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Abstract

There is an inclusion preserving bijection between the class of completion classes of uniformly
complete real f-algebras with identity and the partially ordered class of covering classes of
compact Hausdor4 spaces. In this setting a completion class A is a hull class of uniformly
complete f-algebras, with the additional feature that G ∈A if and only if G∗ ∈A. Using an
idempotent invariant polar function X and the covering function K derived from it, the main
theorem of this article states that the covering class associated with the uniformly complete
f-algebras having no proper X-splitting extensions is the class of compact spaces X which
equal their K-cover.
c© 2003 Elsevier B.V. All rights reserved.
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This article is concerned, in the >rst instance, with an e4ort to abstract the type
of hull classes of uniformly complete archimedean f-algebras with identity, which
correspond in a natural way to covering classes of topological spaces. This study is
intimately related to [22]. That article initiates the study of polar functions, and they
are of considerable relevance here. Polar functions lead to a discussion of the hull
classes which can be de>ned in terms of the requirement that a predetermined class
of polars become summands. The link here with the constructions in [22] is Theorem
5.8. This paper also devotes some attention, in particular, to the extension here called
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the !1-splitting completion, which is the counterpart to the cloz cover of Henriksen,
Vermeer and Woods in [17]. The ambient category for the discussion below is W, the
category of all archimedean ‘-groups with designated weak unit, together with all the
‘-homomorphisms which preserve the designated weak unit.

1. Invariant polar functions

The discussion begins with a brief review of the basic constructions and ideas of [22].
In the following remarks some concepts and terms from the theory of lattice-ordered
groups are also reviewed. As to unexplained terminology about lattice-ordered groups
the reader is referred to [5]. The common designation “‘-group” will be used to
abbreviate “lattice-ordered group”. Throughout, the symbol 6 will be used to denote
inclusion of subgroups, subalgebras and the like.

To start, let us review the notion of a hull class, from [13]. The de>nition employs
the concept of an essential extension in W; we review that in 1.2.

De�nition and Remarks 1.1. (a) Consider a class H of W-objects closed under forma-
tion of ‘-isomorphic copies. An H-hull on W is a function assigning to each W-object
A an extension hA, such that

(i) A6 hA is an essential extension, with hA∈H, and
(ii) A6B6Ae, and B∈H imply that there exists a W-embedding g:hA → B, extend-

ing the identity on A.

If there is such an h associated with the class H, we call the latter a hull class with
hull operator h. One also uses the phrase “each W-object A has an H-hull” when such
a hull operator exists.

It is shown in Proposition 2.4 of [13] that each W-object A has an H-hull if and
only if H is essentially intersective; that is, for each essentially closed W-object E,
and each collection A of subobjects of E, such that A ⊆ H and

⋂
A is essential in E,

then
⋂

A∈H. Note that any hull class contains all the essentially closed W-objects.
In particular, every hull class is nontrivial.

At the outset, one should point out one of the most elementary hulls in algebra, the
divisible hull; the extension is here denoted G6dG.

(b) Let H be a hull class. Denote by H# the class of all compact spaces X for
which there is a W-object A∈H such that YA ∼= X .

De�nition and Remarks 1.2. (a) Suppose that G is an arbitrary W-object. A polar is
a subgroup of the form

S⊥ ≡ { g∈G : |g| ∧ |s| = 0; ∀ s∈ S };
for a suitable subset S of G. The set P(G) of all polars is a boolean algebra un-
der inclusion; this is well known, and was >rst established by OSik for an arbitrary
‘-group. The in>mum in P(G) is intersection. Whenever there is a risk of confusion the
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subscript ⊥G will be used to indicate that the polar in question is being considered in
the group G.

A polar P for which G = P ⊕ P⊥ is called a summand of G; S(G) stands for the
subalgebra of all summands of G.

(b) An extension G6H is said to be essential if for each h¿ 0 in H there is a
g¿ 0 in G and a positive integer n such that g6 nh. Equivalently, H is an essential
extension of G if and only if the trace map P 
→ P ∩ G is a boolean isomorphism
of P(H) onto P(G). The suPciency in this equivalence uses the archimedean feature
of the ‘-group; this equivalence is part of Theorem 11.1.15 in [3], and is generally
attributed to Conrad. Conrad >rst showed (in [4]) that each archimedean ‘-group can
be embedded in an essential closure: that is, there is an archimedean ‘-group Ge which
extends G essentially, such that G6H is essential if and only if the inclusion of G
in Ge extends to an ‘-embedding of H in Ge. Ge is essentially closed, in the sense
that it has no proper essential extensions of its own in W.

(c) Suppose that X denotes a subalgebra of P(G). An essential extension H of G is
X-splitting if, for each K ∈X(G), K⊥H⊥H is a summand of H . For any subalgebra X,
Ge is an X-splitting extension; for each K ∈X(G) and each a∈Ge, a[K] denotes the
projection of a on the component K⊥Ge⊥Ge . It is shown in [22, Lemma 2.2], that H is
an X-splitting extension if and only if, for each K ∈X(G) and each a∈G, a[K]∈H .

Here is the main result from Section 2 of [22].

Theorem 1.3. Let G be a W-object and X be a subalgebra of P(G). Then there is
a least X-splitting extension G[X] in Ge. The elements of G[X] can be expressed in
the following way: if x∈G[X] then there exist a1; : : : ; an ∈G and K1; : : : ; Kn ∈X(G),
the latter pairwise disjoint, such that

x =
n∑

i=1

ai[Ki]:

Let � be an in>nite cardinal. Recall that G is �-projectable if for each subset S ⊆ G,
with |S|¡�, G = S⊥⊥ ⊕ S⊥. As in [11] the class of all �-projectable W-objects is
denoted by P(�).

De�nition and Remarks 1.4. Now suppose that X denotes a function which assigns to
a W-object G a subalgebra X(G) of P(G) which contains all the summands of G;
following [22], we call X a polar function. It is assumed here that X is invariant in
the sense that if G6H is essential, then the assignment K 
→ K⊥H⊥H carries X(G)
into X(H). The abbreviation ipf, standing for “invariant polar function”, is also carried
over from [22].

With regard to the notation introduced in Theorem 1.3, please note that we abbreviate
G[X(G)] to G[X] when an ipf is involved in the stipulation of the least X-splitting
extension (as opposed to “least X(G)-splitting extension”).

Call an ipf idempotent if (G[X])[X] =G[X], for each W-object G. Equivalently, X
is idempotent if and only if X(G[X])6S(G[X]).
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Apart from P itself, with its associated hull G6G[P] and hull class P(∞), here
are what might be considered the standard examples of ipfs, discussed amply in [22];
P and the >rst two in the following list are idempotent, whereas the third is not:

(i) P!, the ipf which selects the subalgebra of P(G) generated by all the principal
polars; that is, the polars of the form g⊥⊥. As is explained in [22], G[P!] is the
projectable hull of G. The associated hull class is P(!). The reader should refer
to [5,22] for details.

(ii) Let � be an uncountable, regular cardinal. P�
� is the ipf which selects the

�-generated polars of G which have an �-generated complement. (P ∈P(G) is
�-generated if there is a generating set having fewer than � elements.) The idem-
potence of P�

� is argued in [22, 5.5(a)]. The corresponding hull class will be
discussed in Example 4.8.

(iii) Let � be as in (ii). P� denotes the ipf which picks out the subalgebra generated
by the �-generated polars of P(G). P� is not idempotent; for more discussion of
this example the reader is referred to [13, Section 3]. The associated hull class
here is P(�).

For use in Section 5, we record the following remark. The proofs are immediate
from Theorem 1.3. The >rst item in Proposition 1.5 is Corollary 2.5 of [22]. Recall
that a lattice-ordered ring A is an f-ring if a∧b=0 and c¿ 0 imply that ac∧b=0. An
abelian ‘-group G which is also a real vector space such that 06 r ∈R and 06 g∈G
imply that rg¿ 0 is a vector lattice.

Proposition 1.5. Suppose that X is a subalgebra of polars of the W-object G. Then
each of the following features of G is also a property of G[X]:

(a) G is an f-ring.
(b) G is divisible.
(c) G is a vector lattice.

Proof (Sketch). Apply to the three cases, in succession, the observation that Ge is an
f-ring, divisible and a vector lattice. Then use Theorem 1.3.

De�nition and Remarks 1.6. In [22] is described a trans>nite process which constructs,
given the ipf X, the least idempotent ipf X[ exceeding X. A similar one occurs
in Section 5. Here is a sketch of the construction, which simultaneously produces
two trans>nite towers. The reader should refer, in [22], to the remarks in 5.1 and to
Proposition 5.2.

Suppose that X is an invariant polar function. De>ne, at the >rst step of the induction,
X1 ≡ X. Assume now that  is an ordinal, and that for each ordinal !¡ , X! is
de>ned, such that for each W-object G and each !¡"¡ , we have that X!(G) is a
subalgebra of X"(G). If  is a limit ordinal, then put

X (G) ≡
⋃
!¡ 

X!(G);
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for each W-object G. On the other hand, if # precedes  , then set

X (G) ≡ {G ∩ P : P ∈X(G[X#]) }:
It is easy to verify [22, 5.1] that X#(G)6X (G).

This procedure de>nes a trans>nite sequence of ipfs

X = X16 · · ·6X 6 · · ·6P; (†)
where it should be understood that, for polar functions X and Y, X6Y means that
X(G)6Y(G), for each W-object G.

The sequence in (†) must stabilize, owing to cardinality conditions; that is, for each
W-object G there is an ordinal  such that X (G) = X$(G), for each $¿ . Finally,
here is the de>nition we have been aiming for: for each W-object G, let

X[(G) ≡ X%(G);

where % is the least ordinal such that X%′(G) = X%(G), for each ordinal %′¿%. This
is the idempotent closure of the sequence X .

[22, Proposition 5.2] also tells us that, for each ordinal  and each W-object G,

G[X +1] = G[X ][X]

and if  is a limit ordinal then

G[X ] =
⋃
!¡ 

G[X!]:

One also gets that G[X[] = G%[X], for a suitable ordinal %.

The above reviews but half of the machinery from [22]. In the next section the
topological “half” of this machinery is reviewed. It is prefaced by a review of the
Yosida Representation Theorem for W.

2. Invariant covering functions

In this section algebras of regular closed sets are considered. Denote by R(X ) the
boolean algebra of all regular closed sets of the space X . The reader is reminded that
all spaces are compact and Hausdor4. It is well known that, under inclusion, R(X ) is
a complete boolean algebra, in which >nite suprema coincide with set-theoretic unions.
(Recall that a closed subset A of X is regular if A is the closure of its interior.)

We begin with a review of covering classes. Examples will be discussed in some
detail in Section 4. For a more extensive background on covers, the reader is referred
to [9] or Chapter 6 of [25].

De�nition and Remarks 2.1. (a) Suppose that f : Y → X is a continuous surjection
(of compact spaces). f is said to be irreducible if X is not the image of a proper
closed subset of Y . It is well known that if f is irreducible then for each open set
U ⊆ Y there is an open set V ⊆ X such that f−1(V ) is dense in U . Also if f is
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irreducible then it induces a boolean isomorphism from R(X ), the algebra of regular
closed sets of X , onto R(Y ), by the assignment f←(A) ≡ clYf−1(intX A). (The f←

designation is convenient; it is borrowed from [22].) It is worth noting that the inverse
of the isomorphism A 
→ f←(A) is the direct image map B 
→ f(B).

Now >x the space X . Let Cov(X ) denote the set of all irreducible surjections f :
Y → X , modulo the equivalence relation de>ned by f ∼ f′ (where f′ : Y ′ → X is an
irreducible surjection) if there is a homeomorphism h : Y → Y ′ such that f′ · h = f.
It is convenient, especially where the notation is concerned, to identify an irreducible
surjection with the equivalence class in which it lies; no confusion should ensue from
this identi>cation.

One can partially order Cov(X ): with f : Y → X and g : Z → X irreducible, let
f6 g if there is a continuous surjection g∗ : Z → Y (necessarily irreducible) such that
f · g∗ = g. Indeed, Cov(X ) is a complete lattice ([9]).

(b) Suppose that T is a class of spaces which is closed under formation of homeo-
morphic copies. T is called a covering class if, for each space X , T ∩ Cov(X ) has a
minimum.

Recall that a space X is said to be extremally disconnected if the closure of every
open set is open. It is well known—see [9]—that if f : Y → X is irreducible and
X is extremally disconnected, then f is a homeomorphism. Thus it is seen that any
covering class contains all extremally disconnected spaces.

De�nition and Remarks 2.2. An invariant covering function K is a function assigning
to each compact space X a subalgebra K(X ) of R(X ) which contains every clopen set,
such that for each irreducible surjection g : Y → X , g←(K(X )) ⊆ K(Y ); as with polar
functions, “invariant covering function” is abbreviated to icf. Martinez [22] introduced
the K-cover of a space X : if g : Y → X is an irreducible surjection, Y is a K-cover if
g←(A) is clopen, for each A∈K(X ).

Aside from R, here are the “typical” icfs.

(i) R!, which, for each space X , selects the subalgebra generated by the closures of
all cozerosets of X .

(ii) Again, � stands for an uncountable, regular cardinal. R�
� is the icf which picks out

the closures of �-cozerosets which are �-complemented. (Recall that an �-cozeroset
is a union of fewer than � cozerosets. The �-cozeroset U is �-complemented if
there is an �-cozeroset V disjoint from U , such that U ∪ V is dense in X .)

(iii) � is taken once more as in (ii). Let R�(X ) be the subalgebra of regular closed
sets generated by all closures of �-cozerosets.

It is time to review the essential facts concerning the Yosida Representation Theorem.
Our favorite reference for this material is [15].

For the record, )X denotes the Stone- OCech compacti>cation of the Tychono4 space
X . It is also convenient to introduce B(X ) for the algebra of clopen sets of X . S(X )
stands for the subalgebra of C(X ) consisting of all continuous functions of >nite
range.
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De�nition and Remarks 2.3. YG stands for the Yosida space of the W-object G; that
is to say, the space of values of the designated unit, with the hull-kernel topology. It
is well known that YG is a compact Hausdor4 space.

Now for any compact Hausdor4 space X , D(X ) shall denote the set of all continuous
functions f : X → R ∪ {±∞}, where the range is the extended reals with the usual
topology, such that f−1(R) is a dense subset of X . D(X ) is a lattice under pointwise
operations, but not a group or ring under the obvious pointwise operations, unless
some assumptions are made about X . One need not raise those issues here. What is
needed is an understanding of the term “‘-group in D(X )”: a subset H ⊆ D(X ) which
is an ‘-group such that under the lattice operations it is a sublattice of D(X ), and,
for each h; k ∈H there is an l∈H such that l(x) = h(x) + k(x) for all x in a dense
subset of X .

Suppose that H ⊆ D(X ) is an ‘-group in D(X ). Recall that H is said to separate
the points of X provided that, for each x �= y in X , there is an h∈H , such that
h(x) �= h(y).

Here is a formulation of the Yosida Representation Theorem:

For each W-object G with designated unit u¿ 0, there is an ‘-isomorphism 0 of
G onto an ‘-group G′ in D(YG) such that 0(u) = 1; furthermore, G′ separates the
points of YG.

The Yosida space YG is, up to equivalence, the only space satisfying the above theorem.
More precisely:

Suppose that Z is a compact Hausdor; space and that there is an ‘-isomorphism
1 of G onto an ‘-group H in D(Z) which separates the points of Z and such that
1(u) = 1, then there is a homeomorphism t : Z → YG such that, for each g∈G and
z ∈Z ,

0(g)(tz) = 1(g)(z):

Finally, if the unit u of G is strong, the image of the Yosida Representation lies in
C(YG).

Central to the understanding of the relationship between the algebra and the topology
in this context is the passage from polars to regular closed sets and back. Here are the
pertinent facts.

De�nition and Remarks 2.4. (a) Suppose that P is a polar of the W-object G. Asso-
ciate a regular closed subset 4(P) of Y = YG, as follows:

4(P) ≡ clY


⋃

g∈P
coz(g)


 :



232 J. Martinez / Journal of Pure and Applied Algebra 190 (2004) 225–249

4 de>nes an isomorphism of boolean algebras from P(G) onto R(Y ). The inverse
map is

4−1(A) = { g∈G : coz(g) ⊆ A }:
Observe that if P ∈S(G) then 4(P) is clopen in YG, although the converse may fail.

(b) Now, if H is an extension of G in Ge, then there is an induced irreducible
surjection t : YH → Y . This happens because of the functorial properties of the Yosida
Representation. A brief explanation is in order; the reader is referred to [15] for addi-
tional discussion.

Suppose that 1 : G → H is a W-morphism. Let 0G : G → G′ and 0H : H → H ′

denote the Yosida representations, over YG and YH , respectively. Then there is a
unique continuous map t : YH → YG such that for each p∈YH and g∈G,

0G(g)(t(p)) = 0H (1(g))(p): (�)

When 1 is an essential embedding, t is an irreducible surjection, and conversely.
What all this is leading up to is an identity involving the map 4 for essential

extensions. It follows from (�); for more details the reader is referred to 4.1 in [22].
The subscripts on 4 in the display which follows should speak for themselves:

Let G6H be an essential extension; then for each polar P of G,

4H (P⊥H⊥H ) = t←(4G(P)):

(c) Suppose that X is an ipf and K is an icf, and for each compact space X ,
K(X ) = 4(X(C(X ))); then say that K is derived from X, or that K is the covering
derivative of X. One writes, perhaps suggestively, that K = 4(X).

Here is the topological counterpart to Theorem 1.3; [22, Theorem 3.5] makes up the
essential part of this.

Theorem 2.5. Let K be an icf. Then each space X has a least K-cover X [K], which
is obtained as YC(X )[4−1(K(X ))].

We conclude this review with the topological counterpart of the idempotence in 1.4.

De�nition 2.6. Suppose that K is an icf and that (X [K])[K] = X [K], for each compact
space. Then K is said to be idempotent. This is equivalent to saying that, for each X ,
each member of K(X [K]) is clopen.

Of the examples in 2.2, R! is not idempotent, and R� is not either, for any reg-
ular, uncountable cardinal �. R�

�, on the other hand, is idempotent, for each regular,
uncountable cardinal; although not expressly put in those terms, that is the content of
Theorem 7.4, [14]; the reader will also >nd a more explicit account of this, below, as
Proposition 4.9. R itself is also idempotent.
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As in 1.6, [22, 5.8] describes a trans>nite construction that generates the least idem-
potent icf over a given icf. Here is an outline of that.

De�nition and Remarks 2.7. Suppose that K is an icf and X is a compact space. First,
set K1 ≡ K. Next, suppose that  is an ordinal number, and that, for each !¡ , icfs K!

are de>ned, such that for !¡"¡ , and each compact space X , K!(G) is a subalgebra
of K"(G).

If  is a limit ordinal, let

K (X ) ≡
⋃
!¡ 

K!(X ):

On the other hand, if # is the predecessor of  , then de>ne

K (X ) ≡ { g#(A) : A∈K(X [K#]) };
where g# : X [K#] → X is the covering map associated with X [K#]. In either case K 

is an icf, and by induction we have a trans>nite sequence of icfs

K = K16 · · ·6K 6 · · ·6R:

(Note: For icfs K1 and K2, de>ne K16K2 to mean that K1(X )6K2(X ), for each
compact space X .)

For each compact space X there is an ordinal % for which K%(X ) = K%′(X ), for each
%′¿%. This enables one to de>ne the limit covering function K[ by

K[(X ) ≡ K%(X ):

It is shown in [22, Proposition 5.9], that each K and K[ are invariant. By design, K[

is idempotent, and the least idempotent icf exceeding K.
Also by [22, Proposition 5.9], one has, for each ordinal  and each compact space

X , that

X [K +1] = (X [K ])[K];

and, if  is a limit ordinal, that

X [K ] =
∨
!¡ 

X [K!]:

K[ is called the idempotent closure of K.

3. Completions vs. covers

Hull classes in W feature a fairly extensive range of ‘-group-theoretic properties.
Now, for the heart of the matter in this article, it is time to limit the scope of the
discussion. From this point onward we shall mainly be concerned with hull classes
consisting of uniformly complete real f-algebras. (In the sequel the quali>cation “real”
in front of “f-algebra” will be dropped, as all f-algebras considered here will be over
the real >eld.) These are the objects which are f-rings and also real vector lattices,
and uniformly complete W-objects into the bargain. All f-rings in these pages are
commutative and have an identity, and, moreover, that the identity is the designated
unit.
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It is known that the class of archimedean f-rings itself is a hull class—and more; see
Remark 5.10(b) for details. Thus, since every divisible uniformly complete W-object is
a vector lattice, it should also be clear that the class of uniformly complete f-algebras
is itself a hull class in W. To begin, here is a brief review of the basics regarding
uniform completion.

De�nition and Remarks 3.1. Let A be a W-object with designated unit u¿ 0. A
sequence (sn)n¡! in G is uniformly Cauchy if for each positive integer m there is
a positive integer k such that m|sn+k − sn|6 u, for each n∈N. The given sequence is
said to converge uniformly to s∈A if for each m∈N there is a positive integer k such
that m|sn+k − s|6 u, for each n∈N. If every uniformly Cauchy sequence converges A
is uniformly complete.

It is well known that each W-object A has a uniform completion, de>ned in the
following sense: an extension uA6Ae of A which is uniformly complete, such that
if H is an essential extension of A which is uniformly complete, then the identity
function on A extends to an ‘-embedding B → uA. In fact, the assignment A 
→ uA is
a reEection, although that will not be used here.

What is noteworthy in this context is that YuA= YA [15, Theorem 5.5]. To simplify
the notation in the theorem ahead U will be used to denote the class of all uniformly
complete W-objects.

Let us also adopt the following usage: for any class of W-objects A occurring in
these pages, Af will stand for the subclass of all objects in A which are uniformly
complete f-algebras.

De�nition 3.2. A hull class H consisting of uniformly complete f-algebras will be
called a completion class if it also has the feature that, for any uniformly complete
f-algebra A, A∈H if and only if A∗ ∈H. (Note: A∗ denotes the convex ‘-subgroup of
A generated by the designated unit.) Vacuously then, Uf itself is a completion class,
since if A is a uniformly complete f-algebra, then so is A∗.

For later use, let us indicate that uf will denote the hull operator for Uf.
Thus, for a given completion class H, if A∈H and A = A∗, then, without loss of

generality, we may apply the Stone-Weierstrass Theorem and assume that A = C(X );
evidently, YA = X . The point of this comment is that in computing H#, without loss
of generality, one may deal with bounded W-objects.

Before going any further, it may be dispiriting, but certainly worth recording the
following comment.

Remark 3.3. One may wonder whether a hull class necessarily contains a largest com-
pletion class. In this regard it is >rst important to recall that any hull class contains
all the essentially closed W-objects. Denote this class by E. Any completion class H
contained in E must therefore coincide with E. But the reader will readily see that E
is not a completion class.
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These remarks should be contrasted with Proposition 5.5, which spells out a suPcient
condition for such a largest “subcompletion class” to exist.

The >rst result should now be expected.

Proposition 3.4. Suppose that H is a completion class in W. Then H# is a covering
class of compact spaces.

Proof. Suppose that Y ≡ {Yi : i∈ I } is the set of compact spaces in Cov(X ), lying
in H#, and let Y = ∧i∈I Yi in Cov(X ). We have that C(Yi)∈H, for each i∈ I , and
each of these is an essential extension of C(X ). Let A be the H-hull of C(X ). Since
A6C(Yi), for each i∈ I , it follows that A=A∗, whence A=C(YA). It should be evident
that, in Cov(X ), X 6YA6Yi, and hence, YA6Y . On the other hand, YA∈Y, forcing
the reverse inequality. This means that Y ∈H#.

Conversely, let us suppose that T is a covering class of compact spaces. Let T# be
the class of uniformly complete f-algebras A for which YA∈T.

Proposition 3.5. Suppose that T is a covering class of compact spaces. Then T# is a
completion class of W-objects. For each W-object A, Y (hTA∗) is the minimum cover
of YA in T, where hTA is the T#-hull of A.

Proof. As YA = YA∗, it is clear that A∈T# if and only if A∗ ∈T#. And since T#

consists of uniformly complete f-algebras, by de>nition, it suPces to verify that T#

is a hull class.
To that end suppose A6Bi6Ae (i∈ I), and each Bi belongs to T#; set B=

⋂
i∈I Bi.

Note that B is uniformly complete, since the class of all uniformly complete f-algebras
is a hull class. Evidently, in Cov(YA), one has YA6YBi, for each i∈ I . Let Y =
∧i∈I YBi. Then Y ∈T, and it follows that

B∗ = C(YB)6C(Y )6C(YBi) = B∗i ;

while B∗ =
⋂

i∈I B
∗
i . From this conclude that C(Y ) = C(YB), and that Y = YB. Hence

B∈T#, and this proves that T# is a completion class.
As to the >nal assertion, it should be clear that Y (hTA∗) is a cover of YA in T. If

Z is a cover of YA in T, then A∗ is essentially embedded in C(Z), and the latter is a
T#-object. Hence, we may take hTA∗6C(Z), which in turn induces a covering map
Z → Y (hTA∗).

Here is a corollary, which now follows easily.

Corollary 3.6. For any completion class H, (H#)# =H. Conversely, for any covering
class of compact spaces, T, we have (T#)# = T.

And, separately, for emphasis, one has the following corollary:
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Corollary 3.7. Suppose that T is a covering class of compact spaces and that X is
compact. Then the T#-completion of C(X ) is C(TX ).
Thus, the maps H 
→ H# and T 
→ T# de=ne mutually inverse lattice isomorphisms

between the lattice of all completion classes of W-objects and the lattice of covering
classes of compact spaces.

Wherefore our insistence on having f-algebras, the reader might reasonably ask?
To contrast, here is a brief digression on W-objects with singular unit. For details the
reader is referred to [12].

De�nition and Remarks 3.8. The W-object G with designated unit u¿ 0 is said to be
singular, if for each 06 a6 u, a∧(u−a)=0. Equivalently, G is singular if and only if,
in its Yosida representation, each g∈G takes on values in Z∪{±∞}. It suPces here to
simply note that any singular object is uniformly complete. This follows immediately
from the de>nition of uniform completeness, as uniformly Cauchy sequences must in
this context be eventually constant.

The point, for now, is that the comment in 3.2 on the use of the Stone-Weierstrass
Theorem is far o4 the mark for singular W-objects. We return to this, brieEy, in 5.14.

The next section consists of an ample discussion of examples. As will be conceded
at the end, these are the only examples of completion classes we know.

4. Examples

The examples in this section may be reasonably classi>ed according to one of
two types. Roughly speaking, there are the covering classes which are de>ned by
an icf, and, thus, membership in one depends on a class of open sets having open
closure; then there are those which, clearly, cannot be so de>ned, such as the class in
Example 4.4.

We adopt the convention, that � denotes either a regular, uncountable cardinal, or
else the symbol ∞, which is to be imagined as a symbol exceeding all cardinals. In
the results which follow here this convention will be encapsuled by the inequalities
“!16 �6∞”. Unless the contrary is mentioned all cardinals in the sequel are assumed
to be regular.

To begin, recall two dual de>nitions.

De�nition 4.1. (a) Recall that a space is called �-disconnected if the closure of every
�-cozeroset is clopen. The class of compact �-disconnected spaces will be denoted by
E�. E�X designates the minimum �-disconnected cover of X . Note that for �=∞ one
has the extremally disconnected spaces, whereas for �=!1, the basically disconnected
spaces.

(b) A W-object G is said to be conditionally �-complete if every set of fewer than
� elements in G with an upper bound in G has a supremum in G. Denote the class
of conditionally �-complete W-objects by C(�); it is well known that C(�) is a hull
class, and in [13] there is a fair amount of information about it.
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Let us begin with a simple lemma which will set the tone for several of the examples
that follow. First, recall that an f-ring A satis=es the bounded inversion property if
each a¿ 1 in A is invertible. It is well known that every uniformly complete f-algebra
satis>es the bounded inversion property ([19]).

Lemma 4.2. Suppose that A is an f-ring satisfying the bounded inversion property,
and that !16 �6∞. Then A∈C(�) if and only if A∗ ∈C(�). In particular, C(�)f

is a completion class.

Proof. The necessity is trivial. As to the suPciency, suppose that A∗ ∈C(�), and that
{ ai : i∈ I } is a set of positive elements of A bounded above by b∈A, with |I |¡�.
Without loss of generality, b¿ 1 and hence invertible. Now consider the set { b−1ai :
i∈ I }; the members are bounded above by 1. Thus, x=∨i b−1ai exists. It is then easy
to verify that bx = ∨i ai, using the notion that multiplication by an invertible positive
element induces a lattice isomorphism.

Example 4.3. Conditional �-completeness vs. �-disconnectivity.
Lemma 4.2 shows that C(�) is a completion class. It is well known that C(�)# is

the class of �-disconnected spaces; this is essentially the Stone-Nakano Theorem.
That the class of extremally disconnected spaces is a covering class was >rst proved

by Gleason. The minimum extremally disconnected cover of X is called the absolute
of X . It is also the only extremally disconnected cover of X . In [27] Vermeer con-
structs the minimum basically disconnected cover of a space. By appealing to criteria
developed by Vermeer ([9] or [26]), it can be shown directly that E� is a covering
class.

It is well known (see [9]) that the class E∞ is the least covering class of compact
spaces. Thus, according to Corollary 3.6, C(∞), consisting of all conditionally complete
f-algebras is the least completion class.

This example should not be left behind without commenting on the role of �-project-
ability. Recall that P(�) stands for the class of all �-projectable W-objects. Now, by
appealing to the preceding lemma and Theorem 5.2, I, of [11], one can easily establish
that a uniformly complete f-algebra is �-projectable if and only if it is conditionally
�-complete; that is, C(�)f = P(�)f.

Example 4.4. o-Completeness vs. quasi F-spaces.
Recall that in a W-object A a sequence (sn)n∈N is said to be o-Cauchy if there

is a decreasing sequence (vn)n∈N in A, such that ∧n vn = 0 and |sn − sn+p|6 vn, for
all n; p∈N. The sequence (sn)n∈N o-converges if there is an s∈A and (vn)n∈N in A,
such that ∧n vn = 0 and |sn − s|6 vn, for all n∈N. A is o-complete if every o-Cauchy
sequence o-converges. Here are the facts concerning o-completeness, pertinent to our
discussion.

(i) Every o-complete divisible W-object is uniformly complete [21, Theorem 16.2(i)].
(ii) A is o-complete if and only if for each pair of sequences

a16 a26 · · ·6 · · ·6 b26 b1;
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such that ∧n bn−an=0, there is a c∈A such that ∨n an=c=∧n bn [24]. Evidently,
when such a c exists it is unique.

(iii) Letting O denote the class of o-complete W-objects, O# is the class of quasi F
spaces. Recall that X is quasi F if each dense cozeroset of X is C∗-embedded.

This is the place to observe that O# cannot be de>ned by an icf. Note that
the class of quasi F spaces contains connected spaces, such as )R+ \R+, where
R+ stands for the set of nonnegative real numbers; (see [7, 6.10(b)], where it is
shown that this space is connected, and [7, 14.27], which tells us that it is an
F-space.)

(iv) Of is a completion class. As in Lemma 4.2, the only matter that requires some
checking is this: if A is a uniformly complete f-algebra, then A∈Of if and only
if A∗ ∈Of. The nontrivial part of this, the suPciency, is a consequence of [23,
Theorem 11.7] or (ii) in this list.

(A substantial amount of information on quasi F spaces as a covering class may be
found in the following references: [6,16,20,23].) We summarize: O#=qF and qF#=Of.

Example 4.5. A pair of “non-examples”.
(a) Consider the class L of laterally complete, uniformly complete f-algebras. It is

not a completion class: for example C(N)∈L, but C∗(N) is not laterally complete.

(b) F-spaces correspond to the class of W-objects A which satisfy the so-called
;-interpolation property: if

a1 ¡a2 ¡ · · ·¡ · · ·¡b2 ¡b1;

then there is a c∈A such that an ¡c¡bn, for each n∈N. Observe that C(X ) has the
;-interpolation property if and only if X is an F-space; which is to say, every coze-
roset is C∗-embedded (see [18, Theorem 10.2]). Note that if A has the ;-interpolation
property it is uniformly complete [18, Theorem 9.10], but the class of these objects
is not a hull class. Alternatively, it is well known that the class of F-spaces is not a
covering class; see [26], or else [9, Proposition 9.4(c)].

Having brought up laterally complete W-objects in 4.5(a), that should be contrasted
with the following example.

Remark 4.6. Let the stipulation on the cardinal � be as before. Recall that a W-object
A is boundedly laterally �-complete if every set of pairwise disjoint elements S, with
|S|¡� and which is bounded above, has a supremum. Let bL(�) denote the class of
all boundedly laterally �-complete W-objects. It is not hard to see that bL(�) is a hull
class. The proof given for Lemma 4.2 works to show that bL(�)f is a completion
class.

Of course, this completion class is not new. It is shown in [11] that each A∈ bL(�) is
also �-projectable, and that YA is �-disconnected; thus, bL(�)f ⊆ E#

�. Conversely, if X
is �-disconnected, then C(X ) is conditionally �-complete and, in particular, boundedly
laterally �-complete. This means that bL(�)f = C(�)f.
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Example 4.7. qF� and q TF�.
Let X be a space. Recall that an open subset U of X is called an �-cozeroset if it

a union of fewer than � cozerosets. An �-Lindel@of space is one for which every open
cover has a subcover consisting of fewer than � subsets. Clearly, every �-cozeroset
is �-LindelUof. Now X is a quasi F� space if every dense �-LindelUof subspace of X
is C∗-embedded. The reader is referred to [2] for additional discussion of quasi F�

spaces. There it is shown that this class is a covering class.
Let us, brieEy, give a more precise account.

(a) Suppose that f : Y → X is an irreducible surjection. Say that f is �-irreducible
if for each �-cozeroset U in Y there is an �-cozeroset V in X such that f−1(V ) is
dense in U . Theorems 4.9 and 4.11 of [2] assert the following:

For each space X there is an �-irreducible surjection q� : qF�X → X , with qF�X
a quasi F� space, least among g : Z → X in Cov(X ) with Z quasi F�. Thus, the
class qF� of quasi F� spaces is a covering class. qF�X is the minimum quasi F�

cover of X .

When � = !1 one recovers the quasi F spaces. qF∞ = E∞, the class of extremally
disconnected spaces.

(b) To describe qF#
� one needs the concept of an �-cut, borrowed (most recently)

from the discussion in [10], which deals with �-cut completion of a boolean algebra.
In [2] the notion of �-cut completeness appears as �-jamd completeness. All spaces
are compact, as before.

Suppose that A is a W-object. The pair of subsets of A, (F;H) is called an
�-cut if

(i) |F |; |H |¡�;
(ii) F6H , meaning that f6 h for each f∈F and h∈H ;
(iii) ∧{ h− f : f∈F; h∈H } = 0.

A is �-cut complete if for each �-cut (F;H) of A, there is an a∈A such that F6 a6H .
Note that if this occurs, then a =

∨
F =

∧
H . Alternatively, if

∨
F =

∧
H exists

for each �-cut (F;H), then A is �-cut complete. It should be evident that condi-
tional �-completeness implies �-cut completeness. Furthermore, for uniformly complete
f-algebras, !1-cut completeness “is” o-completeness, by the observation in 4.4(ii).
Now, if A is �-cut complete, then it is �′-cut complete, for each �′6 �, and conse-
quently o-complete, whence it is uniformly complete, provided it is also divisible.

Finally, in this progression of remarks, if A is a uniformly complete f-algebra, then
A is �-cut complete if and only if A∗ is �-cut complete. This is proved using (ii)
above, and calculating as in the proof of Lemma 4.2. Upshot?

Let H(�) be the class of �-cut complete W-objects. This is, apart from other consid-
erations, a hull class. Now the discussion in the preceding paragraph says that H(�)f

is a completion class. Furthermore, recall Theorem 4.6 of [2]: C(X ) is �-cut complete
if and only if X is a quasi F� space. Thus, qF#

� =H(�)f.
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(c) One might opt for the following de>nition of a perfectly reasonable class of
spaces: every dense �-cozeroset of X is C∗-embedded. Call these the quasi TF� spaces
and denote the class by q TF�. Obviously, every quasi F� space is quasi TF�, and nothing
is known about the converse except in the extreme cases:

(i) � = ∞: the matter is easily resolved: q TF∞ = qF∞ = E∞.
(ii) � = !1: by [8, Theorem 3.6], if every dense cozeroset is C∗-embedded then it

follows that every dense LindelUof subspace is also C∗-embedded. That is to say,
q TF!1 = qF!1

= qF.

By appealing to criteria developed by Vermeer ([9] or [26]) one can show that q TF�

is also a covering class. Little is known about q TF#
�. Looking ahead to the examples in

4.8, note, citing [10, 3.5], that for zero-dimensional spaces,

qF� ⇔ q TF� ⇔ C z�:

Example 4.8. Let X be a space. Recall that an �-cozeroset V of X is �-complemented
if there is an �-cozeroset W of X such that V ∩ W = ∅ and V ∪ W is dense in X .
If every �-complemented �-cozeroset of X has clopen closure X is called an �-cloz
space. For �=!1 these are called cloz spaces introduced in [17]. These authors show
that the class of cloz spaces is a covering class; indeed, by appealing to Vermeer’s
techniques of [9] once again, one can show that, for each �, the class C z� of all �-cloz
spaces is a covering class.

The reader will easily see that C z∞ = E∞.
Now, Hager shows in [10, Section 3] that a zero-dimensional compact space is �-cloz

precisely when its Stone dual is an �-cut complete boolean algebra. Theorem 7.4 of
[14] shows that, for an archimedean f-ring A, YA is �-cloz if and only if A has the
so-called �-splitting property. Let us explain; A stands for a W-object with designated
unit u.
S; T ⊆ A+ are �-complemented if s∧t=0, for each s∈ S and t ∈T and S∪T generates

a dense convex ‘-subgroup and |S|; |T |¡�. Suppose that for every �-complemented
pair (S; T ) of subsets of A+ there is a component v of u, such that S⊥⊥= v⊥⊥ (it then
follows that T⊥⊥ = v⊥). A is said to have the �-splitting property. Let Spl(�) denote
the class of all �-splitting W-objects. This is the hull class corresponding to the polar
function P�

� introduced in 1.4(ii).
Carrying over the proof of [14, Theorem 7.1], mutatis mutandis one has the follow-

ing result.

Proposition 4.9. Suppose that A is a W-object. Then A has the �-splitting property
if and only if YA is an �-cloz space. Thus, C z#

� = Spl(�)f is the completion class of
all �-splitting uniformly complete f-algebras.

For the ordinal !1 here is a description of the !1-splitting objects, in terms of
o-convergence.

Proposition 4.10. Let X be a compact space. Then X is a cloz space if and only if
C(X ) has the following property: each increasing o-Cauchy sequence (an)n∈N which
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satis=es, for each k ∈N and m¿ 0,

{ (kan − m)+ : n∈N }⊥ = f⊥⊥k;m (∗)

for a suitable fk;m ∈C(X ), o-converges.

Proof. Suppose that C(X ) has the stated property. Let coz(f) and coz(g) be mutually
complementary cozerosets; without loss of generality, f; g¿ 0. Let fn = 1∧ nf; then,
for every natural number k,

fn+k − fn6 (1 − n(f ∨ g))+ and ∧n (1 − n(f ∨ g))+ = 0;

which says that (fn)n∈N is an increasing o-Cauchy sequence. As for condition (∗),
if m=k¿ 1, (kfn − m)+ = 0, for each n∈N, and (∗) certainly is satis>ed, whereas if
m=k ¡ 1, then as long as f(x)¿ 0, fn(x)¿m=k, for large enough n; this means that

{ (kfn − m)+ : n∈N }⊥ = g⊥⊥:

Therefore, the fn o-converge to h, which is a characteristic function, proving that
clX coz(f) is open and that X is a cloz space.

Conversely, suppose (fn)n∈N is an increasing o-Cauchy sequence satisfying condition
(∗) for all nonnegative integers k and m, with k ¿ 0. Then

Umk ≡ clX
⋃

{ x∈X : fn(x)¿m=k; n∈N }
is open, for each rational number m=k. It is well known that the function f de>ned by

f(x) = sup {m=k : x∈Umk }
is a continuous function. Evidently f = ∨n fn, and since (fn)n∈N is increasing it
o-converges to f.

To conclude this section, we recap the relationship between the various properties
linked to a cardinal constraint, as introduced above.

Remark 4.11. What is obvious is that

quasi F� ⇒ quasi TF� ⇒ �-cloz:

It is not known, in general, whether either arrow reverses, except as noted here:

(i) For � = ∞ the three conditions are equivalent to “extremally disconnected”. For
!1, it has already been remarked that “quasi F!1” is equivalent to “quasi TF!1”.
In [6] it is shown that every zero-dimensional cloz space is quasi F . Then an
example is given there and also in [17] showing that this is not so in general.

(ii) As pointed out in [10, 3.5], every zero-dimensional �-cloz space is quasi TF�. This
may also be deduced by extending [17, Theorem 3.4(b)] in the obvious way.

(iii) Finally, recall that X is �-cozero complemented if every �-cozeroset of X is
�-complemented. It is not too hard to see that if X is �-cloz and �-cozero com-
plemented, then it is �-disconnected.
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5. Completions of Ipf’s

This section reconnects the correspondence for completion classes with the prelim-
inaries of the >rst two sections. The theorem quoted below is a paraphrase of [22,
Theorem 5.13], which is, in e4ect, the culmination of that paper.

Theorem 5.1. (a) For any ipf X, the W-objects of the form G[X[] form a hull class,
denoted H(X). Indeed, G[X[] is the hull of G in H(X), and H(X) =H(X[).

(b) For any icf K, the compact spaces which satisfy X = X [K] form a covering
class T(K). The minimum cover of X in T(K) is X [K[], and T(K) = T(K[).

Remark 5.2. (a) Example 5.14 in [22] shows that the invariance provision of Theorem
5.1(b) cannot be dropped.

(b) One should also be careful in this regard: if X is an idempotent ipf, then
the covering derivative 4(X) may fail to be idempotent. This happens with P!, for
example; see [22, Example 5.11]. On the other hand, in the identity R�

� = 4(P�
�), both

polar and covering function are idempotent, for each �, including ∞, which takes P
itself into account, along with its covering derivative R.

Consider an ipf X. The objective ahead shall be to describe the pairing H(X)f

with (H(X)f)#, when the former is a completion class. Proposition 5.5 describes a
reasonable suPcient condition on X such that H(X)f is a completion class. Prior to
that, however, here is an observation, the proof of which again shows that the product
in the underlying ring is involved here in a signi>cant way. This lemma is doubtless
folklore, but we have been unable to >nd it explicitly stated anywhere.

Notice that uniform completeness is not assumed.

Lemma 5.3. Suppose that A is an archimedean f-ring. Then the trace map
P 
→ P ∩ A∗ on P(A) induces a boolean isomorphism of S(A) onto S(A∗).

Proof. That the trace of a summand of A is a summand of A∗ is evident; it is the
converse that is at issue. So suppose that P ∈P(A), and P ∩ A∗ is a summand of A∗.
Let f∈A+; write 1 = a + b, with a∈P ∩ A∗ and b∈P⊥ ∩ A∗. Then, since each polar
in an f-ring is an ideal, we have that f =fa+fb, and fa∈P, while fb∈P⊥. This
proves that P is a summand of A.

Remark 5.4. The proof of Lemma 5.3 as well as the proof of Lemma 4.2 ought
to convince that our correspondence between completion classes of W-objects and
covering classes of compact spaces ought to involve f-rings. The example in 3.8
shows that, at least, divisibility is required. And since this discussion involves rings of
continuous functions intimately, uniform completeness is, apparently, also quite useful.

Proposition 5.5. Let X be an ipf. Suppose that for each W-object G,

X(G∗) = {K ∩ G∗ : K ∈X(G) }:
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Then H(X)f is a completion class. It is the largest completion class contained in
H(X).

Proof. We make use of Lemma 5.3. Thus, suppose that A is a uniformly complete
f-algebra. Now, if A∈H(X)f, then for each P ∈X(A∗), write P = K ∩ A∗, with
K ∈X(A). But as K is a summand of A, P must be a summand of A∗. Conversely,
suppose that A∗ ∈H(X)f; then (with the same notation) P =K ∩A∗ ∈S(A∗), whence
K ∈S(A). This shows that A∈H(X)f.

Since it is clear that H(X)f is a hull class the above establishes that it is a com-
pletion class. The >nal claim of the proposition is obvious.

De�nition 5.6. If the ipf X satis>es the condition of Proposition 5.5 it is called exact.
The reader will easily verify that, given an ipf X, the rule

X′(G) ≡ {P ∈P(G) : P ∩ G∗ ∈X(G∗) };

for each W-object G, de>nes the largest exact ipf beneath X.
It is straightforward to check that the ipfs P, P!, P�

� and P� all are exact. Also
note that [22, Proposition 4.5] implies that, if X is exact, then (G[X])∗ = G∗[X], for
each W-object G.

It is time now to introduce a trans>nite construction which modi>es the one in
1.6, in that it closes under X-splitting, uniform convergence and “ringi>es” in one
construction. Recall that uf is the hull operator associated with Uf.

De�nition and Remarks 5.7. Let X denote an ipf, and suppose that G is an arbitrary
W-object. Set uf(G[X]) ≡ G[[X]] ≡ G1[[X]]. Now for a given ordinal  , suppose the
sequence of extensions {G![[X]] : !¡ } has been de>ned so that, for !¡"¡ ,
we have G![[X]]6G"[[X]]. Next, put

G [[X]] ≡

⋃

!¡ 

G![[X]]


 [[X]]:

(Observe that this de>nition applies whether  is a limit ordinal or not.) Note that
G [[X]]6Ge, for each  , and consequently this sequence must stabilize at some or-
dinal %. Now de>ne

G[X] ≡ G%[[X]]:

It should be evident that G[X] is a uniformly complete f-algebra and that G[X][X] =
G[X]; that is, G[X] ∈H(X)f.

Next we have one of the central results of the section, which should not unduly
surprise the reader. Recall the comments in 1.6, concerning the existence of a least
idempotent ipf X[ exceeding X.
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Theorem 5.8. Let X be an exact ipf. Then

(a) X[ is exact.
(b) For each W-object G, G[X] is the hull of G in H(X)f.

Proof. (a) Suppose that X is an exact ipf. We proceed by induction, proving each X 

is exact. The object G under discussion in this argument is an arbitrary W-object.
Suppose now that  is an ordinal, and for each !¡ , X! is exact. If  is a limit

ordinal then we have, for a polar K of G∗, that K ∈X (G∗) if and only if there is
a !¡ such that K ∈X!(G∗), which is so precisely when K = G∗ ∩ P for a suitable
P ∈X!(G), since X! is exact. Thus, X is exact in this case.

Next, suppose that  has predecessor #. Note that, K ∈P(G∗) lies in X (G∗) if and
only if K =K ′∩G∗, for some K ′ ∈X(G∗[X#])=X((G[X#])∗), owing to the exactness
of X#. Since X is exact, this occurs precisely when K ′=K ′′∩ (G[X#])∗, for a suitable
K ′′ ∈X(G[X#]). Put P ≡ K ′′ ∩ G, and observe straightaway that P ∩ G∗=K . Finally,
by de>nition P ∈X (G). The reader will now realize that this shows that X is an
exact ipf.

It should now be easy to see that the completion X[ is exact as well.
(b) If A∈Uf ∩ H(X) and G6A is an essential extension, then by trans>nite

induction each G [[X]]6A, whence G[X]6A. (The details of the induction are left
to the reader.)

Here is an immediate corollary of Theorem 5.8.

Corollary 5.9. For any ipf X and any W-object G, one has

(a) G[X] = G[X[].
(b) (ufG)[X] = G[X].

Theorem 5.8 is unsatisfactory, in the sense that one has no idea, for an arbitrary
exact ipf X, how drastically the Yosida space of the W-object G is changed in passing
to G[X]. To better understand this problem one should look more closely at how the
hull operator uf changes the Yosida space.

Remark 5.10. (a) Recall that a divisible uniformly complete W-object is a vector
lattice.

In brief we shall review the “ringi>cation” reEection—item (b) below. Loosely
speaking, the extension G6 ufG is achieved by >rst taking the divisible hull, and then
trans>nitely iterating the composition G6 u(rG)—or else the composition G6 r(uG),
where r is the ringi>cation functor of [15, Section 6]. It seems useful to point out some
of the drawbacks in involving applications of the ringi>cation. First, let us comment
on what it is.

(b) Suppose that G is a W-object with designated unit u¿ 0. Then there is an
f-ring rG with identity and an essential ‘-embedding rG : G → rG such that rG(u)=1
with the universal property that if 1 : G → B is an ‘-homomorphism into the f-ring
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with identity B, satisfying 1(u) = 1, then there a unique ‘-homomorphism of rings 1 r :
rG → B, preserving the identities, such that 1 r · rG =1. In particular, if 1 is one-to-one
then (owing to the essential containment of rG(G) in rG) 1 r is also one-to-one.

Now the applications of u and r do not commute. In fact, if A is an f-ring then
uA might “lose” the ring structure; an example may be found in [15, 4.6], and, more
dramatically, in [1]. And, similarly, if one ringi>es a uniformly complete W-object, the
result may fail to be uniformly complete. Thus, apart from taking the divisible hull,
this explains why u and r must be iterated trans>nitely, in general, in order to form
uf. This issue will not trouble us in the sequel, however.

(c) Unlike the situation with uniform completion or with the divisible hull, rA need
not have the same Yosida space as A. The following example ought to suPce to point
out what can go wrong; it is due to Tony Hager.

As in [7], X ∗ denotes the one-point compacti>cation of the space X .
Suppose that A is the vector lattice consisting of all sequences which are eventually

of the form r + sf + tg, with r; s; t ∈R, where

f(n) =
1 + c(n)

n
; g(n) = n; ∀ n∈N;

and c denotes the characteristic function of the even integers. Note that YA=N∗, upon
which fg is not de>nable. Observe as well that A is projectable.

(d) By contrast, if A is a W-object and YA is already a quasi F-space, then, each
f−1(R) (with f∈A) is C∗-embedded, and products in rA can be de>ned over the
same Yosida space. Thus, YrA = YA.

There is one other important context in which the ringi>cation does preserve the
Yosida space. This happens when the W-object G being enlarged has a strong desig-
nated unit. This is so because the Yosida representation inserts G into C(YG), and rG
is then the ‘-subring generated by G in C(YG).

Our goal is to improve Theorem 5.8, by giving a reasonable description of the
Yosida space of the hull G6G[X]. We have been able to do this for W-objects with
a strong unit. Some preliminaries follow, and then the theorem which gives such a
description.

Remark 5.11. Fix an ipf X. Suppose that G has a strong designated unit. Then so
does G[X]. By the remarks in 5.10(d), YrG[X] = YG[X].

Recall that by Proposition 1.5 the extension G6G[X] of a divisible object (resp.
vector lattice, resp. f-ring) produces a divisible object (resp. vector lattice, resp.
f-ring). Finally, although we cannot predict, in general, whether H(X[) is closed un-
der uniform completion, YuG[X] = YG[X], and, thus, YufG[X] = YG[X]. This means
that if X is exact, we have, for each ordinal  (referring to the notation introduced
in 5.7)

YG [[X]] = Y




⋃

!¡ 

G![[X]]


 [X]


= Y


⋃

!¡ 

G![[X]][X]



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and therefore,

YG [[X]] =




Y


⋃

!¡ 

G![[X]]


 if  is a limit ordinal;

YG#[[X]][X] if  has predecessor #:

(††)

Theorem 5.12. Suppose that the ipf X is exact. Suppose that K is the covering deriva-
tive of X. Then, for each ordinal  , and each W-object G with a strong designated
unit,

YG [[X]] = (YG)[K ]:

Consequently, YG[X] = (YG)[K[].

Proof. Suppose G has a strong designated unit. Without loss of generality, assume that
X is idempotent. Throughout the proof Y = YG. To make labels match in the proof,
set Y [K0] ≡ Y .

We proceed by trans>nite induction to prove the >rst claim. For  = 0, it simply
says that YufG = Y . This is clear, in view of Remark 5.11. So suppose that  ¿ 0,
and that, for each ordinal !¡ , it has been established that

YG![[X]] = Y [K!]:

Both instances of trans>nite induction are applications of (††) in Remark 5.11: if  is
a limit ordinal then,

YG [[X]] = Y


⋃

!¡ 

G![[X]]


=

∨
!¡ 

YG![[X]] =
∨
!¡ 

Y [K!] = Y [K ]:

If # is the predecessor of  , then, invoking [22, Proposition 4.5] as well as Theorem
2.5, we have that

YG [[X]] = Y (G#[[X]][X]) = Y (G#[[X]][X])∗ = Y (G#[[X]])∗[X]

= (Y (G#[[X]])∗)[K] = Y (G#[[X]])[K] = (Y [K#])[K] = X [K ]:

The >rst claim of the theorem is established, and then the second should be clear.

The following corollary is immediate. The details are left to the reader.

Corollary 5.13. For any exact ipf X, with covering derivative K,

(H(X)f)# = T(K[):

Let us conclude this section by returning to the singular objects, by way of contrast,
to indicate what happens if divisibility is dropped from consideration in hull formation.

Example 5.14. We take up the ipf P! again. Let X be a compact, zero-dimensional
space, and S(X;Z) stand for the ‘-group of all continuous integer valued functions
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with >nite range. S = S(X;Z) is an f-ring, projectable and, as has already been noted
(in 3.8), uniformly complete. Thus, the hull of S in the class of uniformly com-
plete f-rings is S itself, while X [R[

!] is again the minimum basically disconnected
cover of X .

6. Work points

We leave the reader with a list of open questions, nontrivial ones, we believe.
With regard to the >rst four, one might have thought that the correspondence between
completion classes and covering classes highlighted in Section 3 would be useful in
answering them; after some thought, there seems to be no evidence to encourage one
that this is so.

Question 6.1. If a covering class T of compact spaces consists of zero-dimensional
spaces, then must all the spaces in T also be basically disconnected?

Note, on the algebraic side, that if a completion class H consists of projectable
W-objects then H# consists of basically disconnected spaces, and each G ∈H is
conditionally !1-complete.

To contrast, recall that the class of quasi F-spaces contains connected spaces.

Question 6.2. If a covering class T of compact spaces consists of cozero-complemented
spaces, then must all the spaces in T be basically disconnected?

Recall that a space X is cozero-complemented if for each cozeroset U of X , there
is a cozeroset V of X such that U ∩ V = ∅ and U ∪ V is dense in X .

Question 6.3. If a covering class T of compact spaces consists of F-spaces then must
all the spaces in T be basically disconnected?

Recall that the class of compact F-spaces itself is not a covering class. Note as
well that any cozero-complemented F-space is basically disconnected, so that if T is
a covering class having both this property and the one in Question 6.2 then it does
consist of basically disconnected spaces.

Question 6.4. Suppose that T is a covering class of compact spaces with the feature
that if X ∈T and A is the closure of a cozeroset of X , then A∈T. Must such a class
consist of basically disconnected spaces?

If T does consist of basically disconnected spaces it has this property—trivially so,
since any closure of a cozeroset in a basically disconnected space is clopen.

Observe as well, as illustrations, that the class of quasi F-spaces does not have this
feature: consider a discrete uncountable space D, and D∗, the one-point compacti>cation
of D. It is well known that D∗ is a quasi F space. Any countable subset of D is
a cozeroset of D∗, but its closure is homeomorphic to N∗, which is not quasi F .
Moreover, with regard to Question 6.2, D∗ is also not cozero-complemented.

We close with a question which annoys because, intuitively, the answer is surely
yes. It seems to be less tractable than one might think at >rst glance.
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Question 6.5. Is a hull class in W necessarily closed under taking products?
There is, potentially, a second question: if H is a hull class of W-objects with hull

operator h, then is

h

(∏
i∈I

Ai

)
∼=
∏
i∈I

hAi ?

If h satis>es the above then H is clearly product-closed. It is easy to >nd examples
showing that the product-closure does not imply the above identity for the hull operator.
Note that the class of divisible W-objects is closed under forming products. However,

dZ! = {f∈Q! : ∃; k ∈N such that kf∈Z! };
which is not the product of countably many copies of Q.

The reader familiar with reEections will easily see that if the hull class is epireEective
then it is closed under taking products. In any event, it is either well known or else
easy to check that all the hull classes discussed in Section 4 are product-closed.
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