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In a previous study, we showed that barrier recovery was delayed after acute barrier disruption in the skin
treated with topical calcineurin inhibitors. Tacrolimus decreases lipid synthesis and the expressions of
antimicrobial peptide (AMP) and IL-1a in the epidermis. IL-1a is an important cytokine for improving barrier
function, lamellar body (LB) production, and lipid synthesis in keratinocytes (KCs). We aimed to evaluate
whether IL-1a stimulation could restore the barrier dysfunction observed in tacrolimus-treated skin. Topical
imiquimod, an IL-1a inducer, restored the epidermal permeability barrier recovery that had been inhibited by
tacrolimus treatment in human (n¼ 15) and murine (n¼ 10) skins, and improved stratum corneum integrity by
restoring corneodosmosomes in murine skin (n¼ 6). Imiquimod co-applied on the epidermis resulted in an
increase in the production of LB and three major lipid synthesis-related enzymes, and in the expressions of
mBD3, CRAMP, and IL-1a (n¼ 5). Furthermore, intracutaneous injection of IL-1a restored permeability barrier
recovery (n¼ 6). In IL-1 type 1 receptor knockout mice, topical imiquimod was unable to restore permeability
barrier recovery after tacrolimus treatment (n¼ 21). In conclusion, IL-1a stimulation induced positive effects on
epidermal permeability and antimicrobial barrier functions in tacrolimus-treated skin. These positive effects
were mediated by an increase in epidermal lipid synthesis, LB production, and AMP expression.
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INTRODUCTION
Tacrolimus, an inhibitor of phosphatase calcineurin, has
recently been advanced as an effective and safe topical
therapy for atopic dermatitis (Boguniewicz et al., 1998; Bos,
2002). Tacrolimus is the first topical immune suppressant that
is not a derivative of hydrocortisone, the key component in
dermatological treatment for nearly 50 years (Nghiem et al.,
2002). Tacrolimus does not cause glucocorticoid-related side
effects such as skin atrophy and telangiectasiae. However,
tacrolimus does not prevent viral skin infections such as
eczema herpeticum, which can be life-threatening (Paller
et al., 2001), even though it decreases the incidence of
bacterial skin infections compared with other treatments
(Pournaras et al., 2001; Ashcroft et al., 2005). We previously
showed that tacrolimus negatively affected skin barrier

function, including permeability and antimicrobial functions,
which are mediated by the downregulation of epidermal lipid
synthesis, lamellar body (LB) secretion, and the epidermal
expressions of mBD3 and CRAMP, two major epidermal
antimicrobial peptides (AMPs). Topical tacrolimus also
suppressed the expression of IL-1a, suggesting that its action
includes a mechanism acting on skin barrier function (Kim
et al., 2010).

IL-1a is a proinflammatory cytokine that has an important
role in inflammatory diseases of the skin, including bacterial
infections, bullous diseases, and UV damage (Yano et al.,
2008). IL-1a serves as a signal for undamaged keratinocytes
(KCs) to be activated. Activated KCs become migratory and
hyperproliferate to produce growth factors and cytokines
that regulate inflammatory and wound healing processes.
When added to cultured human KCs, IL-1a stimulates the
synthesis of epidermal lipids, the expression of CCL20, and
the production of a potent bacteriostatic agent. Imiquimod-
induced IL-1a stimulation improves barrier homeostasis in
aged murine epidermis (Barland et al., 2004). As IL-1a prod-
uction and the epidermal permeability barrier are closely
linked, we hypothesized that decreased IL-1a production
observed in tacrolimus-treated skin could be attributed to
abnormal skin barrier function. Therefore, IL-1a stimulation
could induce positive effects on epidermal permeability and
antimicrobial barrier function in tacrolimus-treated skin.
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RESULTS

Topical imiquimod restored epidermal permeability barrier
recovery that had been inhibited by tacrolimus treatment in
human and murine skin

Our previous report showed that tacrolimus disrupts epi-
dermal permeability barrier homeostasis and decreases IL-1a
in murine epidermis (Kim et al., 2010). In this study, we first
assessed whether topical imiquimod, an IL-1a activator,
restored permeability barrier function in tacrolimus-treated
skin. Imiquimod restored permeability barrier recovery in
human skin (Figure 1a). We next assessed the effects of
imiquimod on tacrolimus-treated murine skin. Imiquimod
significantly restored permeability barrier recovery. How-
ever, imiquimod did not affect barrier recovery in control
mice that had not been treated with tacrolimus (Figure 1b).

Topical imiquimod stimulated epidermal lipid production that
had been decreased by tacrolimus treatment in murine skin

Using an LB counting and lipid synthesis-related enzyme
assay, we examined whether imiquimod reversed tacrolimus-
induced barrier abnormalities by promoting epidermal lipid
production. Murine epidermis treated with imiquimod
exhibited an increased number (density) of LBs in comparison
to control sites treated with an inactive cream (Figure 2a).
Quantitative analyses of randomly obtained and coded
electron microscopy (EM) pictures by a blinded investigator
also indicated a significant increase in LB density in
imiquimod-treated murine skin (Figure 2b).

We examined whether the imiquimod-induced increase in
LB production was, in turn, attributed to activate epidermal
lipid synthesis. The activities of rate-limiting enzymes for three

key epidermal lipids, such as cholesterol, ceramides, and free
fatty acids, that mediate barrier function are normally high in
epidermal KCs (Proksch et al., 1993). In our previous study, we
observed that three key enzymes required for epidermal lipid
synthesis, 3-hydroxy-3-methylglutaryl-CoA reductase, serine-
palmitoyl transferase, and fatty acid synthase, decreased after
tacrolimus treatment compared with controls (Kim et al., 2010).
As a result, the mRNA expression of 3-hydroxy-3-methylglutar-
yl-CoA reductase, serine-palmitoyl transferase, and fatty acid
synthase was measured and we confirmed that the mRNA
levels for these three key enzymes increased after imiquimod
treatment (Figure 3).

Topical imiquimod improved SC integrity by restoring
corneodosmosomes that had been decreased by tacrolimus
treatment in murine skin

Intercorneocyte adhesion, which is mediated largely by
corneodesmosomes (CD), a unique intercellular junction
modified from epidermal desmosomes (Serre et al., 1991;
Haftek et al., 1998), is important not only for SC integrity, but
also for the maintenance of the epidermal permeability
barrier. CD density was measured in the lower SC by
quantitative EM analysis using a previously described method
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Figure 1. Topical imiquimod restored epidermal permeability barrier

delayed by tacrolimus treatment in human and murine skin. In humans,

topical tacrolimus was applied on both forearms twice a day for 5 days.

Immediately after acute barrier disruption, imiquimod was applied on one

forearm, and the control on the other forearm. Barrier recovery rates were

measured after 6 hours. Imiquimod restored the delayed barrier recovery

induced by tacrolimus in human skin (n¼ 15) (a). In the animal study, one

group consisted of flanks of mice treated with tacrolimus twice daily and then

imiquimod once daily on one flank with a control cream on the other flank for

4 days. The other group was treated the same way minus tacrolimus application.

As seen in humans, the barrier recovery rates improved in tacrolimus and

imiquimod-treated skin (n¼ 10) (b). The numbers represent mean±SEM. C,

control; IMQ, imiquimod; NS, not significant; TAC, tacrolimus.
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Figure 2. Topical imiquimod increased the density and content of lamellar

bodies (LBs) in tacrolimus-treated murine skin. Both flanks of hairless mice

were treated with tacrolimus twice daily and then imiquimod once daily

on one flank, and a control on the other flank for 4 days. Biopsy samples were

taken from tacrolimus-treated skin with or without imiquimod and processed

for electron microscopy (EM) to analyze LB concentration. Epidermis

treated with imiquimod shows an increased number (density) of LBs (white

arrows) in comparison to the control (a). Quantitative analysis of randomly

obtained and coded EM pictures showed a significant increase in LB density

in imiquimod-treated murine skin (b). The numbers represent mean±SEM

(n¼5 in each group). C, control; IMQ, imiquimod; TAC, tacrolimus.

Bar¼2 mm.
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(Choi et al., 2005). We observed that CD density increased in
the imiquimod-treated group compared with the control
group (Supplementary Figure S1 online), indicating that
imiquimod improved SC integrity in tacrolimus-treated skin
by restoring CD density.

Topical imiquimod augmented the epidermal expression
of IL-1a that had been diminished by tacrolimus treatment
in murine skin

IL-1a is an important cytokine for improving permeability
barrier function, LB structure, and lipid synthesis in human
KCs (Barland et al., 2004). In our previous study, we observed
that topical calcineurin inhibitors (TCIs) suppressed the
epidermal expression of IL-1a (Kim et al., 2010). Based on
these findings, we measured IL-1a expression using immuno-
histochemical staining in murine skin co-applied with
imiquimod, which means that tacrolimus was applied and
followed by imiquimod. Skin sites co-applied with imiqui-
mod showed a much greater expression of IL-1a than the
control sites (Figure 4), suggesting that the positive effect of
imiquimod on the permeability barrier of tacrolimus-treated
epidermis possibly resulted from the augmentation of IL-1a.

Intracutaneous IL-1a injection restored epidermal permeability
barrier recovery that had been inhibited by tacrolimus
treatment in murine skin

To further assess the importance of IL-1a on tacrolimus-
induced barrier disruption, we compared the barrier recovery
rates between intracutaneous IL-1a and vehicle injection in
tacrolimus-treated mice and controls.

Barrier recovery kinetics accelerated significantly in IL-1a
and tacrolimus-treated mice. This indicated that IL-1a

corrected the abnormalities induced by tacrolimus. However,
the barrier recovery rate was not restored significantly in
normal IL-1a level mice injected with IL-1a alone (Figure 5a).
This result revealed an additional clue that IL-1a has an
important role in restoring barrier function impaired by
tacrolimus treatment.

In transgenic IL-1 receptor knockout (KO) mice, topical
imiquimod did not restore epidermal permeability barrier
recovery that had been inhibited by tacrolimus treatment

To assess whether IL-1a signaling has a key role in
permeability barrier abnormality induced by tacrolimus,
permeability barrier recovery rates were compared between
IL-1 type 1 receptor KO mice and wild-type mice. IL-1
receptor type 1 KO mice exhibited no significant difference in
barrier recovery between imiquimod and control cream-
treated sites. In contrast, wild-type mice demonstrated that
imiquimod restored permeability barrier recovery delayed by
treatment with topical tacrolimus (Figure 5b). These findings
emphasize the role of IL-1a stimulation in restoring barrier
function impaired by tacrolimus treatment.

Topical imiquimod restored the expression of mBD3 and
CRAMP, two major epiderml AMPs that were decreased by
tacrolimus treatment in murine skin

The epidermal expressions of mBD3 and CRAMP changed
according to permeability barrier status because of their
colocalization in the LB (Oren et al., 2003; Braff et al., 2005;
Elias and Choi, 2005). As TCIs suppressed the epidermal
expression of mBD3 and CRAMP (Kim et al., 2010), we
assessed whether the expression of mBD3 and CRAMP was
recovered on tacrolimus-treated murine epidermis with the
co-application of imiquimod. In immunohistochemical stain-
ing, imiquimod co-applied skin showed more intense mBD3
and CRAMP expression compared with the control skin
(Figure 6a and b). The mRNA levels of mBD3 and CRAMP of
the tacrolimus-treated murine epidermis with the co-applica-
tion of imiquimod also increased compared with the control
skin (Figure 6c).
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Figure 3. Topical imiquimod increased epidermal lipid synthesis-related

enzymes in tacrolimus-treated murine skin. Both flanks of hairless mice were

treated with tacrolimus twice daily and then imiquimod once daily on one

flank, and a control on the other flank for 4 days. Biopsy samples were taken

from tacrolimus-treated skin with or without imiquimod and assayed with

quantitative reverse transcription PCR to assess the mRNA levels of epidermal

lipid synthesis-related enzymes. mRNA levels in murine epidermis treated

with imiquimod increased compared with the control. The numbers represent

mean±SEM. FAS, fatty acid synthases; HMG-CoA, 3-hidroxy-3-

methylglutaryl-CoA reducatase; SPT, serine-palmitoyl transferase. For each

group, n¼ 5. C, control; IMQ, imiquimod; TAC, tacrolimus.

TAC + C TAC + IMQ

Figure 4. Topical imiquimod increased the epidermal expression of IL-1a
decreased by tacrolimus in murine skin. Both flanks of hairless mice were

treated with tacrolimus twice daily and then imiquimod once daily on one

flank, and a control on the other flank for 4 days. Biopsy samples were taken

from tacrolimus-treated skin with or without imiquimod. Biopsy specimens

for the IL-1a immunohistochemical stain were taken from imiquimod or

control sites. Imiquimod-treated skin (a) showed more intense IL-1a
expression in immunohistochemical stain compared with the control (b).

C, control; IMQ, imiquimod; TAC, tacrolimus. Bar¼ 100mm.
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DISCUSSION
TCIs such as tacrolimus and pimecrolimus are topical
immune suppressants that have fewer side effects than topical
glucocorticoids, which frequently cause hypothalamic-pituitary-
adrenal axis suppression, skin atrophy, telangiectasiae, and
secondary skin infection (Ellison et al., 2000). TCIs are
widely used to treat not only atopic dermatitis, but also other
dermatoses including vitiligo and psoriasis. TCIs decrease the
incidence of bacterial skin infections such as Staphylococ-
cous aureus compared with vehicle (Reitamo et al., 2000;
Pournaras et al., 2001; Nghiem et al., 2002; Ashcroft et al.,
2005), but do not prevent viral skin infections including
potentially life-threatening cases of eczema herpeticum
(Lubbe et al., 2000; Paller et al., 2001). We have recently
shown that topical tacrolimus treatment negatively impacts
epidermal permeability barrier function and AMP expression
in normal skin (Kim et al., 2010). Tacrolimus-treated
epidermis exhibits delayed barrier recovery in both human
and murine skin. Tacrolimus decreases epidermal lipid
production, as evidenced by fewer LBs and the reduced
activity of lipid synthesis-related enzymes. Tacrolimus also
suppresses the expressions of mBD3, CRAMP, and IL-1a,
suggesting a mechanism for its negative impact on skin
barrier function (Kim et al., 2010).

Homey et al. (1998) demonstrated that topical tacrolimus
treatment suppresses cytokine and co-stimulatory molecule
expression in epidermal cells. By analyzing its immuno-
suppressive action mechanisms in vivo, they demonstrated
that topical tacrolimus suppresses mRNA expression of both
primary (IL-1 and tumor necrosis factor-a) and secondary
(GM-CSF and MIP-2) epidermal cytokines during the early
and late stages of primary contact hypersensitivity responses
in mice (Homey et al., 1998). Injuries to the epidermis

stimulate the secretion of IL-1, IL-6, tumor necrosis factor,
and other cytokines, which have a crucial role in signaling
the repair response after barrier disruption (Wood et al.,
1992). Cytokine treatment after barrier disruption accelerates
barrier repair, perhaps by enhancing epidermal lipid synth-
esis and the production of LB. Animal models knocked out for
cytokines or their receptors displayed delayed barrier repair
compared with the wild-type models (Jensen et al., 1999;
Man et al., 1999). Imiquimod, a nucleoside analog of the
imidazoquinoline family, has major biological effects
through agonistic activity on toll-like receptors 7 and 8, and
consecutively, activation of NF-kB, which enhances the
induction of proinflammatory cytokines, such as IL-1a, IL-6,
and tumor necrosis factor-a, with other mediators activating
antigen-presenting cells along with other components of
innate immunity. It also stimulates a profound T helper-
weighted cellular response (Schon and Schon, 2007).

Based on these results, we first assessed whether the
activation of IL-1a by an application of topical imiquimod
could restore barrier recovery downregulated by tacrolimus.
We demonstrated that barrier recovery was restored with an
application of 2.5% imiquimod cream to the tacrolimus-
treated human and murine skins compared with a control
cream (Cetaphil, Galderma, Biot, France). Topical imiquimod
was unable to potentiate barrier recovery in the normal
control. This result demonstrates that the compensation of
IL-1a levels decreased by topical tacrolimus restores barrier
homeostasis downregulated by tacrolimus treatment. How-
ever, topical imiquimod had no effect on normal skin having
a normal level of IL-1a. The other cytokine levels including
IL-6 and tumor necrosis factor-a induced by imiquimod treat-
ment were not checked within this study. We found IL-1a
suppression in tacrolimus-treated skin in our previous study
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Figure 5. IL-1a injection and IL-1 receptor knockout (KO) mouse model support evidence that IL-1a signaling mediated the permeability barrier homeostasis

inhibited by tacrolimus. IL-1a and the vehicle (phosphate-buffered saline, PBS) were injected intracutaneously into the flanks of tacrolimus-treated mice at

5 minutes before tape stripping. In addition, the vehicle was injected intracutaneously into petrolatum-treated mice as a normal control. IL-1a-injected mice

exhibited an improvement in barrier recovery compared with the vehicle (n¼ 6) (a). Both flanks of IL-1R type 1 KO and wild-type mice were treated with

tacrolimus twice daily and then imiquimod once daily on one flank, and a control on the other flank for 4 days. The barrier recovery rates were measured 6 hours

after tape stripping. Imiquimod restored permeability barrier recovery in wild-type mice (n¼21). IL-1R type 1 KO mice exhibited no significant difference

in permeability barrier homeostasis between imiquimod and the control (n¼ 21) (b). The numbers represent mean±SEM. C, control; IMQ, imiquimod;

NS, not significant; TAC, tacrolimus.
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and focused on IL-1a stimulation for the recovery of impaired
barrier homeostasis in tacrolimus-treated skin (Kim et al.,
2010). The role of other cytokines except IL-1 in tacrolimus-
treated skin would be revealed in the future.

In our preliminary study, we observed no differences
in barrier recovery between normal mice skin and
cetaphil-applied mice skin. Cetaphil cream improved stratum
corneum (SC) hydration, but did not affect transepidermal
water loss (Draelos, 2008). We used 2.5% imiquimod
cream instead of 5% imiquimod cream because adverse
reactions including erythema and mild weeping were seen
in 5% imiquimod-treated mice. The role of IL-1a signaling
in tacrolimus-induced permeability barrier dysfunction was

assessed by the intracutaneous injection of IL-1a. We
observed that intracutaneously injected IL-1a significantly
improved barrier recovery in tacrolimus-treated murine
skin when compared with controls. Barland et al. (2004)
previously reported similar results that topical imiquimod
accelerated barrier recovery after acute insults to aged
BALB/c mice skin. These results were correlated with
increased IL-1a production in the epidermis following topical
imiquimod administration. Intracutaneous injection of IL-1a
also accelerated barrier recovery in aged mice. The improve-
ment in barrier recovery in young mice was not as
pronounced as it was in aged mice (Barland et al., 2004).
The definite importance of IL-1a signaling for barrier homeo-
stasis diminished by TCIs was supported by the observation
that transgenic mice with KO of the IL-1 receptor type 1
demonstrated no significant difference in barrier recovery
rate between imiquimod and control cream-treated skin,
whereas the permeability barrier recovery rate was improved
in imiquimod-treated skin compared with the control in wild-
type mice. Therefore, we concluded that imiquimod impro-
ved barrier homeostasis affected by tacrolimus, which was
derived from increased IL-1a levels in the epidermis.

IL-1 is a proinflammatory and immunomodulatory cyto-
kine that has a key role in inflammatory diseases of the
skin. In KCs, IL-1a is stored intracellularly, but can be quickly
released in the case of epidermal infection or injury. Released
IL-1 serves as a paracrine signal to fibroblast and endothelial
cells and guides the chemotaxis of lymphocytes toward the
site of injury (Dinarello and Wolff, 1993; Yano et al., 2008).
IL-1 also serves as an autocrine signal to surrounding,
undamaged KCs, stimulating them to become activated.
Activated KCs are migratory, hyperproliferative, and produce
growth factors and cytokines that function in inflammatory
and wound healing processes (Freedberg et al., 2001). Barrier
recovery of the epidermis is linked with an increase of
lipid synthesis and the increased production of potentially
regulatory cytokines including IL-1a. IL-1a administration
results in increased lipid synthesis in cultured human KCs
(Barland et al., 2004). Aged mice with KOs of the IL-1a
receptor type I develop more profound barrier deficits than
age-matched wild-type mice (Ye et al., 2002). In the present
study, we demonstrated that topical imiquimod applied to
tacrolimus-treated skin increased the expression of IL-1a and
induced epidermal lipid production via lipid synthesis-related
enzymes, which in turn enhanced LB production. These
findings may indicate that IL-1a has a key role in barrier
abnormalities caused by topical tacrolimus treatment, and
that the stimulation of IL-1a in tacrolimus-treated epidermis
induces positive effects on the skin barrier.

IL-1a is also related to antimicrobial functions (Liu et al.,
2002; Wehkamp et al., 2006). There are several antimicrobial
genes induced by IL-1a. b-Defensins, the most important
defensins for host protection against microbes, display a
broad spectrum of antimicrobial activity and are most
effectively induced by IL-1a in KCs (Liu et al., 2002). Yano
et al. (2008) observed the induction of b-defensin expression
and lipocalin-2 protein with a bacteriostatic function in
IL-1a-treated KCs. All of these genes are induced by IL-1a in
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Figure 6. Imiquimod restored the expression of mBD3 and CRAMP that was

decreased by tacrolimus in murine epidermis. Both flanks of hairless mice

were treated with tacrolimus twice daily and then imiquimod once daily on

one flank, and a control on the other flank for 4 days. Biopsy samples were

taken from tacrolimus-treated skin with or without imiquimod. Biopsy

specimens taken from imiquimod or the control groups were processed with

immunohistochemical staining for mBD3 and CRAMP, and assayed for

real-time reverse transcription PCR to assess mRNA levels in the epidermis.

Imiquimod-treated skin showed more intense staining for mBD3 and CRAMP

expression compared with the control (a: mBD3, b: CRAMP). mRNA levels for

mBD3 and CRAMP in imiquimod-treated murine epidermis increased

compared with the control (n¼ 5) (c). The numbers represent mean±SEM.

C, control; IMQ, imiquimod; TAC, tacrolimus. Bar¼ 100mm.
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KCs, implying a correlation of the antimicrobial effects and
IL-1a (Yano et al., 2008). We found that imiquimod
upregulated the mRNA levels of mBD3 and CRAMP in the
epidermis, suggesting that imiquimod-induced IL-1a has an
antimicrobial role in tacrolimus-treated skin through the
induction of AMP.

In conclusion, we have shown that the stimulation of IL-1a
improves skin barrier function that was compromised by
tacrolimus treatment. Our results show that topical imiqui-
mod and intracutaneous IL-1a administration improve
epidermal permeability and antimicrobial barrier previously
compromised by tacrolimus treatment. This provides a
definitive evidence for the role of IL-1a in their decline by
tacrolimus treatment, and suggests the selective IL-1a
inducers as therapeutic agents. The positive effects that we
observed can be expected if patients with chronic inflamma-
tory dermatoses, including atopic dermatitis, who require
long-term use of TCIs receive IL-1a augmentation to protect
the skin barrier.

MATERIALS AND METHODS
Human study

Imiquimod application and functional study. For the human

study, eight volunteers (20–50 years old, five males and three females)

without skin disease were recruited. This study was conducted

according to the Declaration of Helsinki Principles. The medical

ethical committee of Institutional Review Board of Yonsei University

Wonju College of Medicine approved all described studies. All parti-

cipants granted written informed consent. Subjects applied 0.03%

tacrolimus cream (Protopic, Fujisawa Healthcare, Deerfield, IL)

on both sides of the volar surface of the forearms twice daily for

5 days. After 24 hours of the final application, 2.5% imiquimod

cream, which was made by mixing 5% imiquimod cream (Aldara, 3M

Health Care, St Paul, MN) with Cetaphil cream (Galderma), was

applied on one forearm, and plain Cetaphil cream was applied to the

other forearm as a control cream immediately after tape stripping (TS).

Basal transepidermal water loss and barrier recovery rate values

were measured 6 hours after acute barrier disruption by TS using

Tewameter TM 210 (Courage and Khazaka, Cologne, Germany;

Grubauer et al., 1989; Feingold et al., 1990; Pinnagoda et al., 1990;

Holleran et al., 1991; Rogiers et al., 2001). The baseline value of

normal human skin is 7.2±0.48 g m�2 per hour. The measurement

conditions at room temperature ranged between 20 and 23 1C with a

relative humidity between 55 and 58%.

Animal study

Female hairless mice (Skh1/Hr) were housed in the animal

laboratory of Yonsei University Wonju College of Medicine.

Transgenic animals knocked out for the IL-1a functional (Type 1)

receptor and wild-type age-matched controls were purchased from

Jackson Laboratory (Bar Harbor, ME). Yonsei University Wonju

Campus Institutional Animal Care and Use Committee approved this

animal experiment.

Imiquimod application. In the animal study, we subdivided the

mice into two groups. One group represented mice treated with the

combination of tacrolimus and imiquimod on one flank, and

tacrolimus alone on the other flank. The other group of mice was

treated with only imiquimod on one flank and a control on the other

flank. In the former group, both flanks of the hairless mice were

treated with 0.03% tacrolimus (Protopic) twice daily and then 2.5%

imiquimod once daily on one flank with a control (Cetaphil) on the

other flank for 4 days. In the latter group, only 2.5% imiquimod was

applied once daily on one flank and a control (Cetaphil) on the other

flank for four days. After 24 hours of the last application, basal

transepidermal water loss and SC integrity, which was determined

by transepidermal water loss after stripping with D-Squame tape

(CuDerm, Dallas, TX), were measured. The barrier recovery rate was

determined 6hours after TS. Skin specimens were taken from all the

hairless mice and processed by EM, immunohistochemical staining of

IL-1a, mBD3 and CRAMP, real-time reverse transcription PCR for mRNAs

of mBD3, CRAMP, and epidermal lipid synthesis-related enzymes.

IL-1a intracutaneous administration. Flanks of hairless mice

were treated with topical 0.03% tacrolimus or petrolatum twice

daily for 4 days. After 24 hours of the final application, IL-1a
(Sigma-Aldrich, St Louis, MO; 50 ng in 100 ml of phosphate-buffered

saline; n¼ 6) or phosphate-buffered saline (100 ml; n¼ 6) was

injected intracutaneously into the flank of the mice. The barrier

was perturbed 5 minutes after IL-1a or phosphate-buffered saline

injection and the barrier recovery rate was measured after 6 hours

The dose of IL-1a (50 ng) was chosen because it is comparable to

previous studies in aged mice (Barland et al., 2004).

EM and quantitative analysis. Samples for EM were processed

using 2% aqueous osmium tetroxide postfixation, as described

previously. In order to exclude subjective bias in these morpholo-

gical studies, we quantitated both CD length and LB number in EM

pictures using a previously described objective method (Choi et al.,

2005). Five EM pictures taken at the same magnification (20,000� )

were analyzed and compared between the 2.5% imiquimod cream

and control cream-treated groups.

Assay for epidermal lipid synthesis-related rate-limiting
enzymes. To evaluate the effect of imiquimod on epidermal lipid

synthesis in tacrolimus-treated skin, full-thickness murine skin

samples were obtained from mice. For the quantitative analysis of

3-hydroxy-3-methylglutaryl-CoA reductase, serine-palmitoyl trans-

ferase, and fatty acid synthase activity, respective mRNAs were

measured using real-time reverse transcription PCR.

Real-time reverse transcription PCR

Isolation of the epidermis. Skin samples that were excised from

the treated area were immediately placed with the epidermis side

down on Petri dishes. Subcutaneous fat was removed with a scalpel,

and then the skin samples were placed epidermis side up in 10 ml of

10 mM EDTA in phosphate-buffered saline, at an incubation of 37 1C

for 35 minutes in order to separate the epidermis from the dermis.

The epidermis was finally scraped off with a scalpel and total RNA

was extracted (Wood et al., 1994).

Total RNA preparation and complementary DNA synthesis.
Total RNA was extracted using a monophasic solution of phenol and

guanidine isothiocyanate (TRIzol Reagent; Gibco BRL, Grand Island,

NY). RNA concentration was determined by a UV spectrometer at

260 nm. Aliquots (1.0 mg) of RNA from each sample were reverse
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transcribed using Moloney murine leukemia virus reverse transcrip-

tase (MML-V RTase, Promega, San Luis Obispo, CA). Briefly, RNA

samples were incubated at 80 1C for 5 minutes with molecular

biology grade water. After incubation on ice, primer extension and

reverse transcription were performed by adding 1� RT-buffer, 2 mM

deoxynucleotide triphosphates (dNTPs), 0.2 pM random hexamer

primer (Promega), and MML-V RTase (2.5 U ml�1) in 20ml reaction

volumes. Samples were then incubated at 42 1C for 45 minutes

before storage at �20 1C.

Quantitative PCR analysis of gene expression. The expression

of specific mRNAs was quantified using a Rotor-Gene 3,000 (Corbett

Life Science, Sydney, Australia). Briefly, 10ml PCR reactions were

setup containing Quantitect probe PCR Master mix (Qiagen, Hilden,

Germany) in a 2� solution, 8 mM manganese chloride, 200 mM

deoxynucleotide triphosphates (dNTPs), 1.25 U HotstartTaq poly-

merase, and 0.5 pMml�1 each of probes and primers. About 60 ng of

complementary DNA were used per reaction. All reactions used

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a house-

keeping gene, provided as an optimized control probe labeled with

TAMRA (Operon Biotechnologies, Cologne, Germany), enabling

data to be expressed in relation to an internal reference to allow for

differences in sampling. All fluorogenic probes for gene of interest

were labeled with 6-carboxyfluorescein (6-FAM). Data were

obtained as Ct values (the cycle number at which logarithmic PCR

plots cross a calculated threshold line) according to the manufac-

turer’s guidelines and used to determine DCt values (Ct of target

geneCt of housekeeping gene) as raw data for gene expression. Fold

change in gene expression was determined by subtracting DCt values

for imiquimod-treated samples from their respective control cream-

treated samples. The resulting DCt values were then used to

calculate fold change in gene expression as 2DDCt. All reactions

were performed in triplicate and the results are expressed as the

mean of values from three separate experiments. Samples were

amplified using primers and probes under the following conditions:

95 1C for 15 minutes followed by 45 cycles of 95 1C for 15 seconds

and 60 1C for 1 minute.

Primers and probes for PCR. Primer and probe sequences for

real-time reverse transcription PCR analyses are given in Supple-

mentary Table S1 online.

Immunohistochemical staining. Skin specimens were fixed in

10% formalin solution and embedded in paraffin. Sections of 5 mm

thickness were cut and stained with primary antibodies for IL-1a
(SantaCruz, Santa Cruz, CA), mBD3 (SantaCruz), and CRAMP

(SantaCruz). Briefly, after de-paraffinization, the sections were

rehydrated sequentially with 100, 90, and 70% ethanol and

incubated for 5 minutes in 3% H2O2 in Tris-buffered saline to

inactivate endogenous peroxidases. Samples were then blocked for

10 minutes with blocking serum solution (DAKO, Carpinteria, CA)

and incubated overnight at 4 1C with a primary antibody. After

several washes in Tris-buffered saline, samples were incubated

for 30 minutes with a secondary biotinylated antibody. The antigen

was visualized with the avidin–biotin complex system (Vector,

Burlingame, CA), according to the manufacturer’s instructions, by

using 3,30-diaminobenzidine tetrahydrochloride as the substrate.

Samples were examined under a light microscope.

Statistical analyses
All data are expressed as mean±SEM. Statistical analyses were

performed using paired and unpaired Student’s t-tests. Po0.05 was

considered statistically significant.
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