Virology 464-465 (2014) 26-32

Contents lists available at ScienceDirect

VIROLOGY

Virology

journal homepage: www.elsevier.com/locate/yviro

Review

Role of skin immune cells on the host susceptibility @CmssMark
to mosquito-borne viruses

Laurence Briant?, Philippe Després ", Valérie Choumet ”, Dorothée Missé ©*

2 CPBS, Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé, UMR5236 CNRS, Université Montpellier 1,2, Montpellier, France

P Unité Interactions Moléculaires Flavivirus-Hotes, Institut Pasteur, Paris, France

€ MIVEGEC (IRD 224 CNRS 5290-UM1-UM2) Maladies infectieuses et vecteurs: écologie, génétique, évolution et contréle, Centre IRD de Montpellier,
Montpellier, France

ARTICLE INFO ABSTRACT
Article history: Due to climate change and the propagation of competent arthropods worldwide, arboviruses have
Received 9 April 2014 become pathogens of major medical importance. Early transmission to vertebrates is initiated by skin

Returned to author for revisions
15 May 2014
Accepted 17 June 2014

puncture and deposition of virus together with arthropod saliva in the epidermis and dermis. Saliva
components have the capacity to modulate skin cell responses by enhancing and/or counteracting initial
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Introduction
Arthropod-borne viruses, known as arboviruses, share the
common property to be transmitted among vertebrate hosts by
* Corresponding author. Tel.: +33 467416381, blood-feeding mosquitoes or ticks. Among them, mosquito-borne
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Valley Fever (RVFV) viruses represent major public health pro-
blems in regions with high invertebrate vector densities and over
the last decades have become a global menace, not only in the
tropics, but also threatening temperate areas colonized by the
appropriate strains of competent mosquitoes.

The transmission cycle of mosquito-borne viruses is initiated
when pathogen-containing fluids are ingested by the vector from
an infected vertebrate during a blood meal. Once the virus crosses
the midgut barrier and has replicated in the mosquito body, it
reaches the salivary glands, leading to the presence of high
infectious titers in the saliva of infected arthropods (Luplertlop
et al,, 2011; Salazar et al., 2007; Vazeille et al., 2010; Ziegler et al.,
2011). During a subsequent blood meal, the proboscis of the
infected mosquito probes the vertebrate host's skin, resulting in
the extravascular delivery of most of salivary glands content in
both the epidermis and dermis where resident and migratory cells
will encounter the pathogen Heath and Carbone, 2013. During
transmission, arboviruses contained in salivary glands are inti-
mately associated with mosquito saliva. The simultaneous delivery
of mosquito cofactors clearly potentiates the capacity of arbo-
viruses to replicate at the anatomical site of the mosquito bite (Le
Coupanec et al., 2013; Schneider et al., 2010; Styer et al., 2011;
Surasombatpattana et al., 2014, 2012; Thangamani et al., 2010),
leading to an enhanced viremia in the vertebrate host (McCracken
et al.,, 2014) and to an acute viral pathogenicity (Le Coupanec et al.,
2013; Schneider et al., 2010).

Interaction of arboviruses with mammalian skin: convict
the guilty cell

The nature of skin cells first encountered during virus trans-
mission is likely to have a significant impact on the establishment
of a systemic infection and continuation of the transmission cycle
between the vertebrate host and the arthropod vector. Depending
on its capacity to replicate in resident or instead in migratory cells
in this organ will have a real impact both on the propagation in
the new host and on the pathogenesis of viral infection. This is
especially of importance for understanding the occurrence of
skin alterations detected in most arboviruses-induced symptoms.
Questioning the tropism of these pathogens at the skin level and
elucidating the nature of skin cells that first encounter viral
pathogens following inoculation therefore remain key issues.

The human skin: a physical and immunological barrier

The skin is a complex organ that exerts multiple vital protective
functions against environmental aggressions. This crucial role is
rendered possible thanks to an elaborate structure, associating multi-
ple cell types organized in three layers: the outermost epidermis, the
dermis and the deepest hypodermis (Fig. 1). Keratinocytes contribute
to the integrity and the infrastructure of the outer layer in the skin and
represent the major cell population in the epidermis. While the
outermost cornified skin layer results from differentiation of kerati-
nocytes into corneocytes, the deeper epidermis is a living cell layer of
cells generated by tight junctions between adjacent keratinocytes.
This population has a key innate role in the detection or pathogens
and defense facilitated by the expression of many pattern recognition
receptors, including Toll-like receptors (TLR) (TLR-1, TLR-2, TLR-3,
TLR-4, TLR-5, TLR-6 and TLR-9) and Nod-like receptors (NLR), and by
the capacity of keratinocytes to produce antimicrobial peptides (LL-37,
[-defensins, RNase 7 and S100 family members), chemokine and
cytokines (CXCL9, CXCL10, CXCL11, CXCL20, TNF-a,, IL-1ax and f3, IL-6,
IL-10, IL-18 and IL-33) critical for local recruitment of immunocompe-
tent cells. Besides keratinocytes low proportions of Merkel cells
and melanocytes also form part of the resident cells in the epidermis.

This skin layer also hosts Langerhans cells, a resident dendritic cells
population situated above the basal layer of proliferating keratinocytes
that can sample and capture antigens within the cornified epidermis
(Kubo et al, 2009). These cells subsequently undergo maturation
while they migrate to local draining lymph nodes, where their
antigen-presenting properties allow activation of effector T cells and
initiation of an immune response (Macatonia et al., 1987; Silberberg-
Sinakin et al., 1976). Among other immune cells, dendritic epidermal
T-cells, a subset of T cell receptor (TCR) yO-expressing cells with
migratory properties, are detected in mice epidermis whereas they
represent a minor subset in the human skin (MacLeod et al., 2013). In
opposition to the epidermis, the dermis, the deepest skin layer, is
enriched in elastin and collagen fibers and furthermore consists of an
extracellular matrix produced by fibroblasts. It is highly vascularized
and interspersed with draining lymphatics traversing the deeper
layers to access the lymph nodes. The dermis contains immunologi-
cally relevant cells, including mast cells, macrophages, neutrophils,
innate lymphoid cells and both TCRaf} and TCR yS T cells (for review
see Heath and Carbone (2013). In addition, CD11b™ DCs and CD103*
DCs represent the two subsets identified in mice that correspond to
CD1c* CD14* DCs and CD141* DCs, respectively, in humans. Below
the dermis, the subcutis layer consists of adipocytes surrounded by
fibroblasts, nerves and blood vessels. Accordingly the skin barrier is
equipped with a vast range of resident and migratory immunocom-
petent cells capable to direct and drive an efficient immune response
aimed to control early replication of invading pathogens.

Facts and queries on mosquito-borne viruses in the skin

Mosquito-borne viruses have evolved to bypass the physical
skin barrier by hitch-hiking on blood-sucking arthropod vectors.
As keratinocytes are the most abundant cell population in the
epidermis, acquiring the capacity to replicate in these resident
cells represents an attractive strategy for host colonization. In
recent years, their capacity to support replication of a variety of
mosquito-borne viruses was questioned. First, epidermal kerati-
nocytes were identified as the initial target for WNV infection both
in vivo and in vitro (Lim et al, 2011). More recently, we have
reported that ex vivo cultured primary human epidermal kerati-
nocytes can also support DENV replication (Surasombatpattana et
al., 2011). Consistent with this observation, basal keratinocytes
were reported positive for DENV antigens in the epidermis of
experimentally inoculated skin explants (Limon-Flores et al.,
2005). In these cells, infection significantly enhances expression
of TLR3, RIG-I, MDAS5 and PKR, resulting in IFN-f3, IFN-y, $-defensin
and RNase 7 release most likely accounting for the initiation of an
antiviral innate immune response (Surasombatpattana et al.,
2011). Based on these observations we explored the contribution
of keratinocytes in early CHIKV infection. When studied in ex vivo
infection models, we observed that primary human keratinocytes,
despite supporting fusion with viral envelope glycoproteins, are
non-permissive for viral replication, regardless of their differentia-
tion stage. These cells display no evidence of cytopathogenicity,
the hallmark of CHIKV replication (LB, personal communication).
This intriguing result contrasts with the presence of high copy
numbers of CHIKV genomes in vesiculobullous skin lesions of
infected patients attesting for CHIKV replication in another cuta-
neous cell type and with observation of necrotic keratinocytes that
may result from an indirect effect of CHIKV infection (Pakran et al.,
2011). Nevertheless, results from animal models of CHIKV infec-
tion revealed the transient presence of viral antigens in the skin of
experimentally infected macaques (Labadie et al., 2010) or adult
mice within one week of infection (Couderc et al., 2008). However,
instead of keratinocytes, histological detection of CHIKV antigens
revealed the presence of virally-infected cells at the level of the
deep dermis, and at lesser extent in basal layers, suggesting a role
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Fig. 1. Skin immune sentinels. Human infections with arboviruses occur during blood feeding by infected mosquitoes. During blood meal, mosquito's mouthpieces are
introduced into the skin and released viral particles with saliva which are in contact with many cells types. The epidermis is composed of the outermost layers of cells in the
skin. Specialized cells in the epidermis include keratinocytes, melanocytes, and Langerhans cells. In addition, rare T cells, mainly CD8+ cytotoxic T cells and dendritic
epidermal T-cells can be found in the epidermis. The dermis is anatomically composed of many immune cells, including dermal dendritic cells (DCs), and T cell subsets,
including CD4+ T cells, y5 T cells and natural killer T (NKT) cells. Moreover, fibroblasts, macrophages, and mast cells are also present. This layer of the skin is richly supplied
with blood vessels and collagen fibers. The dermis also contains sensory nerve endings sweat glands, oil glands, and hair follicles. Below the dermis is the subcutaneous layer,

a layer of tissue composed of adipose tissue.

of fibroblasts located in the basal skin layer (Couderc et al., 2008)
as well as endothelial cells in capillaries that are described as
permissive in vitro in the efficiency of CHIKV infection in host
vertebrate (Sourisseau et al., 2007). Nevertheless, as observed for
DENV, CHIKV challenge induces a strong innate immune response
in keratinocytes (DM, unpublished data). In this respect, it was
recently revealed that the simultaneous knock-down of IRF3 and
IRF7 genes leads to accumulation of CHIKV antigens in keratino-
cytes of experimentally infected mice, favoring the development of
focal skin necrosis with ballooning degeneration, pale cytoplasm
and karyorrhetic nuclei five days after infection while absent in
wild-type animals (Rudd et al., 2012). However, the capacity of
immune signaling elicited in human Kkeratinocytes to control
CHIKV replication and its associated cell death has not been
clearly demonstrated as yet. A large variety of mosquito-borne
viruses including WNV, VEEV and DENV viruses actively replicate
in migratory LCs (Byrne et al., 2001; Gardner et al., 2008; Welte
et al., 2009; Wu et al,, 2000) suggesting that this capacity may
represent an attractive strategy for propagation in vertebrates.
Regarding DENV, this property was more specifically assigned to
precursor DC-SIGN+ CD14+ interstitial cells that reside beneath
the epidermis of skin and mucosal tissue which were proposed as

preferential targets (Kwan et al., 2005). Interestingly, intradermal
inoculation of WNV results in migration of infected LCs from the
initial inoculation site to draining lymph nodes (Byrne et al., 2001).
Moreover, during migration, LCs are maturated into activated
lymphoid dendritic cell with antigen presenting capacities, expres-
sing major histocompatibility class I and II antigens, CD54 and
CD8O0 (Johnston et al., 1996). Similarly, LCs, dermal/interstitial DCs,
and monocytes-derived DCs were proposed as initial replicating
cells in DENV-inoculated cadaveric skins (Marovich et al., 2001;
Wu et al,, 2000) as well as in skin biopsies from volunteers
inoculated with live-attenuated dengue vaccines

Interaction of mosquitoes with mammalian skin: mosquito
saliva is the ideal accomplice for corrupting cell responses

Mosquito’s saliva and Blood meal

Arboviruses are transmitted to the host or the vector during a
blood meal taken by an adult female mosquito to provide the
necessary resources for egg development. During blood meal,
mosquito’s mouthpieces are introduced into the skin. The process
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of blood-feeding can be divided into two steps. The first is the
probing phase, during which the arthropod seeks a blood vessel. It
is during this period that saliva is released below the skin, to
counteract physiological responses to the arthropod, such as
hemostasis and inflammation. Once a blood vessel has been found,
the engorgement step begins and continues until complete reple-
tion of the arthropod is achieved (Video S1).

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.virol.2014.06.023.

The mosquito vector secretes anti-hemostatic, angiogenic, anti-
inflammatory and vasodilatory molecules within its saliva to main-
tain blood flow during feeding (Patramool et al., 2012; Ribeiro and
Francischetti, 2003; Schneider and Higgs, 2008). Recent proteomics
studies have clearly shown that these activities can be ascribed to
the presence of a vast variety of molecules, as evidenced for Aedes
and Anopheles saliva (Choumet et al., 2007; Fontaine et al., 2011;
Patramool et al.,, 2011; Sor-Suwan et al., 2013; Wasinpiyamongkol et
al., 2010). However, despite the recent advance in our knowledge of
these molecules and our understanding of their role in blood
feeding, more than half of them remain without clearly defined
functions (Schneider and Higgs, 2008). The vasodilatory sialokinin
(Champagne and Ribeiro, 1994) and D7 proteins (Calvo et al., 2007)
present in Aedes aegypti saliva are among the best characterized
salivary proteins. A. aegypti also secretes an apyrase that inhibits
ADP-dependent platelet aggregation and inhibits or scavenges
platelet-aggregating factors (Champagne and Ribeiro, 1994). This
platelet activation paves the way to secondary hemostasis by
exposing the surface of activated platelets to coagulation proteins.
A 48-kDa factor Xa inhibitor belonging to the serpin family of serine
protease inhibitors in the saliva of A. aegypti has been found in the
Aedes saliva (Stark and James, 1998). Finally, the adenosine deami-
nase enzymes detected in A. aegypti which appears to suppress pain

Table 1

perception may help blood feeding by degrading adenosine (Ribeiro
et al,, 2001).

Mosquito’s saliva and the immune system

The capacity of mosquito saliva to generate an immune
response has recently been an area of active research (Table 1).
According to these studies Anopheles stephensi and Anopheles
gambiae saliva display an intense chemotactic activity based on
vascular permeabilization and activation of dermal mast cells
degranulation (Choumet et al., 2012; Demeure et al., 2005). They
were shown to result in the recruitment of DCs to the feeding site
and of neutrophils to the draining lymph node (Demeure et al.,
2005; Owhashi et al., 2001). Following their recruitment, these
cells play important roles in the early signaling that activates and
orchestrates the immune response. The saliva-induced release of
MIP-2 may also contribute to these processes (Depinay et al.,
2006). In addition to histamine-releasing factors like TCTP found
in A. gambiae saliva (Choumet et al., 2007; Rosinski-Chupin et al.,
2007), some components of Aedes, Culex and Anopheles saliva are
allergenic (Arca et al., 2007; Peng et al., 2007). Salivary compounds
are also susceptible to deregulate immune functions at least
locally. A. aegypti saliva drastically reduces proliferation of murine
T and B lymphocytes (Bizzarro et al., 2013; Wanasen et al., 2004;
Wasserman et al., 2004) and reduces TNF-o or IL-2 and IFN-y
secretion, respectively, in mast cells or splenocytes (Bissonnette et
al., 1993), a result reproduced in murine spleen cells (Cross et al.,
1994). A long lasting suppression of IFN-y production, together
with increased levels of IL-4 and IL-10, was also reported in
murine splenocytes upon exposure to A. aegypti or Culex pipiens
(Zeidner et al, 1999). This general dysregulation of immune
functions characterizes a polarization from the Th1 type cytokine

Effect of mosquito salivary gland extracts or mosquito feeding on cells of the immune system.

Mast cells Polynuclear cells Dendritic cells Splenocytes Lymphocytes
Anopheles Degranulation Attraction to the bite  Recruitment of DCs to
gambiae (Choumet et al.,  site (Choumet et al., the feeding site

2012; Demeure et 2012; Demeure et al.,
al., 2005) 2005)

Eosinophil
chemotactic factor
(chitinase) (Owhashi

et al, 2001)
Recruitment of
eosinophils, neutrophils
at the bite site
(Karppinen et al., 1996)

Inhibition of
TNFo release
(Bissonnette et
al., 1993)
Inhibition of
mast cell
degranulation
(Ribeiro et al.,
2001)

Aedes aegypti

Culex pipiens Inhibition of

mast cell
degranulation
(Ribeiro et al.,
2001)
Armigeres
subalbatus

(Demeure et al., 2005;
Owhashi et al., 2001)

Reduction of T cell recruitment
at the bite site (Schneider et al., 2010)

Suppression of IL2 and
INFy production
(Bissonnette et al., 1993;
Zeidner et al., 1999)
Induction of apoptosis of CD4+ and CD8+ T
cells, and B cells (Bizzarro et al., 2013)
Increased levels of I[L-4  Reduced proliferation of murine T lymphocytes
and IL-10 Zeidner et al.,  (Wasserman et al., 2004)
1999) Differentiation of Th2 effector CD4’ T cells
(Boppana et al., 2009)
Secretion of TH2-cytokine IL4 by CD4 T cells
(Boppana et al., 2009)
Shift of a Th1 to Th2 type response (Cross et al.,
1994; Limesand et al., 2000; Schneider et al.,
2004; Thangamani et al., 2010; Wanasen et al.,
2004; Zeidner et al., 1999)
Suppression of INF y
production (Zeidner et al.,
1999)
Increased levels of IL-4
and IL-10 (Zeidner et
al., 1999)
Induction of apoptosis Fas ligand
Suppression of proinflammatory cytokines
without changing IL-10 levels (Liu et al., 2012)
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production profile that promotes a pro-inflammatory response,
capable to kill intracellular parasite, towards a Th2 type response
profile that has a counteractive effect on the production of IFN-y.
Such effects have been clearly related to the concentration of saliva
proteins delivered to the vertebrate, as lower concentrations of
salivary gland extracts inhibited Th1 cytokine production and
T cell proliferation, while higher concentrations suppressed the
secretion of Th1, Th2, as well as pro-inflammatory, cytokines and
decreased T cell viability (Schneider and Higgs, 2008). Accordingly,
an immunosuppressed environment is created at the immediate
feeding site, whereas decreasing saliva concentrations at more
distal regions rather cause a dysregulation of the immune
response. The shift of a Th1 to Th2 type lymphocyte response
was confirmed by several studies and may persist in mice in vivo at
seven days post A. aegypti feeding (Cross et al., 1994; Limesand
et al., 2000; Schneider et al., 2004; Wanasen et al., 2004; Zeidner
et al., 1999). Similar effects were reproduced when the mice were
inoculated with A. aegypti-derived vasodilator sialokinin (Zeidner
et al, 1999). Recently, SAAG-4 has been reported to be an
important A. aegypti salivary protein that can program Th2 effector
CD4™* Tcell differentiation in mice (Boppana et al., 2009). Based on
these observations from experimental models, as well as on the
capacity of mosquito saliva to create a cytokine-mediated polar-
ization of the host immune response, the cellular and molecular
biology of arbovirus infections should be considered in light of co-
modulatory properties of mosquito saliva at concentrations that
mimic the physiological reality.

Modulation of virus behavior by salivary components: committing
the crime

There is mounting evidence that mosquito's saliva may be a
critical factor in vector-borne disease transmission, either increas-
ing the infectiousness of the pathogen it carries or/and attenuating
the host immune response. The discovery of the immuno-modu-
latory properties of invertebrate saliva has prompted several
research groups to study the involvement of salivary proteins
from diverse vectors in the transmission and the establishment of
the corresponding pathogens in their hosts (for review see
Fontaine et al. (2011)).

Mosquito saliva components also have been proven to repre-
sent highly biologically active molecules susceptible to modulate
early viral replication in addition of assisting mosquito blood
feeding. Significantly higher WNV titers were observed in the
serum of chickens infected by C. pipiens mosquito feeding, as
compared to needle-inoculated animals (Styer et al., 2006). The
recent observation of five- to ten-fold higher viremia and tissue
titers in mice infected by WNV via the bite of a single infected
Culex tarsalis mosquito correlates with faster neuro-invasion than
observed in mice inoculated with WNV by needle (Styer et al.,
2011). This aggravated disease course can be explained at the
cellular level by the presence of saliva that is associated with
enhanced early viral replication, especially in the skin and draining
lymph nodes (Schneider et al., 2010). The results of the latter study
corroborates the capacity of saliva to increase IL-10 production, to
dysregulate antiviral signaling by antigen presenting cells and to
elevate influx of WNV-susceptible cell types to the inoculation site
probably, providing further insight into the role of mosquito
cofactors in the acute pathogenesis of the infection (Schneider
et al., 2010). Similar experiments in CHIKV-infected mice revealed
that cutaneous immune responses elicited by bites from infected
mosquitoes also significantly differ from those induced by needle
inoculation (Thangamani et al., 2010). Indeed, needle transmission
polarized host cutaneous cytokine response to a Ty1 profile with
an upregulation of IFN-y and IL-2 while CHIKV-infected mosqui-
toes generated a drop in IL-4 production, concomitant with

decreased Th1 cytokine release and TLR3 expression. Similarly,
co-inoculation of Sindbis virus (SINV) and A. aegypti SGE, resulted
in higher IL-4 and IL-10 expression levels, as compared to those in
mice injected with SINV alone (Schneider et al., 2004). DENV
replication and the associated pathogenesis are strongly affected
by factors contained in salivary glands of mosquito vectors as well.
Indeed, levels of TNF-«, IL-4 and IL-10 are enhanced by A.
albopictus saliva upon DENV inoculation in humanized mice (Cox
et al., 2012). Mice skin probing prior to dermal DENV2 inoculation
was found to be associated with a significant reduction in TLR7,
RelA, IFN-y and IP10 mRNA levels within 3 h of injection
(McCracken et al., 2014). This modulation may reduce the recogni-
tion of viral material and therefore is likely to generate a more
permissive environment for the establishment of infection with a
possible repercussion on the pathogenesis of DENV infection. An
increased reactivity against salivary components, including apyr-
ase, was observed among the individuals displaying the more
severe forms of dengue disease (Machain-Williams et al., 2012).
The identification of salivary components accounting for such
modulatory function deserves continued attention, as it could
not only help to better understand the origin of severity, but also
serve as targets for the control of DENV replication in mammalian
hosts. In such an attempt, a functional proteomic analysis con-
ducted by some of us demonstrated that a 34-kDa protein in
salivary glands of infected A. aegypti mosquitoes enhances DENV
replication in human keratinocytes by suppressing innate immune
responses in the earliest stages of infection (Surasombatpattana et
al., 2011). In the context of DENV infection, this molecule was
found to decrease IRF3 and IRF7 mRNA expression, resulting in a
reduced expression of IFN type 1 and IFN-y transcripts, as well as
mMRNA encoding antimicrobial peptides, such as LL-37, RNAse
7 and S100A7 (Surasombatpattana et al., 2011). The 34 kDa protein
is specific for the Aedes spp. and has been shown to be immuno-
genic in DENV-infected patients (Wasinpiyamongkol et al., 2010).
Besides modulation of host immune responses, salivary compo-
nents may also facilitate DENV propagation in other ways as
reported very recently (Conway et al., 2014). The direct proteolysis
of dermal extracellular matrix proteins by serine protease activity
contained in A. aegypti saliva may increase DENV particles attach-
ment to heparin sulfate proteoglycans and enhance interactions
between virions and permissive cells, including LCs and macro-
phages. Such studies provide an urgent lead to characterize such
immunomodulant saliva factors and advocate their characteriza-
tion which will open a new insight into the design of performing
strategies against arboviral infections.

Considering an integrated model of virus saliva co-inoculation
in future preventive and therapeutic strategies: the perfect
picture

Clearly, mosquito saliva does not only impact human suscept-
ibility to arboviruses, but also affect viral pathogenesis. By mod-
ulating the local immune responses and attracting a variety of
susceptible cells at the inoculation site, mosquito saliva probably
favors early infection and determines future host invasion. An
intriguing aspect of arthropod-saliva interaction lies in the
response of human skin to arbovirus infection. A complex inter-
play between skin injury, mosquito saliva and viral pathogens
takes place in this tissue during early transmission. The resulting
cytokine and chemokine secretion, antimicrobial molecule release,
attraction of immunocompetent and/or susceptible cells for viral
infection, as well as fluid extravasation, create a favorable envir-
onment for the establishment of viral infection. Accordingly, this
step represents a key process both in the setup of the adaptive
immune response and in host invasion. The finely tuned balance
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created by the interplay among the virus, the host and salivary
compounds will determine the outcome of infection and asso-
ciated pathogenesis. According to this information and in light of
recent comparisons performed using animal models of infection, it
has become obvious that the impact of mosquito cofactors
absolutely needs to be taken into account to provide the perfect
picture of arboviruses skin infection. This aim will be achieved
using appropriate integrated host-virus-mosquito model systems.
However, one should be careful in transferring insight from
the mouse model systems into translational research studies
focusing on human pathology. Arbovirus infection in mammals is
frequently associated with a variety of cutaneous symptoms some
times of severe amplitude (maculopapular exanthema, roseola-
like and morbilliform eruptions, vesiculobullous lesions, purpuric
macules, etc.) (Bandyopadhyay and Ghosh, 2010; Del Giudice et al.,
2005; Pakran et al., 2011; Riyaz et al., 2010). From the histological
point of view, perivascular lymphocytic infiltrates are observed in
biopsy lesions (Inamadar et al.,, 2008). The link between skin
manifestations and the capacity of arboviruses to replicate in the
skin remains to be elucidated and the contribution of mosquito
saliva in these clinical manifestations is still uninvestigated. New
efforts aiming at identifying viral tropism in the skin and early
target cells infected in this organ, viral receptors and characteriz-
ing the molecules in saliva accounting for immune modulation and
facilitation of viral replication may uncover the means to elaborate
new currative or preventive therapeutics against arbovirus infec-
tion in humans.
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