
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Topology and its Applications 155 (2008) 1201–1206

www.elsevier.com/locate/topol

Embeddability of multiple cones

D. Repovš a,∗, W. Rosicki b, A. Zastrow b, M. Željko a

a Institute of Mathematics, Physics and Mechanics, University of Ljubljana, PO Box 2964, Ljubljana 1001, Slovenia
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Abstract

The main result of this paper is that if X is a Peano continuum such that its nth cone Cn(X) embeds into R
n+2 then X embeds

into S2. This solves a problem proposed by W. Rosicki.
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1. Introduction

The classical Lefschetz–Nöbeling–Pontryagin Embedding Theorem [10] asserts that every compact metric space
X of dimension n embedds into R

2n+1. We are interested in the relationship between the embeddability of X and
embeddability of its Cartesian product X × In with a cube In (respectively its cone C(X), iterated cone Cn(X) =
C(. . . (C(X)) . . .), suspension Σ(X)). Clearly, if X embeds in R

m, then X × In and Cn(X) embed into R
n+m. How-

ever, sometimes they embed into lower-dimensional Euclidean space. Such is the case for the spheres Sn, where Sn,
C(Sn) ∼= Bn+1 and Sn × I all embed into R

n+1.
Let X be a Peano continuum. It was proved in [14] that if the cone C(X) of X embeds into R

3, then X embeds
into S2. As a consequence, if the suspension Σ(X) of X embeds into R

3, then X is planar. Note that for each
n � 3, there exists a Peano continuum Xn such that Xn is not embeddable in Sn, whereas the cone C(Xn) of Xn is
embeddable in R

n+1 (see [14]).
The main result of this paper is Theorem 1.1 which solves a problem from [14]. Our proof is based on the methods

of [4] and [14].

Theorem 1.1. Let X be a Peano continuum. Suppose that for some n ∈ N, Cn(X) is embeddable in R
n+2. Then X is

embeddable in S2.
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Fig. 1. Kuratowski curves K1, K2, K3, K4.

Let X be a Peano continuum. Claytor [7] proved that X is embeddable in S2 if and only if X does not contain any
of the Kuratowski curves K1, K2, K3, K4 (see Fig. 1).

2. Preliminaries

A space X is said to be planar if X is embeddable in R
2. We say that X is locally planar if for every point x ∈ X

there exists a neighbourhood Ux of x in X such that Ux is embeddable in R
2. Rosicki [13, Theorem 1.1] proved that if

a Peano continuum X is embeddable in R
3 and X is a nontrivial Cartesian product X = Y × Z then one of the factors

is either an arc or a simple closed curve.
Rosicki [13] also proved that if a Peano continuum X is embeddable in R

3 and is homeomorphic to the product
Y ×S1 then the factor Y must be planar. Alternatively, if X = Y ×[0,1] is embeddable in R

3 and Ȟ 1(X) = Ȟ 2(X) = 0
then Y must be planar. Cauty [4], generalizing Rosicki [13], proved that for every n > 3 and every Peano continuum
X such that X × In−2 is embeddable into an n-manifold, it follows that X must be locally planar. This theorem was
stated earlier by Stubblefield [15]. However, Burgess [2] found a mistake in his proof.

Borsuk [1] constructed an example of a locally connected, locally planar continuum X which is not embeddable
into any surface. This continuum contains a sequence (Xn) of subsets homeomorphic to Kuratowski curve K1 which
converge to an arc. Cauty [4] proved that X × In−2 is not embeddable into any n-manifold so the converse to his
theorem does not hold.

3. Local separation

We say that a subset D ⊂ R
n locally separates R

n at the point x0 ∈ D into k ∈ N components if there exists ε > 0
such that for all 0 < δ < ε, the set B(x0, δ) \ D has exactly k components A1, . . . ,Ak for which x0 ∈ Ai , for all
i ∈ {1, . . . , k}.

It is easy to prove the following lemma using similar methods as in the proof of Lemma 1 in [14].

Lemma 3.1. A homeomorphic image of any n-disk locally separates R
n+1 at any point of its interior into two compo-

nents.

Note that Cn(X) = σn−1 ∗ X = {xt + y(1 − t); x ∈ σn−1, y ∈ X, t ∈ [0,1]}, where σn−1 is an (n − 1)-simplex.
Then σn−1 ∗ {x} is an n-ball and σn−1 ∗ I is an (n + 1)-ball. We consider σn−1 as a subset of σn−1 ∗ X.

Lemma 3.2. Let Ii , i ∈ {1, . . . , k}, k > 1 be arcs with common endpoints and pairwise disjoint interiors and Ck =
Cn(

⋃k
i=1 Ii) = σn−1 ∗ (

⋃k
i=1 Ii). Let h :Ck → R

n+2 be an embedding. Then h(Ck) locally separates R
n+2 at any

point h(x0), where x0 is an interior point of σn−1, into k components (where σn−1 is considered as a subset of Ck).
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Proof. The proof is by induction on k. If k = 2, then C2 = σn−1 ∗ S0 ∗ S0 hence h(C2) locally separates R
n+2 at

h(x0) into two components, by Lemma 3.1.
Assume that Lemma 3.2 holds for k − 1. Choose ε > 0 smaller than the distance between h(x0) and the image of

∂σn−1 ∗ (
⋃k

i=1 Ii). Let δ > 0 be so small that

Dk = h
(
Ck ∩ B(x0, δ)

) ⊂ B
(
h(x0), ε

)
.

There exists an open connected set Uk ⊂ R
n+2 such that Dk = Uk ∩h(Ck). Consider the exact sequence of the pair

(Uk,Uk \ Dk):

→ H1(Uk) → H1(Uk,Uk \ Dk) → H0(Uk \ Dk) → H0(Uk) → H0(Uk,Uk \ Dk) → 0.

Since Uk is an open (n + 2)-manifold, H1(Uk) ∼= Ȟ n+1
c (Uk) by the Poincaré duality, where Ȟc denotes the Čech

cohomology with compact supports. Also H1(Uk,Uk \ Dk) ∼= Ȟ n+1
c (Dk) (see [9, VIII, 7.14], where L = ∅, K = Dk

and X = Uk).
We know that H0(Uk,Uk \ Dk) = 0 because Uk is arc-connected and Uk \ Dk 	= ∅. Therefore we can consider the

exact sequence

→ Ȟ n+1
c (Uk) → Ȟ n+1

c (Dk) → H0(Uk \ Dk) → H0(Uk) → 0.

Next we show by induction that the map Ȟ n+1
c (Uk) → Ȟ n+1

c (Dk) is trivial. If k = 2 then Dk is an open (n + 1)-ball.
Then H0(Uk \ Dk) ∼= Z

2, by Lemma 3.1. Since Ȟ n+1
c (Dk) ∼= Z and H0(Uk) ∼= Z, we obtain the exact sequence

Ȟ n+1
c (Uk) → Z → Z

2 → Z → 0.

Hence the map Ȟ n+1
c (Uk) → Ȟ n+1

c (Dk) is indeed trivial, as asserted.
Since Ȟ n+1

c (D2) ∼= Z, we obtain by induction that Ȟ n+1
c (Dk) ∼= Ȟ n+1

c (Dk−1) ⊕ Ȟ n+1
c (D′

2)
∼= Z

k−2 ⊕ Z, where
D′

2 = h(Cn(I1 ∪ Ik) ∩ B(x0, δ)).
The map Ȟ n+1

c (Uk) → Ȟ n+1
c (Dk) ∼= Ȟ n+1

c (h(Dk−1)) ⊕ Ȟ n+1
c (D′

2) is trivial because both of its coordinates are
trivial, by inductive hypothesis.

Therefore the sequence

0 → Ȟ n+1
c (Dk) → H0(Uk \ Dk) → H0(Uk) → 0

is exact. So the sequence

0 → Z
k−1 → H0(Uk \ Dk) → Z → 0

is also exact. Hence H0(Uk \ Dk) ∼= Z
k and Uk \ Dk has k components.

The point h(x0) belongs to the closure of each of them. Indeed, if Xk is Dk with a small open neighbourhood of
h(x0) removed then Ȟ n+1

c (Xk) ∼= 0 and the sequence

0 → H0(Uk \ Xk) → H0(Uk) → 0

is exact, therefore H0(Uk \ Xk) ∼= Z. �
4. Proof of Theorem 1.1

We shall need two more lemmata:

Lemma 4.1. Consider the Kuratowski curve K1 and let n ∈ N. Then Cn(K1) is not embeddable in R
n+2.

Proof. Suppose to the contrary, that there exists an embedding h :Cn(K1) → R
n+2. Consider K1 ⊂ R

3 and denote
(see Fig. 2)

I1 = [c, a] ∪ [a, b], I2 = [c,p] ∪ [p,b], and I3 = [c, d] ∪ [d, b].
If X = ⋃

i Ii , then σn−1 ∗ X = ⋃
i (σ

n−1 ∗ Ii) is a union of (n + 1)-disks. Let x0 ∈ Intσn−1 and choose ε > 0 so
that (see Fig. 3)
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Fig. 2. Kuratowski curve K1.

Fig. 3. Local separation at h(x0).

C1 = h
(
σn−1 ∗ (I1 ∪ I3)

)
locally separates B

(
h(x0), ε

)
into B1,A1 at h(x0),

C2 = h
(
σn−1 ∗ (I1 ∪ I2)

)
locally separates B

(
h(x0), ε

)
into B2,A2 at h(x0),

C3 = h
(
σn−1 ∗ (I2 ∪ I3)

)
locally separates B

(
h(x0), ε

)
into B3,A3 at h(x0).

By Lemma 3.2 we have that C = h(Cn(I1 ∪ I2 ∪ I3)) = h(σn−1 ∗ ⋃3
i=1 Ii) = h(

⋃3
i=1 σn−1 ∗ Ii) locally separates

B(h(x0), ε) into three components. We will show that we can adopt the notation for these three components to be B1,
A2 and A3.

We use abstract linear combinations for describing our joins, e.g.

σn−1 ∗ K1 = {
xt + y(1 − t); x ∈ σn−1, y ∈ K1, t ∈ [0,1]}.

For σn−1 ⊂ σn−1 ∗ K1, we have that h(σn−1) is a subset of C1, but that h|σn−1∗I2
maps all linear combinations

with t 	= 1, but sufficiently close to 1, to a subset that is connected but disjoint from C1. Hence this subset can only be
contained either in A1 or in B1. We may assume that it is in A1. Since the entire neighbourhood of σn−1 in σn−1 ∗ I2
is mapped by h into A1, we have h(σn−1 ∗ I2) ∩ B1 = ∅, provided ε > 0 is small enough. Then B1 is not divided
by C, so it is one of the three components.

Analogously, by considering C2 (respectively C3) we can make sure that A2 and A3 are the other two components
and that h(σn−1 ∗ I3)∩A2 = ∅ and h(σn−1 ∗ I1)∩A3 = ∅. Since C ∪B1 ∪A2 ∪A3 and C ∪A1 ∪B1 are both disjoint
decompositions of a neighbourhood of h(x0), the set h(σn−1 ∗ I2) ∪ C1 separates the component A1 into components
A2 and A3.

Note that

x0 ∗ K1 = {
x0t + x(1 − t); x ∈ K1, t ∈ [0,1]} ⊂ Cn(K1).

Choose t0 near 1 so that

h
({

x0t + x(1 − t); x ∈ K1, t � t0
}) ⊂ B

(
h(x0), ε

)
.

Let p′ = h(x0t0 + p(1 − t0)) ∈ A1. The arc H = h({x0t0 + x(1 − t0); x ∈ (p, q)}) is contained in B(h(x0), ε) \ h(C).
Therefore points p′ and q ′ = h(x0t0 + q(1 − t0)) are in the same component. Hence q ′ ∈ A2 or q ′ ∈ A3. So the arc
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I = h({x0t0 + x(1 − t0); x ∈ (a, q] ∪ [q, d)}) is contained either in A2 or in A3. But this yields a contradiction since
a′ = h(x0t0 + a(1 − t0)) /∈ A3 (so I 	⊂ A3) and d ′ = h(x0t0 + a(1 − t0)) /∈ A2 (so I 	⊂ A2). �

The proof of the next lemma can be obtained by changing the proof of [14, Lemma 4] in the same way as we did
it for the proof of Lemma 2.3 using the proof of [14, Lemma 3].

Lemma 4.2. Consider the Kuratowski curve K2 and let n ∈ N. Then Cn(K2) is not embeddable in R
n+2.

Proof of Theorem 1.1. By Claytor’s theorem (see [6,7]), it suffices to show that Cn(Ki) is not embeddable into R
n+2

for any i ∈ {1,2,3,4}. Now, Cauty [4] proved that Ki × In is not embeddable into R
n+2 for any i ∈ {3,4}. Therefore

also Cn(Ki) is not embeddable into R
n+2 for any i ∈ {3,4}. Hence we only have to consider the cases i = 1 and i = 2.

The proof is now completed by application of Lemmata 4.1 and 4.2. �
5. Epilogue

Repovš, Skopenkov and Ščepin [12] proved that if X × I PL embeds into R
n+1, where X is either an acyclic

polyhedron and dimX � 2n
3 − 1 or a homologically (2 dimX − n − 1)-connected manifold and dimX � 2n

3 − 1 or a
collapsible polyhedron, then X PL embeds into R

n.

Question 5.1. What can one say about embeddability of X into Euclidean spaces if one considers C(X) or Cn(X) or
Σ(X) or Σn(X) instead of X × I for X in [12]?

It follows by [12] that if X is a contractible polyhedron such that X × I embeds into R
n+1 then X embeds into R

n.
So if X is contractible and C(X) ⊂ R

n+1 then X embeds into R
n.

Note that there exists a polyhedron Pn such that Pn is not embeddable into R
n but C2(Pn) is embeddable in R

n+2.
Namely, Cannon [3] proved that if Hn is a homology n-sphere then its double suspension Σ2(Hn)is the (n + 2)-
sphere (see [8] and [11] for a far reaching generalization of this result by Edwards). So if Pn = Hn \ Bn where Bn is
an n-ball then the double cone C2(Pn) embeds in R

n+2. The polyhedron Pn is acyclic but not contractible.

Question 5.2. Does there exist a contractible n-dimensional polyhedron Xn such that Ck(Xn) embeds into R
n+k , but

Xn does not embed into R
n?

In [14, Theorem 2] contractible continua Xn were constructed, such that Xn is not embeddable in R
n, C(Xn) is

embeddable in R
n+1, and Xn is not a polyhedron. By [12], if X is an n-polyhedron then X × I embeds into R

2n+1.
If X is an n-polyhedron then C(X) need not embed into R

2n+1. For example, the Kuratowski curves K1 and K2 are
1-polyhedra but the cones C(K1) and C(K2) do not embed into R

3.

Question 5.3. Suppose that X is a compact contractible n-dimensional polyhedron. Does the cone C(X) embed
into R

2n+1? Does the same hold if X is only acyclic?
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