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Abstract 

Lee provided a modified version of LPT algorithm to deal with the problem Parallel Muchines 
Scheduliny wlith Nonsimultaneous Machine Available Times, and got an upper bound of f for 
its worst-case performance ratio. An open question is then proposed to obtain the exact value 
of this ratio, which is determined in this paper. The instance which achieves the ratio is also 
demonstrated. 0 1998 Blsevier Science B.V. All rights reserved. 
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1. Introduction 

The problem considered in this paper is to schedule n independent jobs onto m 

identical machines in order to minimize the makespan, the total finishing time. At time 

zero, all the jobs are available while some machines may not be ready. This problem is 

called Parallel Machines Scheduling with Nonsimultaneous Machine Availuble Times 

as in [2]. Note that it is a generalization of the classical multiprocessor scheduling 

problem, in which the n jobs and the m machines are simultaneously available at time 

zero. For the ease of presentation, the former problem is denoted as GMS and the 

latter CMS in this paper. 

Notice that the Longest Processing Time (LPT) algorithm is a simple and practical 

one to approximate CMS [l]. Lee [2] analyzed the performance of it applied to GMS 

and showed that its worst-case performance ratio is i ~ 1/2m, where m is the number 

of machines. That is, for any m-machine instance I of GMS, let A4 be the makespan 

attained by LPT and M* the optimal one, then 
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Lee also provided a modified version of LPT, called MLPT, expecting to get a better 

guarantee. This algorithm can be described as follows [2]: 

Suppose the real job set is f = {Jt,&. . . ,J,}, where job Ji has a processing time 

pj, j=1,2 ,..., n, and machine mi is available at time ai, i = 1,2,. . . , m. We consider 

the ai with ai >O as the processing time of a wide-sense job, denoted Ai, and then 

merge & = {Ai 1 ai > 0) with 2 into a wide-sense job set Y. 

MLPT Algorithm 

Step 0: Sort all the jobs in Y into nonincreasing order with respect to processing 

time, and MLPT always considers the job at the head of this list. Assume now that 

all machines are ready at time zero. 

Step 1: Consider the job at the head of Y. If the job is a real job .$ for some j, then 

assign it to a smallest loaded machine. Let Y = Y - {Jj} and go to Step 4. Otherwise, 

the job is a wide-sense job Ai for some i and go to Step 2. 

Step 2: If there is a smallest loaded machine which has not been assigned any wide- 

sense job, then assign job Ai to it and let 9’ = Y - {Ai} and go to Step 4. Otherwise, 

go to Step 3. 

Step 3: Let I’ denote the set of (real) jobs which have been assigned by MLPT to 

those machines each of which has not been assigned any wide-sense job. Denote the 

job which comes latest in the job list in f’ as Jr. Replace Jr by Ai and reassign Jf 
to a smallest loaded machine. Let Y = Y - {Ai} and go to Step 4. 

Step 4: If Y = 0, go to Step 5. Otherwise, return to Step 1. 

Step 5: Move all wide-sense jobs to the head of their respective scheduled machines. 

Remarks 

(1) In Steps 1, 2 and 3 there may be more than one machine each of which has the 

smallest load. To break tie, MLPT, always chooses the one with the minimum 

index. 

(2) In Step 3, job Jf has the currently longest processing time among all those unas- 

signed jobs. 

(3) No real job can be assigned by the algorithm more than twice because it must end 

up on a machine with a wide-sense job after the second assignment; and, every 

wide-sense job Ai can be assigned exactly once. 

Lee proved that the MLPT-makespan A4 is upper bounded by $M* and believed 

that actually it could be somewhat smaller than :M*. However, we have known that 

the worst-case performance ratio of MLPT cannot be less than : - 1/3m, which is the 

worst-case performance ratio of LPT applied to CMS. This gap provides an interesting 

open question (as stated in [2]). 

In the next part of this paper, we complete Lee’s analysis by establishing the worst- 

case performance ratio in the case of two machines, and give an example that shows 

that Lee’s $-bound is tight in the case of three or more machines. 
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2. Main results 

The main results of this paper are summarized in the following theorem, and the 

rest of this section is devoted to the proof. 

Theorem 1. Applying MLPT to GMS, the nlorst-case pecfornzunce ratio is 

<$, when m>,3, 
R MLPT = 

< i, when m = 2, 

tvhere m denotes the number of machines. 

Proof. Given any m-machine instance I of GMS, let M denote the makespan attained 

by MLPT and M* the optimal one. Recall that Lee has showed M d :M* for all m, 

m 22. Thus, in the case that m 2 3, we need only to give an instance to show the 

tightness of the ratio, Let us consider the following example: 

Example. In this instance, there are m machines, m 3 3, and n = m + 1 jobs. The wide- 

sense job list after sorting is Y={AI,AI ,..., A,~3,J,,Am~*,Am-,,J?,J3~ ,.... J,-,,J,,,, 

J nr+l,Am} and the processing times are 

ai = 3 + i:, i= I,...,m - 3; 

a,_2 = a,,,_1 = 3 - E; 

a,=2. 

PI =3; 

,L?i=3 -2E, j=2,...,m- 1; 

pm = pn2+1 = 2 + 6. 

Trivially, for this instance, we have M = 8 - 2~ and M* = 6 + 2e. It follows that 

M/M* + i as c--to. 

The remaining part is dedicated to showing the theorem in the case of m = 2. Our 

proof is a modification of that in [2] to fit the case of m = 2. For easy presentation, 

the MLPT-schedule in the following refers to the one obtained in the MLPT procedure 

just before executing Step 5. 

In MLPT-schedule, note that the makespan M should occur on some machine, 

say ml. Let job Y denote the last job (either a real or a wide-sense job) assigned 

to ml and its processing time is p. Let s denote the starting time of job Y on ml. 

Since the machine to which Y is not assigned must have a load of at least s, the total 

load on both machines is at least 2s+p. A simple geometric argument thus shows that 

2M* >2s+p. It follows that 

M=s+p<M* + ;p. (1) 



254 G.-H. Lin J Discrete Applied Mathematics 85 (1998) 251-254 

Suppose to the contrary we have a counterexample, that is, we have a two-machine 

instance for which the inequality A4 > iA4* holds, Then, by (1) we derive that 

p> &VP. (2) 

As we have mentioned in Remark (3) that a real job may be assigned by MLPT 

algorithm twice, let us consider the following two cases: 

Case 1: Y is “initially” assigned to ml. 

In this case we know that job Y is just taken from the job list 9’. Therefore, s>O, 

for otherwise we have p = A4 >M*, which contradicts the definition of M”. Thus, 

there are at least three jobs in Y each of which has a processing time at least p. 

It follows immediately that in any schedule of this counterexample there is always 

a machine with its completion time greater than M*. This is a contradiction to the 

definition of M*. 

Case 2: Y is reassigned to ml . 

In this case job Y is a real job. Assume job Y is “initially” assigned to mk, and the 

starting time of job Y on mk, is t. We claim that t > 0. 

By contradiction, suppose t = 0. Let Af denote the wide-sense job which replaces 

job Y from machine mk. According to Step 3 of the algorithm, once job Y has been 

replaced by job AJ on mk, but before job Y gets reassigned to its new machine, 

mk has a load of af. Since job Y is then reassigned to a smallest loaded machine, 

which is exactly ml, it is clear that s <af . Because Step 3 is invoked for A/, there is 

not a smallest-loaded machine without a wide-sense job, and thus at least one machine 

already has a wide-sense job. This shows that the “not-mk” machine must have a wide- 

sense job A,, which (by LPT rule) must have a, 2 af. Therefore, we have s = af and 

M =s+p=af+p. Since Y has at least three jobs A,, Af and Y, there is a machine 

with its completion greater than M* in any schedule of this counterexample. Thus a 

contradiction occurs. 

In that t > 0, the same argument as in Case 1 leads to the same contradiction. 

We have shown that in both cases the counterexample does not exist. Hence, the 

MLPT makespan A4 in the case of two machines is upper bounded by iM*. 

A 2-machine instance with its M/A4” approaching $ has been presented in [2], thus, 

we conclude that this worst-case performance ratio is $. 0 
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