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The standard OpenMath is an enabling technology for creating an integrated computer
environment in which software packages for computer algebra and for proof checking
can be combined. Here we demonstrate how OpenMath can be employed for generating
interactive mathematical documents containing primality proofs. Our case study takes
place within a browser; once a prime number is specified, a document appears summa-
rizing the proof in a number of assertions. By clicking an assertion regarding the truth of
an arithmetic equality, a computer algebra calculation is invoked verifying the equality.
By clicking an assertion regarding a specific mathematical lemma called Pocklington’s
Criterion, a verification of the corresponding formal proof is carried out by a proof
checker. Moreover, the whole document is structured in such a way that it can be easily
translated to a formal proof object. OpenMath supports the interaction between the
document as it appears in the browser and the mathematical software packages. This
paper begins with an introduction to OpenMath and a brief comparison with MathML.
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1. Introduction

The observation that computation and deduction are closely related led to several ap-
proaches to integrate computer algebra packages with theorem provers. Roughly speak-
ing, there are three directions in which to proceed: include computer algebra capabilities
in theorem provers (Harrison and Théry, 1993; Ballarin et al., 1995); include theorem
proving capabilities in computer algebra packages (Clarke and Zhao, 1992; Jackson, 1995;
Buchberger et al., 1997; Dunstan et al., 1998); and include computing and theorem prov-
ing capabilities in a new framework (Chew et al., 1996).

Connections between computer algebra software and proof checker/automated deduc-
tion software are usually being developed by partners from one of the two research
communities. In this light, it is no surprise that most approaches have the flavor of
incorporating one into the other.

The use of OpenMath enables a flexible and, indeed, open approach: both the computer
algebra packages and the proof checkers are usable via an independent standard language.
It is up to the user which tools to use for setting up an integrated system, without having
to take a particular one as a fixed starting point. In this way, the idea of verification of
results and indeed proof checking gains more solid ground, as one might well replace one
software package by another.

In this paper we provide an introduction to OpenMath (the two authors have been
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involved in the definition of the OpenMath standard language), we demonstrate how to
use it for formal mathematics via typing and, finally, we describe a case study in which
a primality proof of, say, a 10 digit number can be constructed as an OpenMath object
and presented in human readable form as an interactive document.

This paper introduces OpenMath in Section 2 and compares it to MathML in Section 3.
In Section 4 a subclass of OpenMath objects, called Strong OpenMath, is defined for
which meaningfulness cannot only be well defined but also made operational. The case
study is presented in Section 5.

2. OpenMath

OpenMath is a language for representing and communicating mathematics (Abbott
et al., 1998). Originally, it was conceived as a language for all computer algebra packages
(Dalmas et al., 1997; OpenMath, 1999). Currently it is equipped for conveying mathe-
matical expressions from all areas of mathematics, for instance logic. Now OpenMath can
be used to express formal mathematical objects, so that formal theorems and proofs, un-
derstandable to proof checkers, can be communicated, as well as the usual mathematical
expressions handled by computer algebra packages.

In addition to the language, OpenMath will also provide a range of applications and
plug-ins which use OpenMath in several areas, in particular electronic publications, math-
ematical software packages, and the worldwide Web. The great potential of using Open-
Math technologies to mix computation and deduction is demonstrated by the example
of an interactive mathematical document.

OpenMath consists of several aspects. Those presented in this section are: the archi-
tecture of how OpenMath views integration of computational software, the OpenMath
Standard, and the OpenMath Phrasebooks and tools. The OpenMath Standard is con-
cerned with the objects, their encodings, and the Content Dictionaries. The reader is
referred to the OpenMath Standard (OpenMath, 1999) for details.

2.1. OpenMath ARCHITECTURE

The architecture of OpenMath is made up of three layers of representations of a math-
ematical object: the private layer for the internal representation, the abstract layer for
the representation as an OpenMath object, and the communication layer for translating
the OpenMath object to a stream of bytes. An application-dependent program manipu-
lates the mathematical objects using its internal representation, it can convert them to
OpenMath objects and communicate them by using the byte stream representation of
OpenMath objects.

It is not within the scope of OpenMath to define how communication takes place,
or which services are requested in an integrated mathematical environment. It was de-
cided at the initial stage of its development that OpenMath would concentrate on the
objects dispatched, namely on the terms of some mathematical theory. Therefore, Open-
Math is one ingredient among many others that are needed for achieving integration of
computational tools.

OpenMath objects are representations of mathematical entities that can be communi-
cated among various software applications in a meaningful way; that is, preserving their
“semantics”. OpenMath provides basic objects such as: integers, symbols, floating-point
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numbers, character strings, byte arrays, and variables; and compound objects: applica-
tions, bindings, errors, and attributions. Content Dictionaries (CDs) specify the meaning
of symbols informally using natural language and, optionally, they might formally assign
type information in the signature of the symbols. CDs are public and are used to repre-
sent the actual common knowledge among OpenMath-compliant applications. A central
idea to the OpenMath philosophy is that CDs fix the “meaning” of objects independently
of the application.

The integration of computer algebra packages and proof checkers in an interactive doc-
ument is achieved by means of OpenMath Phrasebooks; they convert OpenMath objects
to and from the software package’s internal representation and determine the package’s
actions. The translation is governed by the CDs and the specifics of the software packages.
The example given in this paper uses phrasebooks for CoQ and Maple.

2.2. OpenMath OBJECTS

We now focus on the abstract layer, where mathematical objects are represented by
labelled trees, called OpenMath objects or OpenMath expressions. The formal definition
of an abstract OpenMath object is given below.

DEFINITION. OpenMath objects are built recursively as follows.

(i) Basic OpenMath objects, e.g. integers, IEEE floating-point numbers, Unicode char-
acter strings, byte arrays, symbols (defined in CDs) and variables, are OpenMath
objects.

(ii) If Aq,..., A, (n > 0) are OpenMath objects, then

application(4,,...,A,)

is an OpenMath application object.
(iii) If Sy,...,S, are OpenMath symbols, and A, A;,...,A,(n > 0) are OpenMath
objects, then
attribution(A, S141,...,5,4,)

is an OpenMath attribution object and A is the object stripped of attributions.
The operation of recursively applying stripping to the stripped object is called
flattening of the attribution. When the stripped object after flattening is a variable,
the attributed object is called attributed variable.

(iv) If B and C are OpenMath objects, and v1,...,v,(n > 0) are OpenMath variables
or attributed variables, then

binding(B,v1,...,v,,C)

is an OpenMath binding object.
(v) If S is an OpenMath symbol and A4, ...,A,(n > 0) are OpenMath objects, then

error(S, Ay,..., A,)

is an OpenMath error object.

All symbols appearing in an OpenMath object are defined in a Content Dictionary as
described in Section 2.4. In this paper we denote by foo:bar the symbol with name bar
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defined in the CD foo. Application in OpenMath is either intended to be a functional
application, like in the object application(transcl:sin, z), or a constructor, like in
application(foo:Rational, 1, 2). Binding objects, like binding(1c:Lambda, z, appli-
cation(arithl:plus, x, 2)), can be used to express logical statements. Attribution can
act as either “annotation”, in the sense of adornment, or as “modifier”. Attribution is
used in Section 4 to express the judgment that says that object A has type t by attri-
bution(A, ecc:type t). Errors occur during the manipulation of OpenMath objects and
so are of real interest only when communication is taking place.

2.3. OpenMath ENCODINGS

OpenMath encodings map OpenMath objects to byte streams that can be easily ex-
changed between processes or stored and retrieved from files.

Two major encodings supported and described by the OpenMath Standard are XML
and binary. The first encoding uses only ISO 646:1983 characters (ISO, 1983) (AscII
characters) and is “XML compatible”, thus it is suitable for sending OpenMath objects
via e-mail, news, cut-and-paste, etc. and for being further processed by a variety of XML
tools.

For instance the encoding of application(rem, application(gcd, 12, 3), 2) is:

<0MOBJ>
<OMA><0OMS cd="integer" name="rem"/>
<OMA><0OMS cd="integer" name="gcd" />
<OMI>12</0MI>
<OMI>3</0MI>
</0MA>
<OMI>2</0MI>
</0MA>
</0MOBJ>

Here, OMOBJ encapsulates an OpenMath object, OMA indicates an application object,
OMS a symbol defined by the name and cd elements and OMI an integer.

The second encoding is an ad hoc binary encoding meant to be used when compactness
is crucial, for instance in interprocess communications over a network.

2.4. OpenMath CONTENT DICTIONARIES

A Content Dictionary holds the meanings of (various) mathematical ‘words’ referred
to as symbols. A set of official CDs, each covering a specific area has been produced
and is available from the CD repository of the OpenMath society. CDs may be grouped
into CD groups, so that applications can easily refer to collections of CDs. For instance,
the MathML CD group covers essentially the same areas of mathematics as the content
elements of the Web Consortium MathML recommendation (Buswell et al., 1998). The
Types CD group used in Section 4 collects symbols used in languages for type theory.

CDs hold two types of information: that which is pertinent to the whole CD (appears
in the header of the CD), and that which is restricted to a particular symbol definition
(appears in a CD Definition). Information pertinent to the whole CD includes the name,
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a description, an expiration date, the status of the CD (official, experimental, private,
obsolete), and an optional list of CDs on which it depends. Information restricted to
a particular symbol includes a name, and a description in natural language. Optional
information examples of the use of this symbol, and formal properties satisfied by this
symbol (i.e. theorems expressed OpenMath objects), or commented (i.e. just valid XML).
Formal signatures and definitions are collected in additional files that can be associated
to a CD. Axiomatic definitions in a specific formal system are expressed as OpenMath
objects in DefMP (defining mathematical property) files. Signatures of symbols are ex-
pressed in Signature files by OpenMath objects representing types in a certain type
system. We rely on this in Section 4 where we give a detailed description of how to assign
formal signatures to OpenMath objects, whereas in Section 5 we give an example of a
defining mathematical property for an OpenMath symbol. A set of these files based on
extensions of the Calculus of Constructions is also available from the CD repository.

2.5. OpenMath PHRASEBOOKS

The programs that act as an interface between a software system and OpenMath are
called phrasebooks. Their task is to translate the OpenMath object, as understood by
means of CDs, to the corresponding internal representation used by the specific software
package.

Several phrasebooks are under development as part of the OpenMath Esprit Consor-
tium project. Most notably, prototype versions of phrasebooks for the computer algebra
packages AXIOM and GAP are already available. These are examples in which the software
package itself provides the interface to and from OpenMath internally.

Phrasebooks for Maple and REDUCE have been produced in the initial stage of Open-
Math. The current release of the Naomi OpenMath JAVA Library by the PolyMath Devel-
opment Group (PolyMath, 1999) also includes, besides classes representing OpenMath
objects, phrasebook classes. In particular, it is possible to encode and decode arith-
metical expressions written in Mathematica or in Maple syntax by using the respective
phrasebooks. This approach is independent of the specific software package, which is left
untouched. For instance, the Maple phrasebook converts Maple notation to the corre-
sponding OpenMath abstract object, e.g. the + in the expression x + y is represented
by use of arithl:plus, which is associative and commutative addition in Abelian semi-
groups according to the definition in the CD arithl. A Mathematica phrasebook based
on the OpenMath C library is available at INRIA.

In our development, we have taken the approach of not modifying the software pack-
ages we want to interface. Therefore, we independently built phrasebooks for the proof
checkers Lego and CoQ using the Naomi Java library.

Note that the OpenMath phrasebooks are mainly concerned with the translation be-
tween OpenMath objects and internal system-specific representations. The interpreted
behavior for most computer algebra packages receiving an OpenMath object is an eval-
uation. For instance, upon input of the object application(integer:rem, applica-
tion(integer:gcd, 12, 3), 2) Mathematica would output 1.

In general, control of the interaction with a software package is not ruled by the existing
OpenMath libraries. For this task, OpenMath allows freedom of choice between several
paradigms (Bertoli et al., 1998; Franke et al., 1999).
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3. OpenMath and MathML

In the previous section we introduced OpenMath. Because of its XML encoding, Open-
Math may seem to be a mark-up language for mathematics that is competing with
MathML (Caprotti and Carlisle, 1999; Buswell et al., 2000). In fact, the two languages
complement each other: MathML can be used for presenting mathematical content writ-
ten in OpenMath, especially in areas where MathML-Content does not suffice; the type
theoretical concepts introduced in Section 4 are examples of this. Moreover, OpenMath
is designed to be extensible, whereas MathML-Content covers K—12 mathematics and de
facto refers to OpenMath for extensions.

Translation tools (Buswell, 1999) have been produced for the common subset of math-
ematics covered by MathML-Content and by the OpenMath MathML CD group. For pre-
senting OpenMath objects by use of MathML-Presentation, one may use XSL stylesheets
driven by OpenMath CDs. Sample stylesheets are available from the OpenMath Society
web pages.

The generality of OpenMath makes it difficult for general-purpose software to imple-
ment it so that it captures all the functions available; the package’s phrasebook would
need a great variety of CDs. In this vein it is to be expected that specialized packages
will interface to OpenMath, leaving MathML to the less specific software packages. But
another development may be that general-purpose packages are supplied with several
phrasebooks, one for each (specific) purpose. For instance, in order to use Maple or
Mathematica as a back engine to an interactive document such as Algebra Interactive!
(Cohen et al., 1999), a phrasebook supporting a very limited number of CDs would be
needed.

4. Strong OpenMath

Although OpenMath does not enforce formal specification of symbols by using signa-
tures and axiomatic definitions, it recognizes their advantages and leaves room to adopt
them if required. In particular, formal signatures in a specific type system can be used
to assign mathematical meaning to OpenMath objects in such a way that validation of
objects depends exclusively on the context determined by the CDs and on some type
information carried by the objects themselves. When defining mathematical properties
(introduced in Section 2.4) are used to axiomatize symbols in terms of previously intro-
duced symbols, automated verification techniques can be applied. In this section, we give
details on how this is achieved.

Extensions of the Calculus of Constructions (CC) have been chosen as a starting
point for assigning signatures to OpenMath symbols because they are expressive, well
suited to modeling algebra (Bailey, 1998; Pottier and Théry, 1998; LEGO, 1999), and
have decidable type inference. Various extensions of the CC have been implemented in
freely available software packages such as Lego or CoqQ (Luo and Pollack, 1992; Coq,
1999). These packages provide the necessary functionality for performing type checks on
OpenMath objects. Since the signatures are defined in separate Signature files, it is easy
to switch type systems: simply convert, wherever applicable, the available signatures to
the new type system.

To exemplify how formal meaning can be assigned to OpenMath objects, we take an
instance of the formal type system called Extended Calculus of Constructions (ECC)
(Luo, 1990) as semantics for OpenMath. We call it OM-ECC; it has a shallow hierarchy
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of type universes for the basic OpenMath objects. A specific universe is assigned to the
type of OpenMath types.

DEFINITION. (OM-ECC TERMS) Terms of OM-ECC are defined inductively as follows.

(1) The constants for universes Prop, symtype, and omtype, and the constants integer,
float, string, bytearray for the types of basic OpenMath objects are terms.

(2) Integers, floating-point numbers, strings, and bytearrays are terms (constants).

(3) Variables (z,y,...) are terms.

(4) If M, N and A are terms, then so are:

MN Xz:MN Tz:MN Sz:MN (M,N)a m (M) m(M).

In this definition, as is done in ECC, the pair constructor is heavily typed. In order to
avoid type ambiguities, we take the type A of the pair as its third argument.

Now we consider how to employ OpenMath for expressing OM-ECC. Whereas applica-
tion is built-in, OpenMath has to be equipped with new binding symbols for constructing
types and with constants expressing type universes. The Types CD group collects all CDs
that define symbols for expressing formal terms and types. In particular, abstraction and
function space type are represented using binding symbols 1c:Lambda (\), 1c:PiType (II)
defined in a CD called 1c (for lambda calculus). The CD omtypes provides the symbols
for the names of the types of the basic OpenMath objects. The CD typesorts defines
the symbol typesorts:Prop for the universe of propositions. The symbols ecc:Pair
(()) for pairing, ecc:PairProjl and ecc:PairProj2 (m; and my) for projections, and
ecc:SigmaType (X) for the dependent sum type are defined in the CD ecc.

Now that we have introduced OpenMath symbols to represent the language of OM-
ECC, we assign the formal meaning to a class of OpenMath objects in terms of OM-ECC.
As a consequence, for this class of objects, the meaning of the OpenMath constructor
application will depend on the head function symbol: provided the head is not the
symbol ecc:Pair, it will be a functional application as intended in lambda calculus. The
OpenMath constructor binding will take its semantics from the binding symbol.

Below we define a natural (partial) semantics for OpenMath by oM-Ecc. OpenMath
objects that can be mapped by the informal procedure described here to a term in OM-
ECC are called Strong OpenMath objects.

Basic Objects The OpenMath symbols in the CD omtypes represent OM-ECC type

constants; more precisely, omtypes:integer for integer, omtypes:float for float,
omtypes:string for string, omtypes:bytearray for bytearray, omtypes:symtype
for symtype, and omtypes:omtype for omtype. The symbol typesorts:Prop is in-
terpreted as the constant for the universe Prop of propositions.
An OpenMath symbol defined in a CD is mapped to a constant in OM-ECC only if
the following condition is satisfied. The symbol definition in the CD is linked either
to a formal signature or to a formal defining mathematical property. These are
given in terms of OpenMath objects that map to OM-ECC. When this is true, then
the OpenMath symbol is mapped to a constant in OM-ECC of the appropriate type.
For instance, if the symbol foo:posintT for the type of positive integers is linked
to the signature omtype:symtype, then it corresponds to a new OM-ECC constant
posintT of type symtype.
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Table 1. Strong OpenMath.

OpenMath OM-ECC

attribution(A,ecc:type t,...) A

attribution(A, St,...) A

binding(lc:Lambda,attribution(v, ecc:type t), A) AD :
II
%

t.A
binding(lc:PiType,attribution(v, ecc:type t),u) DRR X}
binding(ecc:SigmaType,attribution(v ,ecc:type t), u) PR}
binding(B,attribution(v,ecc:type t), A) (Bt (\o:t.A))
application(ecc:Pair, A1, Aa, S) (AAl,AAAQ>§
application(ecc:PairProji1, A) m1(A)
application(ecc:PairProj2, A) ma(A)
application(F, A) FA

The basic objects, integers, floating-point numbers, character strings, and byte ar-
rays, are Strong OpenMath and correspond to constants (OM-ECC ground terms)
of type integer, float, string, and bytearray, respectively.

OpenMath variables are Strong OpenMath and correspond to variables: more pre-
cisely the OpenMath variable with name z corresponds to the OM-ECC variable
x.

Compound Objects The remaining OpenMath objects are summarized in Table 1,
where # in the second column denotes the OM-ECC term corresponding to the Strong
OpenMath object t. The interpretation proceeds top down from the root of the
OpenMath tree down to the basic objects in the leaves.

A few remarks are in order. An attributed object is interpreted as the stripped
object (as in the second line of Table 1 where S is not the symbol ecc: type) except
when one of the attributes is the symbol ecc: type. In this case the attributed object
is interpreted as a type judgment.

The sixth line of Table 1 (in which B is neither lc:Lambda nor lc:PiType nor
ecc:SigmaType) states that new binding symbols can be introduced in CDs pro-
vided they are given a signature mapping them to higher-order functions. A bind-
ing object of the form binding(B,vy,...,v,, A) is considered an abbreviation of
binding(B, v, binding(B,vs,...)). Similarly, an application object of the form
application(F, A,...,A,) (where F' is not the symbol ecc:Pair) is considered
an abbreviation of the object application(... ((F, A1), A43)..., Ap).

OpenMath error objects are not given any formal meaning because, in this setting,
we do not consider them to be mathematical objects.

An OpenMath object in the first column of Table 1 is Strong OpenMath if all the
subobjects it contains are Strong OpenMath. Its semantics is the corresponding OM-ECC
term recursively obtained in the second column. In other words, the class of OpenMath
objects for which the mapping above is well defined is called Strong OpenMath. The
advantage of Strong OpenMath is that, for this class of objects, the notion of meaning-
fulness coincides with that of having a type. Moreover, it can be decided whether an
OpenMath object is meaningful by means of an efficient algorithm, for instance the type
checking algorithm implemented in the package CoQ (or Lego).
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5. A Specimen Interactive Mathematical Document

One of the major application areas for OpenMath is envisioned to be that of publishing
interactive mathematics. In this section, we illustrate by means of a case study some of
the interactivity that can already be achieved in a browser. To this end, we bring together
the software packages CoqQ, GAP and Maple.

Researchers in formal mathematics stress the importance that a mathematical text
be checked automatically for its validity and correctness on the basis of some initial
assumptions. Projects such as Automath (Nederpelt et al., 1994) and Mizar (Trybulec,
1980) confirm this point of view. On the other hand, texts that are actually machine
checkable do not appear palatable to humans.

Several partial solutions to the problem of producing text which is on the one hand fit
for human reading and on the other hand automatically verifiable have been offered. For
instance, the editing tool of CoQ demonstrates how the mathematical vernacular can
dress up each step used in a formal proof and transform it to human-readable jargon.
The advantage is clearly that the computer acts as a kind of referee for the logical cor-
rectness of the results. However, because each single assertion is checked, even elementary
theorems of first-year algebra become quite cumbersome to prove. In general, proofs of
theorems in algebra require arithmetic, which might be carried out by a computer alge-
bra package, and the logic flow of inference amongst steps in the proof, which might be
relegated to an automated theorem prover.

In order to apply this idea to a representative case in point, we considered the primality
proof of an integer n by use of Pocklington’s Criterion. We shall first recall the criterion,
next its application in producing an interactive proof of the primality of a user-input
number and, finally, describe a formalization in C0OQ.

The criterion has already been studied from a formal point of view by Elbers (1998).

LEMMA 5.1. (POCKLINGTON’S CRITERION) Letn € N, n > 1 withn—1 = ¢-m such that
q=qi---q for certain primes qi,...,q;. Suppose that a € 7 satisfies a® 1 =1 (mod n)

and gcd(anq_i1 —1,n)=1forali=1,...,t. If ¢ > \/n, then n is a prime.

A theorem prover like COQ can use the criterion for showing primality of a certain
number n if it knows the numbers ¢, q1,...,q:, a (and recursively so for the primes
q1,-.-,q¢) and if it can deal with ordinary and modular arithmetic, including ged’s.
Given these witnesses, showing that n is prime amounts to verifying that all conditions
of Pocklington’s Criterion are met. Most of these conditions are trivially verified by a
computer algebra package, but they are also relatively simple for a proof checker. Proving
that the numbers ¢1, . . ., ¢; are prime is done by recursive calls of Pocklington’s Criterion
except when the prime number is 2.

In the computer algebra package GAP it is easy to write a program that supplies the
requested witnesses to a human or to a theorem prover; for instance, a is given by GAP’s
function PrimitiveRootMod () which produces a primitive root a modulo n; that is, an
element a such that "~ = 1 (mod n) and a’ # 1 (mod n) fori =1,...,n — 2.

In our setup, we provide a web page in which the user types a positive number n
as a result of which either a factorization of n is returned or a proof of primality of
n is produced in which each assertion roughly corresponds to a subgoal in the formal
proof. The program that produces this trace of the primality proof is written in GAP and
recursively produces the trace for all the prime numbers needed in the initial proof.
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The returned document’ is interactive as it is possible to open and close proofs, and to
validate every arithmetic assertion using a computer algebra package. This is achieved by
enabling calls to a JAVA applet which controls the interaction between the browser and
converts the available mathematical services. It also acts as a phrasebook for the packages
providing these services. For example, for validation of a mathematical object, the applet
sends out a command such as evalb for Maple and Check for CoQ, applied to the properly
translated object, and translates the output of the package back into OpenMath. Because
of the use of OpenMath and of the customizability of the JAVA applet, the requested
services can be provided over the net by a wide range of mathematical software packages.

The document returned by GAP is written in OMDoC, an extension of OpenMath for
including OpenMath objects in mathematical documents (Kohlhase, 2000). Note that
OpenMath alone is not enough to express a corpus of mathematical knowledge because
it lacks the mechanisms to relate such concepts as definitions, theories, and proofs of
theorems. Moreover, the command language used during an interactive session with a
computational tool is not cleanly specified within OpenMath. These limitations are the
reasons why OpenMath documents have been introduced. Currently, OMDoOC is being
used as a source format for the next release of Algebra Interactive! (Cohen et al., 1999),
and for the knowledge base of mathematics MBase (Kohlhase and Franke, 2001). We will
not enter the details of OMDOC here but concentrate on the OpenMath aspects.

Included here is a textual copy of the initial assertions in the document produced
interactively for proving primality of the 10-digit number 1234567891:

Assertion 1: Pocklington’s Criterion.
Assertion 2: The number 1234567891 is prime because of
* Pocklington’s Criterion applied with n = 1234567891,
q = 13717421, m = 90, t = 2, q[1] = 3803, q[2] = 3607.
* Assertions 3,..., 8, verifying Pocklington’s conditions,
* Primality of the numbers 3803, 3607, which will be
established below, see Assertions 9, 15.

Assertion 3: 1234567890 = 13717421 * 90

Assertion 4: 13717421 = 3803%3607

Assertion 5: 1371742172 >= 1234567891

Assertion 6: 37(1234567891-1) = 1(mod 1234567891)
Assertion 7: gcd(37((1234567891-1)/3803)-1,1234567891) = 1
Assertion 8: gcd(3~((1234567891-1)/3607)-1,1234567891) = 1

Assertion 9:The number 3803 is prime because of
* Pocklington’s Criterion applied with n = 3803, q = 1901,
m=2,t=1, ql1] = 1901.
* Assertions 10,..., 14, verifying Pocklington’s conditions,
* Primality of the number 1901, which will be established
below, see Assertion 21.

The total number of assertions in the document is, in this case, 52. These assertions
are represented as OpenMath objects in the source using the CDs arithl, relationi,

Thttp://crystal.win.tue.nl/~olga/openmath/pocklington/.
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integer, setname and the CDs for the types omtypes, lc, cc, and icc. On screen they
are rendered in human-readable syntax by a conversion of the XML source (in OMDoc
format) to HTML.

In order to include a formalization for the statement of Pocklington’s Criterion itself,
we take the OpenMath object that represents the formal definition in CoqQ described
below. Again, we have to equip OpenMath with the right symbols to be able to express
the notions involved in stating the criterion. As a guideline, we take the symbols used
in the CoQ context. This is done by introducing a private CD, called pock, and by
giving, besides a natural language description, a formal definition in terms of a DefMP.
For instance, the OpenMath symbol pock:divides is defined by the property:

binding(lc:Lambda,
attribution(n, icc:type, setname:N),
attribution(m, icc:type, setname:N),
binding(quant1:exists,
attribution(q, icc:type, setname:N),
application(relationl:eq, m,
application(arithl:times, setname:N, n, q))))

When feeding this object to CoQ, our CoQ phrasebook translates it to the CoQ definition
of the symbol divides thus extending COQ’s context.

Definition divides: nat -> nat -> Prop :=
[n,m:nat] (EX g:nat | m=(mult n q)).

Note that the phrasebook translates the OpenMath symbols relationl:eq and
arithl:times, available in official CDs, to C0Q’s library functions = and mult. The
formal signatures of the symbol arithl:times, specifying the domain on which multipli-
cation lives, disambiguates the translation of application(arithl:times, setnamel:N,
n, q) to (mult n q), where mult is CoQ’s multiplication over the natural numbers.
Strictly speaking, because we are using CoQ, the type system considered for this exam-
ple is the Inductive Calculus of Constructions. The additional constructors for inductive
types are available as OpenMath symbols in the CD icc. Once all the symbols needed
are given in OpenMath, it is an easy exercise to construct the OpenMath object stating
Pocklington’s Criterion.

Finally, we briefly describe a CoQ formalization of Pocklington’s Criterion that is
indeed very close structurally to the OpenMath object and has the added advantage of
being more concise. We assume that the context here contains notions available from
the CoQ standard libraries and notions that are user defined, i.e. for the type of lists of
natural numbers (natlist), for the product of all elements in a list (product), and for
testing that a predicate holds on all members of a list (allPrime, allLinComb). Then
Pocklington’s Criterion is formally stated as follows.

Theorem pocklington:
(n,q,m:nat) (a:Z) (qlist:natlist)
(gt n (1)) >
n=(S (mult q m)) ->
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g=(product glist) ->
(allPrime qlist) ->
(Mod (Exp a (pred n)) ‘1’ n) ->
(allLinComb a n m qlist) ->
(le n (mult q @) ->
(prime n).

We have started to investigate the possibility of producing and including in the source
document the OpenMath object representing the formal proof object, of type say ap-
plication(pock:prime,1234567891). A JAVA applet, jointly developed in collaboration
with Oostdijk (Caprotti and Oostdijk, 2000), generates a COQ tactic script for proving
primality of an arbitrary number n (practically, the number n is bound by the size of the
maximum natural number available in CoQ). The script is then used by CoqQ to produce
the proof object which is representable as an OpenMath object. Again, the extensional-
ity of OpenMath allows us to define a private cog CD for symbols that correspond to
inference rules appearing in CoQ’s proof objects and are formally defined in terms of the
inductive constructor symbols given in the CD icc.

6. Conclusion

Now that the OpenMath Standard has come about, the question arises of how to
structure documents containing mathematics represented by OpenMath objects. Such
a document could be a single OpenMath object, for instance an OpenMath sequence
of OpenMath objects, many of which are strings representing text. Another approach
would be to allow for OpenMath objects appearing in an XML document as was done in
so-called “OpenMath documents”. An advantage of the latter approach might be that
it allows for greater interactivity. In a case study in this direction, we have written an
interactive document that, upon inputing a number, decides whether or not it is prime
(if not too big, of course), and if so, delivers a proof in words, containing assertions
about numbers. Since the arithmetic statements are produced in OpenMath, they can
be checked by any software package that understands a specific, small set of OpenMath
CDs. Likewise, since the reasoning is by standard (natural language) sentences, it can
easily be translated into a formal proof, checkable by, say, C0Q, perhaps modulo the
arithmetic. The interactive production of the document containing the proof is carried
out by a GAP program running in the background.

Although OpenMath is suitable for describing mathematical objects in a context de-
fined by means of CDs, Signature files and DefMP files; so far, little attention has been
paid to the inter-relations among these definitions and (defining) properties. Our case
study shows that we can set up a context adequate for defining a rigorous primality
proof that is both human-readable, and verifiable by CoQ and Maple, or by GAP and
Lego. In the document and in the interaction with these background software packages,
OpenMath is the common language.

The OpenMath document produced in our case study demonstrates the power of blend-
ing informal, formal and computational aspects into one entity. By perusing, clicking, and
elaborating the document, the reader may convince themself of the correctness (validity)
of the content. We envisige that this is the way a lot of mathematics will be handled in
the future.
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