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a b s t r a c t

This paper develops a novel definition of generalized synchronization on complexnetworks
consisting of systems evolving in a chaotic or regular fashion. With two usual methods
for detecting generalized synchronization, two criteria for generalized synchronization on
networks are advanced. Some complex dynamical behaviors are discussed briefly on the
basis of numerical simulations of a real network example.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Following chaos synchronization being observed by Pecora and Carroll in the 1990s [1] and complex networks being
intensively studied in many fields recently [2–6], the synchronization of complex dynamical networks has become a focus
of attention [6–13].
However, most of the works mentioned above synchronize identical nodes. In fact, in many real-world cases such as

biological systems and social activities (especially collective behaviors), it is rarely the case that every component can be
assumed to be identical. As a result, more and more applications of chaos synchronization in secure communications have
made it much more important to synchronize two different chaotic systems in recent years. In this regard, some works on
generalized synchronization (GS) [14] of nonidentical systems have been performed.
As a sort of the synchronous chaotic behavior, generalized synchronization of unidirectionally coupled oscillators has

been attracting special attention. For two coupled systems named the drive (master) system and response (slave) system
with state variables xd(t) and xr(t), GS is defined as the existence of some smooth vector functional between the states of
the drive and response systems, i.e. xd(t) and xr(t) have the relationship xd(t) = H[xr(t)] after a transient time. The form of
the functionalH[·] (smooth or fractal) may be rather complicated, and two different dynamic systemsmay serve as coupled
systems.
This article independently develops a definition of generalized synchronization on complex networks for the general

case, and herein more abundant synchronized behavior on complex networks is shown. The paper is organized as follows.
In Section 2, the definition of GS on networks is introduced. Section 3 proposes two criteria for detecting GS on coupled
networks. Numerical simulations of a network sample are provided for illustration and verification in Section 4. Finally,
conclusions are given in Section 5.
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2. The definition of generalized synchronization on networks

We consider a network with l different sorts of nodes and n nodes:

ẋi = Fk(xi)+
n∑
j=1

εijPxj, i = 1, . . . , n and k = 1, . . . , l (1)

where xi = (x1i , . . . , x
d
i ) ∈ Rd is the d-vector containing the coordinates of the ith oscillator, and Fk(·) : D ⊆ Rd → Rd is the

(nonlinear) vector field controlling the dynamics of the kth sort of oscillators. The nonzero elements of the d × dmatrix P
determinewhich variables couple the oscillators. For clarity, we shall consider a vector version of couplingwith the diagonal
matrix P = diag(p1, p2, . . . , pd), where ph = 1, h = 1, 2, . . . , s and ph = 0, h = s+ 1, . . . , d. Note that all the results that
are obtained in this paper are also valid for other possible cases of scalar and vector couplings between the oscillators.
Let G = (εij(t)) ∈ Rn×n be an n× n symmetric matrix with vanishing row-sums and nonnegative off-diagonal elements,

i.e. εij = εji, εij ≥ 0, for i 6= j, and εii = −
∑n
j=1 εij, j 6= i, i = 1, . . . , n. The matrix G defines a graph with n vertices and m

edges, and represents both the structure of the coupling and the coupling strengths. The vertices of the graph correspond to
the individual oscillators and the edges to the off-diagonal elements of G .
Therefore, we consider an arbitrary network of systems that are mutually coupled, due to the symmetry of the coupling

matrix. The condition for vanishing row-sums is necessary for the existence of a generalized synchronous state.
In the following, we first present a rigorous definition of generalized synchronization of a network.

Definition 1. Suppose xk(t,X0) (where X0 = ((x01)
T, . . . , (x0n)

T)T and k = 1, 2, . . . , l) is a solution for the network (1).
If there exists a nonempty open subset E ⊆ D, with x0k ∈ E (k = 1, 2, . . . , l), such that xk(t,X0) ∈ D, for all t ≥ 0,
k = 1, 2, . . . , l, and

lim
t→∞
‖xg(t,X0)− Hh[xf (t,X0)]‖ = 0, for 1 ≤ g, f ≤ l, 1 ≤ h ≤ n (2)

where the functional Hh[·] denotes the relation of two nodes, and ‖ · ‖ means any norm on the space of real matrices (or
vectors), then the network (1) is said to realize generalized synchronization and E×· · ·×E is called the region of synchrony
for the network (1).

Remark. • The definition above can be used to analyze behaviors of GS among all sorts of nodes of networks, not just
describing the state of GS between two systems.
• According to the definition, we can comprehend the implication of GS for complex networks. One network consists
of diverse nodes; moreover all nodes can be classified into some distinct communities in terms of their natures and
relations with other nodes around themselves. It is intuitively obvious that the nodes in the same community can
realize complete synchronization (which implies strong synchronization) under strong enough coupling, while the nodes
between different communities may attain GS (which suggests weak synchronization) under stricter conditions than
those for complete synchronization.
• Considering the case of two coupled nodes, the functional Hh[·] corresponds to the existence of an attracting
synchronization manifold M (given by Hh[·]) in the full state space of the coupled systems. In view of the complexity
and smoothness of the function Hh[·] and the corresponding synchronization manifoldM , we find it difficult to resolve
the concrete functional Hh[·] directly. Accordingly, we develop some indirect methods as in the following section. �

3. Two criteria for detecting GS on networks

As outlined in the preceding section, the existence of a functional relation depends on stability features of the response
system. This aspect can be used to formulate another definition of generalized synchronization in terms of asymptotic
stability (entrainment) of the response system. There are basically two approaches for testing for synchronization in this
sense: the auxiliary systems approach and that of conditional Lyapunov exponents. Therefore, two criteria for detecting GS
on networks will be stated analogously.

3.1. The auxiliary systems approach

One direction for studying asymptotic stability is by the auxiliary system method introduced by Abarbanel et al. [15],
using an identical duplication of the response system that is driven by the same driving signal. We consider thus the systemẋ = F(x)

ẏ = G(x, y)
ẏ ′ = G(x, y ′).

(3)

Generalized synchronization occurs if limt→∞ ‖y(t) − y ′(t)‖ = 0, i.e. if the response system and the auxiliary system
show complete synchronization.



X. Xu et al. / Computers and Mathematics with Applications 56 (2008) 2789–2794 2791

In the mutually coupled case, every individual node of the network is both the drive system and the response system.
Therefore we have this criterion for detecting GS on networks:

Criterion 2. Suppose xji(t) is the jth auxiliary system (there existm auxiliary systems in total, namely 1 ≤ j ≤ m) of xi(t) in
network (1). If limt→∞ ‖xi(t)− xji(t)‖ = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, then the network (1) achieves the GS state after
a transient time.

Remark. • By virtue of the alternativemethod for testing the predictability of the response system fromknowledge of xd(t)
and, therefore, for detecting synchronous behavior in nontrivial cases, we can indirectly judge the functional relation
between the driving system and the driven system.
• The auxiliary system need not be implemented in an actual closed-loop system, if circumstances do not allow.
• The bottom-up approach analyzes whether every auxiliary system of all nodes can completely synchronize itself with its
response system before drawing a conclusion on whether the network realizes the GS state. �

3.2. The largest Lyapunov exponents approach

On the other hand, a sufficient and necessary condition for GS (or CS) is the largest conditional Lyapunov exponent (LCLE)
being negative [1,16–18].
Conditional Lyapunov exponents (also called transversal Lyapunov exponents) characterize the dynamics of small

perturbations y ′ = y + e of response state y, resulting in an error dynamics

e = G(x, y)− G(x, y ′)
= G(x, y)− G(x, y − e)

where linearization results in

ė = DGr(x, y)ė. (4)

The conditional Lyapunov exponents (CLEs) are computed from the JacobianDGr(x, y) and characterize the asymptotic local
stability of the response system. If all CLEs are negative, the response system is stable and shows GS. With the extended
approach, another criterion for detecting GS on networks is developed:

Criterion 3. The network (1) is said to achieve a GS state when all LCLEs of the system state of network (1) become negative.

Remark. • According to the theorem in [19], namely that GS occurs if for all initial values (x0, y10) and (x0, y
2
0) one attains

limt→∞ ‖y(t, x0, y10) − y(t, x0, y20)‖ = 0, asymptotical stability can be proved analytically using Lyapunov functions.
Numerically, this condition can be checked by computing the (largest) Lyapunov exponent of the response system.
• Thinking extensively, GS on the networks with many coupled nodes can be judged by the largest Lyapunov exponents
approach, using the samemethod as for validating GS on a systemwith two coupled subsystems. Therefore, one can draw
the conclusion that the network will realize a GS state if all LCLEs of the network are below zero asymptotically.
• The Criterion 3 is used more widely in practice than Criterion 2 technically, because of using many more replica systems
in the auxiliary systems approach, which can increase the calculation cost. �

4. Numerical simulations of a network example

In this section, Definition 1 and two criteria for detecting GS are illustrated by using Lorenz systemswith different system
parameters. The equation of motion for a single Lorenz oscillator is written as{ẋ = σ(y− x)

ẏ = rx− y− xz
ż = −bz + xy.

(5)

Here σ = 10, b = 8/3, and r differs for different oscillators. For this case l = 2, which means that there are two sorts of
node in the network; we use r1 = 35 and r2 = 28, which are displayed in Fig. 1.
The system Jacobian is

DGr(xi) =

(
−σ σ 0
ri − z −1 −x
y x −b

)
. (6)

For simplicity, we consider a small-world network (1) with ten nodes and two sorts of chaotic nodes, as shown in Fig. 2.
As illustrated in Fig. 2, all black nodes represent Lorenz systems with parameters σ = 10, b = 8/3, r1 = 35, while all

white nodes represent Lorenz systems with parameters σ = 10, b = 8/3, r2 = 25. The network’s diameter

D = max
i,j
dij = 2,
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Fig. 1. Lorenz chaotic attractor. (a) σ = 10, b = 8/3, r1 = 35. (b) σ = 10, b = 8/3, r2 = 25.

Fig. 2. Network (1) with ten nodes (two sorts of nodes). (a) Small-world network. (b) Small-world case with auxiliary systems on the tenth node.

where dij is the shortest length between node i and node j. The average path lengths of network (1)

L =
1

1
2n(n+ 1)

∑
i≥ j

dij =
64
45
= 1.42,

and the network clustering coefficients are such that

L =

∑
i
Ci

n
=
26
45
= 0.58,

where Ci is the clustering coefficient of node i. In this case, the network (1) is studied, as shown in Fig. 2, with inner-coupled
matrix P = diag(p1, p2, . . . , pd) = diag(1, 0, 0). From Eq. (1), the associated feedback system is(ẋi

ẏi
żi

)
=

(
σ(yi − xi)

rkxi − yi − xizi
−bzi + xiyi

)
+ εP

∑
j6=i

(xj − xi
yj − yi
zj − zi

)
, (7)

where ε is the coupling strength, for k = 1, 2 and 1 ≤ i, j ≤ 10.
Numerical results illustrated by Fig. 3 show that the system (7) attaches the GS state for the negative of the largest

conditional Lyapunov exponents of all nodes of the network according to Criterion 3, when the coupling strength falls in the
exponentially stable region, namely ε ∈ [22, 25].
In Fig. 3, it is found easily that 10 nodes cannot attach a common GS state at the same time, and abundant dynamic

behaviors, which include partial generalized synchronization and dynamic bursting, are emerging with coupling strength
enhancing. When we select ε = 0, which means that all oscillators are not coupled, all Lyapunov exponents of nodes are
positive,whichmeans that all oscillators are not in generalized synchronization at all. Aswe increase the coupling strength to
ε < 21, some nodes attach GS; however others are not realizing GS.We call this behavior a partial GS [20]. This result is very
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Fig. 3. All largest Lyapunov exponents of 10 nodes in networks against coupling strength ε, where different curves correspond to different nodes.

interesting because for mutually coupled nonidentical chaotic oscillators, every pair of coupling directions are inequivalent,
that is, synchronizations in the two directions cannot occur at the sameminimum threshold, because the two coupled nodes
do not have the same degree of chaotic behavior, which is determined by the instinctive dynamics. That is to say, for systems
with a larger maximum Lyapunov exponent, higher stochasticity prevents it from being the first to be entrained. When one
further increases the coupling strength, one fairly confidently expects all nodes to achieve a GS state, for the negative of all
largest conditional Lyapunov exponents of ten nodes. To further observe the effect of strengthening the value of ε beyond the
exponentially stable regions, we attain ε = 25.5. Meanwhile, the largest Lyapunov exponents of node 8 and node 10 exceed
zero, which implies desynchronization and node dynamical behavior bursting out. This illustrates that the node dynamics
behaviors are influenced by the network topological structure because of there being enough coupling strength. When one
increases the coupling strength, the global generalized synchronizations are realized again.
To verify the correctness of Criterion 2, we let ε = 23, and introduce the instantaneous distance between the ith node

and its auxiliary node as

Di(t) = ‖Xi(t)− Xi(t)‖ =
√
(x′i − xi)2 + (y

′

i − yi)2 + (z
′

i − zi)2. (8)

Considering all auxiliary nodes linked to the 10th node, we find that all the instantaneous distances of the auxiliary node
attach zero. For simplicity, we merely take D1(t), the instantaneous distance between the lth node and its auxiliary system,
into account, as illustrated by Fig. 4. In Fig. 4(a), for ε = 10, it can be found that the differences oscillate irregularly around a
nonzero value. This strong fluctuation indicates that node 1 and its auxiliary node do not attain the GS state. On increasing
ε to ε = 23, one may find that the GS state is achieved, as exhibited by Fig. 4(b). On the basis of the above studies, one can
carry out the simulation for all other distances between other nodes and their auxiliary systems. For simplicity, we omit
these simulations for other nodes.

Remark. The collective behavior is an excellent example of such realistic complex systems. Individual connectivity is
organized into some distinct communities, from themicroscopic individual level, via themesoscopic level of local cliques or
communities, to the macroscopic level of collective behaviors within a social field. Different communities means different
sorts of nodes, while all nodes in the same community display the same behavioral properties. The experimentally observed
social activity is characterized by GS phenomena over a wide range of spatial and temporal scales, just because of the
relations between some distinct communities. Namely the correlative behaviors embody the ‘functional’ relation between
all groups, and thus the GS pattern arises. The rich set of interactions between individuals in society results in complex
community structure, and, conversely, complex structures affect the GS phenomena, i.e. as in collective behavior in society.
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(a) Epsilon = 10.

(b) Epsilon= 23.

Fig. 4. The evolutions of the difference function Di(t) of node 1 and its auxiliary node with respect to the 10th node; (a) weak coupling where ε = 10, (b)
strong coupling where ε = 23.

5. Conclusion

In this paper, we have presented an innovative definition of GS on complex networks. Furthermore, we analyze complex
dynamical behavior of nodes in networks attributable to the dynamics of nodes and the topological structure of networks
by analyzing a simple real network example. Accordingly, we draw the conclusion that the GS behavior on networks may
be realized and have more abundant dynamics and real physical sense, including partial GS, global GS, dynamical behavior
bursts so on.
The proposed definition and two criteria provide theoretical ideas and a framework for the further investigation of the

dynamical behaviors and topological structures ofmany real-world cases, such as the simulation research into the collective
behaviorswithin virtual societies.We foresee the development of this definition to yield open problems for general complex
dynamical networks.
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