As special cases of The-
orem 3.1 and Corollary 3.2, one can obtain the results on the non-hyperbolicity of certain
groups of Fibonacci type proved in [1,6,15]. As a further result, we have

Corollary 3.3. Let HM, (a) be the Higman—Mennicke group with generatass..., x,
and defining relations = xi+1xix;11 fori =1,...,n (subscriptsmod r). If a is even
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andn is odd, then HN)(a) cannot be the fundamental group of a hyperb&iorbifold
(respectivel\3-manifold of finite volume.

The following arises in a natural way from the above results:

Problem 3.4. Determine all values of the parameters: (a, b, r, s), m, k andh for which
G: (m, k, h) is the fundamental group of closed connected orientable 3-manifolds for infi-
nitely manyn. Then classify the topological and geometric structures of such manifolds.

4. Asphericity

In this section we investigate the asphericity for grot{jsm, k, k), wherea =b =1
ands = 0. These groups, denoted in short®y = G, (k, £), have generators, ..., x,,
and defining relations; x; yxxi+¢ = 1, wherel = h +m. By Lemma 2.1 there are isomor-
phismsG,, (k, ) = G,(k — £,n — ¢). By Lemma 2.4 we assume gedk,¢) =1.1f k=0
ork =¢,thenG,(k, ¢) is a cyclic group of order(—2)" — 1|. Then the parameters can be
chosen sothat @ k < ¢ < n and gcdn, k, £) = 1. Form the split extensiofs,, = E,, (k, £)
by Z,. HereZ, acts by cyclic permutation of the generatass. .., x,. If Z, is gener-
ated byo, and we sek = x1 in G, thenE, is generated by ando, and has the finite
presentation

k. k=€ ¢ l>.

<x,a: o"=1, xo *x0""x0" =

We can regardt, as a relative presentation in the sense of [3], i.e.,
<H, x: xo *xoFtxot = 1>,
whereH = (0. 0" =1) = 7Z,.

Lemma 4.1. If the relative presentation of,, (k, £) is aspherical, then the absolute pre-
sentation ofG,, (k, £) is also aspherical.

Proof. Let P be a spherical picture ove¥, (see [3] for more details on pictures over
relative presentations and aspherical relative presentations). Replace each disc (Fig. 1) of
P by the pictureQ; (Fig. 2) overE, regarded as an absolute presentation. Here we have
replaced each arc labellegby a sequence of arcs with total lalset '~V xo'=1. The arcs

of Q; having both endpoints on the boundary can be made into floating circles. Thus they
can be deleted from the resulting picture. Then the remaining arcs lalbeliee deleted

and replaced by corner labels on the discs of the picyré~ig. 3). In this way we obtain

a pictureQ over the relative presentation &f,. Since the relative presentation Bf, is
aspherical, it must contain a dipole, i.e., a pair of oppositely oriented discs, connected
by an arc of the picture, which carry inverse labels when read from the connecting arc
(Fig. 4). It is easy to see that any such dipoleQnmust arise from a pair of identical

but oppositely oriented discs rwhich were connected by an arc labellgdor some;.
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/ Xi
Xi+t

Xitk

Fig. 1. A disc of the spherical pictufe over the absolute presentation@f, (k, ¢).

Fig. 2. The picture; over the absolute presentation®f (k, £).
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Fig. 3. A disc of the spherical pictuk@ over the relative presentation &, (k, £).

Fig. 4. A dipole in the spherical pictur@.

Furthermore, two bridge moveskhproduce a cancelling pair of discs. Therefore, any non-
empty spherical picture ové¥, is equivalent to one having two fewer discs. This implies

that the absolute presentation@f is aspherical. O

To study the asphericity of the relative presentatiorEpfwe use the following result
due to Bogley and Pride (see [3, Theorem 3.1]).
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Theorem 4.2. Letay, ap andas be elements of a groufl such that{as, az, as} contains
at least two elements. The relative presentation

(H, x: xaixazxaz = 1)
is aspherical if and only if neither of the following conditions holds

Q) Fori=1,2,3, “iai_+11 has finite orderp; > 0 (subscriptanod 3) and

1 1 1
— 4+ —+—>1
pr p2 p3

(2) There existj € {1,2,3}, p > 2, and0 < «a < p such that
sgp{aia i =1,2,3}

is finite cyclic with generaton;a; 1, of order p, anda;11a;}, = (aja; )", where
either

(2.1) a =1,

(2.2) p=a+20rp=2a+1;0r

(2.3) p=6anda=2o0r3.

We apply this result to our case when= o %, ap = o*~¢ andaz = o'*. Thenalaz_l =

o'=%, azazt = 0¥~ andaga; * = o have orders

n n n

=, =——— and pg=— ——,
PL=Gcdn, e —26° P27 gedm, k — 2¢) P3= Gedn, k+ 6)

respectively. Then we have

Theorem 4.3. Let G, (k, £) be the cyclically presented group with generatess. . ., x,,
and defining relations; x; . xx;i+¢ = 1, fori =1, ..., n (subscriptsmod n). Suppose that
O<k<{¢<nandgcdn,k, £) = 1. ThenG,(k, ¢) is aspherical if none of the following
conditions is satisfied

(1) gedn, € — 2k) +ged(n, k — 2¢) +gcdn, k + £) > n,
(2) n=6gcdn, £ — 2k) and6 divides2¢ —k or k + ¢,
(3) n=6gcdn, k — 2¢) and6 divides—2k + £ or k + ¢,
(4) n=6gcdn, k + ¢) and6 divides2¢ — k or £ — 2k.

In this caseG, (k, £) is torsion free, and if it is non-trivial, then it is infinite.
The following arises in a natural way:

Problem 4.4. Find necessary and sufficient conditions on the parameters for the asphericity
of the groupsG¢ (m, k, h) in the general case.
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