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Let p be prime, k a finite field of characteristic p, and G a virtually
pro-p group. We prove an analogue of the Green correspondence
for finitely generated modules over the completed group algebra
k�G �.
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1. Introduction

Let p be a prime number, G a finite group, Q a p-subgroup of G and L any subgroup of G con-
taining the normalizer NG(Q ) of Q in G . Let k be a field of positive characteristic p. In [2] J.A. Green
demonstrates a fundamental correspondence between finitely generated kG-modules with vertex Q
and finitely generated kL-modules with vertex Q . When L = NG(Q ) the Green correspondence allows
for the reduction of many questions about general modules to questions about modules with a normal
vertex.

Now let G be a profinite group and k a finite field of characteristic p. In [3] we took some first
steps towards a modular representation theory of profinite groups. In particular we demonstrated a
classification theorem for relatively projective finitely generated k�G �-modules, introduced vertices
and sources, and showed that the expected uniqueness properties hold for these objects (under ad-
ditional hypotheses in the case of sources). Here we generalize the Green correspondence (properly
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interpreted) to the class of virtually pro-p groups. We will reference [3] frequently, since many nec-
essary foundational results are discussed therein.

Our main result is the following:

Theorem 1. Let G be a virtually pro-p group, let Q be a closed pro-p subgroup of G and let L be a closed
subgroup of G containing NG(Q ). Let S be a finitely generated indecomposable profinite k� Q �-module with
vertex Q . Then there is a canonical bijection between the set of isomorphism classes of indecomposable profi-
nite k�L�-modules with vertex Q and source S, and the set of isomorphism classes of indecomposable profinite
k�G �-modules with vertex Q and source S.

More explicitly, if V is an indecomposable k�L�-module with vertex Q and source S, then the correspondent
of V under the above bijection is the unique indecomposable summand of V ↑G having vertex Q .

We approach the proof in two main steps. We first demonstrate a correspondence which is word-
for-word analogous to the finite case under the additional assumption that L is open in G . Using this
special case we then demonstrate the truth of the above theorem. First let us establish some notation
to be assumed throughout our discussion.

The main concepts mentioned in this paragraph are introduced and discussed in [3]. Let G be a
virtually pro-p group and k a finite field of characteristic p. All modules are assumed to be profinite
left modules. If U is a k�G �-module and N is a closed normal subgroup of G , then we denote by U N

the coinvariant module k⊗̂k�N � U – note that this is not a restriction. If U is finitely generated and
N is open in G , then U N is finite. If U is non-zero, finitely generated and indecomposable, then by
[3, 3.8, 3.9] we can choose a cofinal inverse system of open normal pro-p subgroups of G for which
each U N is non-zero and indecomposable. As usual, if H is a closed subgroup of G and V is a k� H �-
module, then we denote by V ↑G the k�G �-module induced from V . If U is a k�G �-module, then we
denote by U↓H the k� H �-module obtained by restricting the coefficients of U .

Let Q be a closed pro-p subgroup of G and let L be any closed subgroup of G containing NG(Q ).
We define the following two sets of subgroups of G:

X = {
X �C G

∣∣ X � xQ x−1 ∩ Q , x /∈ L
}
,

Y = {
Y �C G

∣∣ Y � xQ x−1 ∩ L, x /∈ L
}
.

If H is a collection of subgroups of G , then we say a finitely generated k�G �-module U is relatively
H-projective if each indecomposable summand of U is projective relative to an element of H. As in
the finite case we note that X consists of proper subgroups of Q , while Y may contain a conjugate
of Q .

2. The case where L is open

Essentially following the treatment in [1, 3.12] we prove three lemmas which constitute the bulk
of the work for the case of open L.

Lemma 2. Let V be a finitely generated indecomposable Q -projective k�L�-module. Then V ↑G↓L ∼= V ⊕ V 1 ,
where V 1 is Y-projective.

Proof. By the Mackey decomposition formula [5, 2.2] we have

V ↑G↓L∼=
⊕

x∈L\G/L

x(V )↓xLx−1∩L↑L = V ⊕
⊕

x∈L\G/L, x/∈L

x(V )↓xLx−1∩L↑L
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so we need only show that a summand of the form x(V )↓xLx−1∩L↑L with x /∈ L is Y-projective.
By [3, 6.2] the module x(V ) is projective relative to xQ x−1 so by [3, 4.7] we can choose a k�xQ x−1 �-

module S such that x(V ) | S↑xLx−1
. Then

x(V )↓xLx−1∩L↑L
∣∣ S↑xLx−1↓xLx−1∩L↑L∼=

⊕
y

y(S)↓(yx)Q (yx)−1∩xLx−1∩L↑L

where y runs through a set of double coset representatives of

(
xLx−1 ∩ L

)\xLx−1/xQ x−1.

Note that yx = xlx−1x = xl for some l ∈ L and x /∈ L implies xl /∈ L so that each ((yx)Q (yx)−1 ∩
xLx−1 ∩ L) ∈ Y. Hence the module x(V )↓xLx−1∩L↑L is relatively Y-projective as required. �
Lemma 3. Let V be a finitely generated indecomposable Q -projective k�L�-module. Then V ↑G∼= U ⊕ U1 ,
where U is indecomposable, V | U↓L , and U1 is X-projective.

Proof. Since V | V ↑G↓L , by the Krull–Schmidt theorem [4, 2.1] there is an indecomposable summand
U of V ↑G with V | U↓L . Write V ↑G∼= U ⊕ U1 and take an indecomposable summand U ′ of U1. We
wish to show that U ′ is relatively X-projective. Note that U ′ is relatively Q -projective.

Since NG(Q ) � L and L is open, a standard compactness argument allows us to consider a cofinal
inverse system of open normal subgroups N of G such that NG(Q N) � L. Fix some N in our system.
The module U ′ is projective relative to Q N , so U ′ | U ′↓Q N↑G by [3, 4.7]. Since U ′↓Q N is finitely
generated, we can find some indecomposable k� Q N �-module S such that S | U ′↓Q N and U ′ | S↑G .
Now U ′↓Q N∼= U ′↓L↓Q N so there is an indecomposable finitely generated k�L�-module V ′ such that
V ′ | U ′↓L and S | V ′↓Q N . Note that V ′ is a direct summand of V ↑G↓L distinct from V , so by Lemma 2
it is projective relative to a subgroup of the form t Q t−1 ∩ L with t ∈ G, t /∈ L. Let T be a k�t Q t−1 ∩ L�-
module such that V ′ | T ↑L . From the Mackey decomposition theorem [5, 2.2] we have

S
∣∣ V ′↓Q N

∣∣ T ↑L↓Q N∼=
⊕

l∈Q N\L/t Q t−1∩L

l(T )↓(lt)Q (lt)−1∩Q N↑Q N .

Since t /∈ L it follows that S is projective relative to a subgroup of the form xQ x−1 ∩ Q N for some
x /∈ L. Since U ′ | S↑G we have shown that for each N in our system the module U ′ is projective
relative to a subgroup of the form xQ x−1 ∩ Q N for some x /∈ L that depends on N .

We would like to find some x ∈ G, x /∈ L for which U ′ is projective relative to xQ x−1 ∩ Q N for every
N in our system. Denote by CN the non-empty set of x ∈ G, x /∈ L for which U ′ is relatively [xQ x−1 ∩
Q N]-projective. If ever N � M and x ∈ CN then certainly U ′ is projective relative to xQ x−1 ∩ Q M , so
if x ∈ CN then x ∈ CM . Since each CN is closed in G the standard compactness argument now shows
that

⋂
N CN 
= ∅.

Choose some x ∈ G, x /∈ L for which U ′ is projective relative to xQ x−1 ∩ Q N for each N in our
system. By [3, 5.2] it follows that U ′ is projective relative to

⋂
N

(
xQ x−1 ∩ Q N

) = xQ x−1 ∩
(⋂

N

Q N

)
= xQ x−1 ∩ Q

as required. �
In the finite case the following lemma is an easy corollary of Lemma 2. In our more general context

it requires a little more care.
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Lemma 4. Let U be a finitely generated indecomposable k�G �-module with vertex Q . There is a finitely gen-
erated indecomposable k�L�-module V with vertex Q such that U | V ↑G and V | U↓L .

Proof. We work in a cofinal inverse system of N �O G with NG(Q N) � L. We first show that U↓L
has an indecomposable summand with vertex Q . Since U | U↓L↑G we have U↓L has at least one
summand with vertex conjugate to Q in G . Let X denote the non-empty set of isomorphism classes of
V | U↓L having vertex conjugate to Q . For each N , the fact that U | U↓Q N↑G implies that U | V ↓Q N↑G

for some V ∈ X , and so U | W ↑G for some W | V ↓Q N . Clearly W has vertex y Q y−1 ⊆ Q N .
Suppose V has vertex xQ x−1 and let S be a k�xQ x−1 �-module with V | S↑L . Applying Mackey’s

formula to W | S↑L↓Q N it follows that V has vertex L-conjugate to a subgroup of Q N , and so V
has a vertex contained in Q N . Note that X is a finite set, so some element of X must have vertex
contained in Q N for a cofinal subset of N �O G and hence some element of X has vertex Q .

Let Z be an indecomposable summand of U↓L and suppose that for all N in our system there is
some x /∈ L such that Z is xQ Nx−1-projective. Denote by CN the non-empty set of all such x /∈ L. If
x ∈ CN then xq ∈ CN for all q ∈ Q N and so each set CN is closed in G .

If N � M and x ∈ CN then certainly x ∈ CM . By compactness we now have that
⋂

N CN 
= ∅. Fix
x ∈ ⋂

N CN . It follows that Z is xQ x−1N-projective for each N , and so Z is xQ x−1-projective. Note
that for any l ∈ L we have (lx)Q (lx)−1 
= Q since lx /∈ L. From the conjugacy of vertices [3, 5.5] it
follows that Z does not have vertex Q .

Since there is an indecomposable summand of U↓L with vertex Q the contrapositive of the pre-
vious argument shows there is some N0 �O G such that this summand is not projective relative to
xQ N0x−1 for any x /∈ L. From now on we work within the cofinal system of N �O G with N � N0.

Let T denote the (finite, non-empty) set of isomorphism classes of indecomposable V | U↓L
such that U | V ↑G . We wish to find an element of T with vertex Q . Choose N in our system.
Since U | U↓Q N↑G we take some indecomposable summand V | U↓Q N↑L such that U | V ↑G . Since
V | V ↑G↓L , by Lemma 2 we have two possibilities:

• V | U↓L or
• each summand of U↓L is projective relative to xQ Nx−1 ∩ L for some x /∈ L.

By our choice of N the latter cannot happen, so that V | U↓L and so V ∈ T . Thus for all N there is
an element of T which is Q N-projective, and so there is an element of T which has vertex Q , as
required. �
Proposition 5. Let G be a virtually pro-p group, Q a closed pro-p subgroup of G and let L be an open subgroup
of G containing NG(Q ). Then we have the following correspondence between finitely generated indecompos-
able k�G �-modules with vertex Q , and finitely generated indecomposable k�L�-modules with vertex Q :

1. If U is a finitely generated indecomposable k�G �-module with vertex Q , then there is a unique indecom-
posable summand f (U ) of U↓L with vertex Q , and the rest have vertex in Y.

2. If V is a finitely generated indecomposable k�L�-module with vertex Q , then there is a unique indecom-
posable summand g(V ) of V ↑G with vertex Q , and the rest have vertex in X.

3. The given correspondence is one-one in the sense that f (g(V )) ∼= V and g( f (U )) ∼= U .

Proof. 1. By Lemma 4 we have that U | V ↑G for some finitely generated indecomposable k�L�-module
V with vertex Q . Thus U↓L | V ↑G↓L . By Lemma 2, V is the only summand of V ↑G↓L with vertex Q
and the rest have vertex in Y, so that U↓L has at most one summand with vertex Q . On the other
hand, again by Lemma 4 we have that U↓L has at least one summand with vertex Q . Hence we set
f (U ) = V and the claim holds.

2. We have V | V ↑G↓L so we choose an indecomposable summand U | V ↑G such that V | U↓L . By
Lemma 3, we have V ↑G∼= U ⊕ U1 where U1 is X-projective. The module U has vertex Q since if it
had smaller vertex then the Mackey decomposition theorem shows that V would as well. Thus, we
take g(V ) = U and we are done.

3. This is clear. �
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3. A more general case

We retain the notation from above but drop the assumption that L is open in G . When L was open
and U , V were Green correspondents as above, we see in particular that V | U↓L . This need not be
the case when L has infinite index in G – an example of this phenomenon can be found in the last
section of [5]. For this reason we now focus on the map g .

Let V be an indecomposable finitely generated k�L�-module with vertex Q . By [3, 6.1] we can
choose a cofinal inverse system of N �O G for which V ↑LN is indecomposable. We work in this
system as we prove the following key lemma:

Lemma 6. For any given M �O G in our inverse system the module V ↑LM has vertex Q .

Proof. Certainly V ↑LM is relatively Q -projective, so we choose some vertex R of V ↑LM contained
in Q . We will show that V is R-projective. Consider the cofinal inverse system of those N �O G
contained inside M , noting that for each such N the module V ↑LN is indecomposable.

Let S be a k� R �-module such that V ↑LM | S↑LM . Then for each N � M we have

V ↑LN
∣∣ V ↑LM↓LN

∣∣ S↑LM↓LN∼=
⊕

x∈LN\LM/R

x(S)↓xRx−1∩LN↑LN

so that V ↑LN is xRx−1-projective for some x ∈ LM and hence has vertex xRx−1. Denote by CN the
non-empty set of all y ∈ LM with the property that yR y−1 is a vertex of V ↑LN . Then CN is a finite
union of right cosets of LN so is a closed subset of LM . We would like to show that

⋂
N CN 
= ∅.

Given N1, . . . , Nn , let N ′ = N1 ∩ · · · ∩ Nn . Then by the argument above CN ′ 
= ∅. But CN ′ ⊆ CNi for
each i, since if V ↑LN ′

is induced from a yR y−1-module, then so is each V ↑LNi . Thus, ∅ 
= CN ′ ⊆
CN1 ∩ · · · ∩ CNn and so by compactness

⋂
N CN 
= ∅. It follows that we can find some y ∈ LM so that

V ↑LN is yR y−1-projective for each N � M .
We move now from induced modules to coinvariant modules. Note that if V ↑LN is yR y−1-

projective then it is certainly yRN y−1-projective, so for some yRN y−1-module T we have V ↑LN |
T ↑LN . Now

V L∩N ∼= (
V ↑LN)

N

∣∣ (
T ↑LN)

N
∼= T N↑LN

by [3, 3.6] so that V L∩N is yRN y−1-projective for each N in our system. Now by [3, 4.5] the module
V is yR y−1-projective and so some conjugate of yR y−1 contains Q . Thus R � Q � zRz−1 for some
z ∈ LM , so R = Q and we are done. �

Recall that L contains the normalizer of Q in G .

Corollary 7. Let V be an indecomposable finitely generated k�L�-module with vertex Q . Then V ↑G has a
unique summand g(V ) with vertex Q , and the rest have vertex in X.

Proof. We choose some M �O G for which V ↑LM is indecomposable. By Lemma 6, V ↑LM has ver-
tex Q . But now by Proposition 5, V ↑G∼= V ↑LM↑G has a unique summand g(V ) with vertex Q and
the rest have vertex in {

X �C G
∣∣ X � xQ x−1 ∩ Q , x /∈ LM

}
but this is a subset of X and so we are done. �
Proof of Theorem 1. The map g from Corollary 7 restricted to those modules with source S has the
appropriate image and domain. We need only check that g is bijective.
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First we show that if U is an indecomposable k�G �-module with vertex Q and source S , then
there is some indecomposable k�L�-module V with vertex Q and source S such that U ∼= g(V ). But
this is clear since if S↑L∼= V 1 ⊕ · · · ⊕ Vn is a decomposition into indecomposable summands then

U
∣∣ S↑G∼= S↑L↑G∼= V 1↑G⊕· · · ⊕ Vn↑G

and so U | V i↑G for some i since U has local endomorphism ring by [3, 5.4]. Clearly V i has vertex Q .
This shows that g is surjective.

It remains to show that if V , W are finitely generated indecomposable k�L�-modules having ver-
tex Q and source S , and g(V ) ∼= g(W ) as k�G �-modules, then V ∼= W as k�L�-modules. Choose
a cofinal inverse system of N �O G for which both V ↑LN and W ↑LN are indecomposable. Let
g(V ) ∼= U ∼= g(W ). The modules V ↑LN and W ↑LN are both Green correspondents of U in the sense
of Proposition 5 and so V ↑LN∼= W ↑LN for each N in our inverse system. But

V ↑LN∼= W ↑LN ⇒ (
V ↑LN)

N
∼= (

W ↑LN)
N ⇒ V L∩N ∼= W L∩N

for each N , and so V ∼= W by [3, 4.4]. �
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