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Abstract

Let o be a quadratic Poisson bivector on a vector space V. Then one can also consider « as a quadratic
Poisson bivector on the vector space V*[1]. Fixed a universal deformation quantization (prediction of some
complex weights to all Kontsevich graphs [12]), we have deformation quantization of the both algebras
S(V*) and A(V). These are graded quadratic algebras, and therefore Koszul algebras. We prove that for
some universal deformation quantization, independent on «, these two algebras are Koszul dual. We char-
acterize some deformation quantizations for which this theorem is true in the framework of the Tamarkin’s
theory [19].
© 2010 Elsevier Inc. All rights reserved.
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0. Introduction

This paper is devoted to the theorem that there exists a universal deformation quantization
compatible with the Koszul duality, as it is explained in the Abstract. Let us firstly formulate it
here in a more detail, and then outline the main ideas of the proof.

0.1. Let V be a finite-dimensional vector space over C. We denote by Tpo1y(V) the graded
Lie algebra of polynomial polyvector fields on V, with the Schouten—Nijenhuis bracket. For a
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Z-graded vector space W denote by W[1] the graded space for which (W[1])! = W that is,
the space “shifted to the left”. The following simple statement is very fundamental for this work:

Lemma. There is a canonical isomorphism of graded Lie algebras D : Tyo1y (V) — Tyory (V*[1]).

The map D maps a bi-homogeneous polyvector field y on V, y =x;, ... x;, % Ao A %
1 4

to the polyvector field D(y) =§;, ...&j, % Ao A % on the space V*[1]. Here {x;} is a basis
in V*, and {§;} is the dual basis in V[—1].

It is a good place to recall the Hochschild—Kostant—Rosenberg theorem by which the cohomo-
logical Hochschild complex of the algebra A = S(V*) endowed with the Gerstenhaber bracket
has cohomology isomorphic to Tp,01y (V) as graded Lie algebra. That is, the Gerstenhaber bracket
becomes the Schouten—Nijenhuis bracket on the level of cohomology. This theorem is related to
the lemma above (which is certainly clear just straightforwardly, without this more sophisticated
argument), as follows. Consider the algebras A = S(V*) and B = A(V) = Fun(V*[1]). The al-
gebras A and B are Koszul dual (see, e.g. [15]). Bernhard Keller proved in [10] (see also the
discussion below in Sections 1.4—1.6) that the cohomological Hochschild complexes Hoch® (A)
and Hoch’ (B) are quasi-isomorphic with all structures when A and B are quadratic Koszul and
Koszul dual algebras. (For the Hochschild cohomology it was known before, see the references
in [10].) In our case HH" (A) = Tpoly (V) and HH" (B) = Tpoly (V*[1]).

0.2. The isomorphism D from the lemma above does not change the grading of the polyvec-
tor field, but it maps i-polyvector fields with k-linear coefficients to k-polyvector fields with
i-linear coefficients. In particular, it maps quadratic bivector fields on V to quadratic bivector
fields on V*[1]. Moreover, D maps a Poisson quadratic bivector on V to a Poisson quadratic
bivector on V*[1], because it is a map of Lie algebras. In [12], Maxim Kontsevich gave a for-
mula for deformation quantization of algebra S(V*) by a Poisson bivector & on V (the vector
space V should be finite-dimensional). His formula is organized as a sum over admissible graphs,
and each graph is taken with the Kontsevich weight W In particular, this W depends only on
the graph I" and does not depend on dimension of the space V. Consider now all these complex
numbers W as undefined variables. Then the associativity gives an infinite number of quadratic
equations on W . Kontsevich’s paper [12] then shows that these equations have at least one com-
plex solution. Actually there is a lot of essentially different solutions, as is clear from [19] (see
the discussion in Section 3 of this paper). Any such deformation quantization is called universal
because the complex numbers W do not depend on the vector space V. The case of a quadratic
Poisson bivector « is distinguished, by the following lemma:

Lemma. Let S(V*), be a universal deformation quantization of S(V*) by a quadratic Poisson
bivector a.. Then the algebra S (V*)a is graded. This means that for f € S'(V*)[A] and g €
ST(V*)[a], the product f x g € S (V*)[A].

Proof. By the Kontsevich formula,

frg=f-g+y h" > WrBr(fg ()

k>1 I'eGgp

where Gy ; is the set of admissible graphs with two vertices on the real line and k vertices in the
upper half-plane (see [12], Section 1 for details). Now each graph I" from Gy > has k vertices at
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the half-plane, and 2k edges. One can compute the grading degree of B (f, g) as follows. It is
the sum of degrees of quantities associated with all vertices (which is deg f + degg + kdega =
deg f + deg g + 2k) minus the number of edges (equal to 2k by definition of an admissible graph
because each edge differentiate once, and then decreases the degree by 1). This difference is
equaltodeg f +degg. O

In particular, for quadratic deformation quantization the map x; - x; — x; » x; gives a C[A]-
linear endomorphism of the space S?(V)[#] which is clearly non-degenerate. We can find an
inverse to it, then we can present the star-algebra as the quotient of the tensor algebra 7'(V*)
by the set of quadratic relations R;; € V* ® V*, one relation for each pair of indices 1 <i <
Jj <dim V. We conclude, that the Kontsevich deformation quantization of S(V*) by a quadratic
Poisson bivector is a graded quadratic algebra.

0.3.  We actually get two quadratic associative algebras for any universal deformation quan-
tization, one is the deformation quantization of S(V*) by the quadratic Poisson bivector «, and
another one is the deformation quantization of A(V) = Fun(V*[1]) by the quadratic Poisson
bivector D(«). Denote these two algebras by S(V*) ® C[i], and A(V) @ C[A]p(4). In the
present paper we prove the following result:

Theorem. There exists a universal deformation quantization such that the two algebras
S(V*) ® C[h]q and A(V) ® C[h]p(a) are Koszul dual as algebras over C[h]. In particular,

Ext oy g ag, mod (CI2]L ClA]) = A(V) ® Clh] po) (2)
and
EXUy ()@ C ) - Mod (CI2D- C[2]) = S(V¥) @ ClA]. 3)

The Tamarkin’s deformation quantization defined from any Drinfeld’s associator (which is
clearly universal) satisfies the condition of theorem.

See Section 1 of this paper for an overview of Koszul duality, and of Koszul duality over a
discrete valuation ring.

Remark. To consider S(V*) and A(V) as Koszul dual algebras, the Ext groups above should
be taken in the category of Z-graded modules over Z-graded algebras. Without considering the
Z-graded category, the Koszul dual to A(V) is S[V]. It is everywhere implicitly assumed that
we work in the Z-graded category.

0.4. Now let us outline our strategy how to prove this theorem. We firstly “lift the theorem”
on the level of complexes. We do it as follows. Let A and B be two associative algebras, and
let K be a dg B-A-module (this means that it is a left B-module and left A-module, and the left
action commutes with the right action). Define then a differential graded category with 2 objects,
a and b, as follows. We set Mor(a,a) = A, Mor(b, b) = B, Mor(b,a) = K, Mor(a, b) = 0.
To make this a dg category the only what we need is that A and B are algebras, and K is a
B-A-module. Denote this category by cat(A, B, K), see Section 5 for more details. Consider
the Hochschild cohomological complex Hoch®(cat(A, B, K)) of this dg category. There are
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natural projections p4:Hoch®(cat(A, B, K)) — Hoch'(A) and pp:Hoch’(cat(A, B, K)) —
Hoch® (B). The B. Keller’s theorem [10] gives sufficient conditions for p4 and pp being quasi-
isomorphisms. These conditions are that the natural maps

B — RHompoq.4 (K, K) 4
and
A°PP — RHomp Mod(K, K) (5)

are quasi-isomorphisms. An easy computation shows that in the case when A is Koszul algebra,
B = A'"PP s the opposite to the Koszul dual algebra, and K is the Koszul complex of A, the
Keller’s condition is satisfied (see Section 5).

Remark. According to the remark at the end of Section 0.3, we should work with the Z-graded
category. Therefore, our Hochschild complexes should be also compatible with this grading.
More precisely, the Hochschild cochains should be finite sums of graded cochains. See Sec-
tion 4.2.1 where it is explicitly stated.

Consider the case when A = S(V*) ® C[A] and B = A(V) ® C[i]. Denote in this case the
category cat(A, B, K) where K is the Koszul complex of A, just by cat. Consider the following
solid arrow diagram:

Hoch® (A)

Tooly (V) > Hoch’ (cat) (6)

Hoch® (B).

The right “horn” was just defined. The maps 2/ and ¢/* in the left “horn” are the following.
We consider some universal Lo, map U : Tyoly(V) — Hoch' (S(V*)). This means that we at-
tribute some complex numbers to each Kontsevich graph in his formality morphism in [12], but
which are not necessarily the Kontsevich integrals (but the first Taylor component is fixed, it is
the Hochschild—Kostant—-Rosenberg map). The word “universal” again means that these num-
bers are the same for all spaces V. Then we apply this L., morphism to our space V, it is U5,
and the composition of D : Tty (V) — Tpoly (V*[1]) with the Lo, morphism I : Tyory (V*[1]) —
Hoch® (A(V)), constructed from the same universal L, map. All solid arrows (6) are quasiiso-
morphisms. Therefore, they are homotopically invertible (see Section 4), and we can speak about
the homotopical commutativity of this diagram.

Theorem. There exists a universal Lo, morphism U : Tpory(V) — Hoch® (S(V*)) such that the
solid arrow diagram (6) is homotopically commutative. The L, morphism corresponding by the
Tamarkin’s theory (see Sections 2 and 3) to any choice of the Drinfeld associator satisfies this

property.
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We firstly explain why our theorem about Koszul duality follows from this theorem, and,
secondly, how to prove this new theorem.

0.5. If we know the homotopical commutativity of the solid arrow diagram (of quasi-
isomorphisms) (6), we can construct the dotted arrow F which is a G« quasi-isomorphism
F: Tpory (V) — Hoch' (cat), which divides the diagram into two homotopically commutative tri-
angles. Then, if « is a quadratic Poisson bivector field on V, the L, part of F defines a solution
of the Maurer—Cartan equation F () in Hoch® (cat). A solution of the Maurer—Cartan equation
in Hoch'(cat) deforms the following four things simultaneously: the algebra structures on A
and B, the differential in K, and the bimodule structure. Using very simple arguments we then
can prove that this deformed complex K is a free resolution of the deformed A, and the deformed
bimodule isomorphisms (4)—(5) give the Koszul duality theorem. See Section 7 for detail.

0.6. Here we outline the main ideas of Theorem 0.4. First of all, the two maps p4 and
pp in the right “horn” of the diagram (6) are maps of B, algebras (see [10]). Here B is
the braces dg operad, which acts on the Hochschild cohomological complex of any algebra or
dg category. Formally it is defined as follows: a Bs, module structure on X is a dg bialgebra
structure on the cofree coalgebra cogenerated by X[1] such that the coalgebra structure coincides
with the given one. The action of B, on the Hochschild complex Hoch®(A) of any dg algebra
(or dg category) A is constructed by Getzler and Jones [6] via the braces operations. Now define
analogously the dg operad Bpi.. A vector space Y is an algebra over By iff there is a dg Lie
bialgebra structure on the free Lie coalgebra cogenerated by Y[1] such that the Lie coalgebra
structure coincides with the given one. The operads Bpie and B, are quasi-isomorphic by the
Etingof-Kazhdan (de)quantization. The construction of quasi-isomorphism of operads By —
B, depends on the choice of Drinfeld’s associator [4]. The operad By;. is quasi-isomorphic to
the Gerstenhaber homotopical operad G, as is explained in [8, Section 6] (see also discussion
in Section 2 of this paper). Finally, the Gerstenhaber operad is Koszul, and G, is its Koszul
resolution. Thus, any B, algebra can be considered as a G, algebra. As G, is a resolution
of the Gerstenhaber operad G, all three dg operads Goo, B, and Blie, are quasi-isomorphic
to their cohomology G. (There is no canonical morphism from Bpj. to Bs,. Any such quasi-
isomorphism gives a G, structure on the Hochschild cohomological complex of any dg category.
Any Drinfeld associator [4] gives, via the Etingof-Kazhdan (de)quantization, such a morphism
of operads.) Now consider the entire diagram (6) as a diagram of G, algebras and G, maps,
where the G action on the Hochschild complexes is as above, it depends on the choice of a
map Brie = Bso. Then, if our diagram is homotopically not commutative, it defines some G
automorphism of Tpoly (V). This G, automorphism is clearly Aff(V)-equivariant. First of all,
we prove that on the level of cohomology the diagram (6) is commutative. This is in a sense
the only new computation which we make in this paper (see Section 5). Thus, we can take
the logarithm of this automorphism, which is G-derivation. By the Tamarkin’s G -rigidity
of Tpoly(V), any Aff-equivariant derivation is homotopically inner. But any inner derivation acts
non-trivially on cohomology! On the other hand, a G,-morphism homotopically equivalent to
identity, acts by the identity on cohomology. This proves that our diagram is homotopically
commutative. The only property of this diagram which we have used is that it is defined over
G and is commutative on the level of cohomology.

0.7. When the author started to attack this problem, he started to prove the homotopical
commutativity of the diagram (6) by “physical” methods. Namely, the Kontsevich’s formality in
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the original proof given in [12] is a particular case of the AKSZ model on open disc [1], also
called by Cattaneo and Felder the “Poisson sigma-model”. As usual in open theories, we should
impose some boundary conditions for the restrictions of the fields to the circle S' = d D?. Maxim
Kontsevich considers the boundary condition “p = 0” on all arcs. This, certainly together with
other mathematical insights, led him in [12] to the formality theorem. Our idea was to divide
S1 by two parts, fixing two points {0} and {oo} (in the Kontsevich’s case only {oo} is fixed).
Then, we impose the boundary condition “x = 0” on all left arcs, and “p = 0” on all right arcs.
This seems to be very reasonable, and the author hoped to construct in this way an L, quasi-
isomorphism F (the dotted arrow in (6)), making the two triangles homotopically commutative.
Somehow, he did not succeed in that. From the point of view of this paper, it seems that the
reason for that is the following. The author worked with the Kontsevich’s propagator in [12],
namely, with

1 (z1 — z2)(z1 — 22)
N s @

(here z7 and z, are distinct points of the complex upper half-plane). In this paper we deal with
the Tamarkin’s quantization. Conjecturally (see [13]) when this formality morphism is con-
structed from the Knizhnik—Zamolodchikov Drinfeld’s associator, it coincides (as a universal
L, morphism, see above) with the L, morphism, constructed from the “another Kontsevich’s
propagator”. This is “the half” of (7):

1 71— 22
¢1(z1,22) = =—dLog = .
2mi 21— 22

()

Kontsevich proved (unpublished) that this propagator also leads to an Ly, morphism from
Tooy (V) to Hoch® (S(V*)). If this conjecture (that the Tamarkin’s theory in the Knizhnik—
Zamolodchikov case gives this propagator) is true, we should try to elaborate the physical idea
described above (with the two boundary conditions) for this propagator. The reason is that it is
not a priori clear that the Kontsevich’s first propagator ¢(z1, z2) comes from any Drinfeld’s as-
sociator, and therefore from the Tamarkin’s theory. We are going to come back to these questions
in the sequel.

0.8. We tried to make the exposition as self-contained as possible. In particular, we prove in
Section 2.4 the main Lemma in the Tamarkin’s proof [19] of the Kontsevich formality, because
we use it here not only for the first cohomology as in [19] and [8], and also for 0-th cohomology.
We give a simple proof of it for all cohomology for completeness. As well, we reproduce in
Section 4.2 the proof of Keller’s theorem from [10], because in [10] some details are omitted.
Nevertheless, in one point we did not overcome some vagueness. This is the using of the ho-
motopical relation for maps of dg operads or algebras over dg operads. Some implications like
“homotopical maps of dg operads induce homotopical morphisms of algebras” in Section 3, are
stated without proofs. Finally in Section 5 we give a construction of the homotopical category of
dg Lie algebras through the “right cylinder” in the sense of [17], which is suitable for the proof
of the Main Theorem in Section 7.

0.9. The paper is organized as follows: In Section 1 we develop the Koszul duality for alge-
bras over a discrete valuation rings. Our main example is the algebras over C[#], and we should
justify that the main theorems of Koszul duality for associative algebras hold in this context; In
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Section 2 we give a brief exposition of the Tamarkin’s theory [19]. The Hinich’s paper [8] is a
very good survey, but we achieve some more clarity in the computation of deformation coho-
mology of T,oy(V) over the operad G, of homotopy Gerstenhaber algebras. As well, in the
Appendix after Section 2.5 we give a deduction of the existence of Kontsevich formality over
from its existence over C, which differs from the Drinfeld’s approach [4]. This deduction seems
to be new; In Section 3 we touch some unsolved problems in the Tamarkin’s theory and leave
them unsolved, wee only need to know here that any map of operads Go, — Boo defined up
to homotopy, defines a universal G map Tpoly (V) — Hoch' (S(V*)) where the G, structure
on Hoch' (S(V*)) is defined via the map of operads. The deformation quantizations for which
our Main Theorem is true belong to the image of the map X defined there; In Section 4 we in-
troduce differential graded categories, give a construction of the Keller’s dg category from [10]
associated with a Keller’s triple, and reformulate our Main Theorem in this new setting. We get
a more general statement, which is, however, more easy to prove; A very short Section 5 is just a
place to relax before the long computation in Section 6, here we recall the explicit construction
[18] of the Quillen’s homotopical category via the right cylinder. The advantage of this construc-
tion is that it is immediately clear from it that two homotopical L., maps map a solution of the
Maurer—Cartan equation to gauge equivalent solutions (Lemma 5.2); In Section 6 we construct
the Hochschild—Kostant—Rosenberg map for the Keller’s dg category. This computation is done
in terms of graphs, closed to the ones from [12]. Originally the author got this computation try-
ing to construct the Lo morphism F: Tyoy (V) — Hoch® (cat(A, B, K)) dividing the diagram
(6) into two commutative triangles, by “physical” methods. The computation here is the only
what the author succeed to do in this direction; The final Section 7 is the culmination of our
story. Here we deduce the Main Theorem on Koszul duality in deformation quantization from
Theorem 4.4. The idea is that from the diagram (6) associates with a quadratic Poisson bivector
« on V a solution of the Maurer—Cartan equation in the Hochschild complex of the Keller’s dg
category. This Maurer—Cartan element defines an A, deformation of the Keller’s category, and,
in particular, deforms the Koszul complex. This is enough to conclude that the two deformed
algebras are Koszul dual.

1. Koszul duality for algebras over a discrete valuation ring

Here we give a brief overview of the Koszul duality. Our main reference is Section 2 of [3].
In [3], the zero degree component A is supposed to be a (non-commutative) semisimple algebra
over the base field k. For our applications in deformation quantization, we should consider alge-
bras over C[[#z]. For this reason, we show that the theory of Koszul duality may be defined over
an arbitrary commutative discrete valuation ring. This result seems to be new, although L. Posit-
selski announced in [16] that the zero degree component Ag may be an arbitrary algebra over the
base field.

1.1. The main classical example of Koszul dual algebras are the algebras A = S(V*) and
B = A(V), where V is a finite-dimensional vector space over the base field k. In general, suppose
Ag is a fixed k-algebra. Koszulness is a property of a graded algebra

A=A)PA I DAD--- 9
that is,

A -Aj CAigj. (10)
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In our example with S(V*) and A(V) the algebra Ag = k, it is the simplest possible case. In
general, all A; are Ag-bimodules. There is a natural projection p: A — Ao which endows Ag
with a (left) A-module structure. Denote by A-Mod the category of all left A-modules, and by
A-mod the category of graded left A-modules. The A-module Ag always has a free resolution in
A-mod

o> My —> My — My— 0 (11)

such that M; is a graded A-module generated by elements of degrees > i. Indeed, the bar-
resolution

o AR AST @ Ag—> A @ Ay ® Ag— A® Ag— 0 (12)
obeys this property. (Here A = A1 @ A> @ - - -.) This motivates the following definition:

Definition. A graded algebra (9) is called Koszul if the A-module Ag admits a projective resolu-
tion (11) in A-mod such that each M; is finitely generated by elements of degree i.

For our example with the symmetric and the exterior algebra, such a resolution is the following
Koszul complex:

s S(VH @ ARV = S(VH Q@ AX(V)* = S(VH) @ V* — S(VF) —> 0 (13)

with the differential

dimV

3
d=Y " x®—. (14)
i=1 0%

Here {x;} is a basis in the vector space V* and {£;} is the corresponding basis in V*[1]. The
differential is a gl(V)-invariant element, it does not depend on the choice of basis {x;} of the
vector space V*.

1.2.  Here we explain some consequences of the definition of Koszul algebra, leading to the
concept of Koszul duality for quadratic algebras. In Sections 1.2.1-1.2.3 Ay may be arbitrary
finite-dimensional algebra over the ground field k, and in Sections 1.2.4-1.2.6 we suppose that
Ag is a semisimple finite-dimensional algebra over k (see [3]).

1.2.1. Let A be a graded algebra. Then the space EX'[;‘_MOd(Ao, Ap) is naturally bigraded.
We write Ext’y \;.4(A0, A0) = Dy p—n Ext®? (A, Ag). From the bar-resolution (12) we see that
for a general algebra A the only non-zero Ext®? (A, Ag) appear for a < —b (here a is the coho-
mological grading and b is the inner grading). In the Koszul case the only non-zero summands
are Ext®~¢. Let us analyze this condition fora = 1 and a = 2.
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1.2.2.

Lemma. Suppose A is a graded algebra.

1. If Extly y0q(Ao, Ao) = Ext! "1 (Aq, Ag) (that is, all Ext" =% =0 for b > 1), the algebra A
is 1-generated. The latter means that the algebra A in the form of (9) is generated over A
by Ay;

2. if, furthermore, Ext] y; 4(Ao, Ao) = Ext>~2(Ag, Ag) (that is, Ext>~‘(Ag, Ag) = 0 for
£ > 3), the algebra A is quadratic. This means that A = Tx,(A1)/1 where I is a graded
ideal generated as a two-sided ideal by I, = I N A».

See [3], Section 2.3. This lemma implies that any Koszul algebra is quadratic. So, in fact the
Koszulness is a property of quadratic algebras.

1.2.3.  From now on, we use the notation / = I, for the intersection of the graded ideal
I in T4,(A1) with Ap. Any quadratic algebra is uniquely defined by the triple (Ag, A1, C
A1 ®4, A1). Using the bar-complex (12), it is very easy to compute the “diagonal part”
&b, Extt—t(Ag, Ag) C EXt;‘_MOd(AO’ Ap) for any algebra A. Let us formulate the answer. De-
fine from a triple (Ao, A1, 1) another triple (A, A}, IV), as follows. Suppose A; and I are
flat Ag-bimodules. We set Ay = Ao, AY =Homy, (A1, Ag)[—1]. Define now I". Denote firstly
A} = Homy, (A1, Ag). There is a pairing (A| ®a, A1) ® (A] ®a, A]) — Ag which is non-
degenerate. Denote by 7* the subspace in A} ®4, AT dual to 1. Denote by 1" = I*[-2], it is
a subspace in A ®4, A}. The triple (Ao, A}, I") generates some quadratic algebra, denote it
by AY. Let now A be any 1-generated not necessarily quadratic algebra. Then the quadratic part
A7 is well defined. Let A be a quotient of T4,(A1) by graded not necessarily quadratic ideal.
We define A9 as the quadratic algebra associated with the triple (Ag, A1, I N Az). There is a
canonical surjection A? — A which is an isomorphism in degrees 0, 1, and 2.

Lemma. Let A be a 1-generated algebra over Ag. Then the diagonal cohomology
b, Ext =t (Ao, Ao) as algebra is canonically isomorphic to the algebra opposed to (A9)".
Here by the opposed algebra to an algebra B we understand the product by x°PP by = by x by.

It is a direct consequence from the bar-resolution (12). In particular, let now a graded 1-
generated algebra A be Koszul. Then EXt;;_MOd(Ao, Ap) = (AY)°PP This follows from the iden-
tity A = A9 for a quadratic algebra A (in particular, for Koszul A), and from the equality of the
all Exts to its diagonal part for any Koszul algebra.

1.2.4.  The inverse is also true, under an assumption on Ay.

Lemma. Suppose Ay is a simple finite-dimensional algebra over k and A is a quadratic algebra
over Ag. Then if Ext \, (Ao, Ao) is equal to its diagonal part, then A is Koszul. In particular,
IfEXt) \1oa(Ao, Ao) = (ATY)°PP, then A is Koszul.

See [3], Proposition 2.1.3. Let us comment why we need here a condition on Ag. The projec-
tive resolution which we need to prove that A is Koszul is constructed inductively. We construct
a resolution
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..._>P3—)P2—)P1—>P0—>0 (15)

satisfying the property of Definition 1.2 and such that the differential is injective on Pl.i.
We set Py = A. To perform the step of induction, set K = ker(P; — P;—j). We have:
Ext’j_ﬁ,lod(Ao, Ag) = Homa mod(K, Ag). From the condition of lemma we conclude that K is
generated by the part K1 of inner degree i + 1 (here for simplicity we suppose that A has
trivial cohomological grading). Then we put P11 = A ®4, K i+1_ But then we need to check
that the image of the map P;;; — P; is K. For this we necessarily need to know that K'*! is
a flat left Agp-module. For this it is sufficiently to know that K is. So we need a theorem like
the following: the kernel of any map of good (flat, etc.) Ap-modules is again a flat Ag-module.
It does not follow from any general things, it is a property of Ag. It is the case if any module
is flat, as in the case of a finite-dimensional simple algebra. For another possible condition, see
Section 1.3.

1.2.5.

Proposition. Suppose A is a quadratic algebra defined from a triple (Ag, A1, I) where Ay and
I are flat Ay-bimodules. Suppose A is Koszul. Then (AY)PP is also Koszul.

Remark. It is clear that A is Koszul iff A°PP is Koszul.

We give a sketch of proof, which is essentially given by the construction of the Koszul
complex. For A = §(V*) the Koszul complex is constructed in (13). Let A = (Ag, Ay, 1) be
a quadratic algebra, and let A; and I C A ®4, A1 be flat Ag-bimodules. We define the Koszul
complex

o> K3 —> Ky —> K1 — Kog— 0. (16)
We set
Ki=A®u K! (17)
where
Kl =[A? ®a, I ®a, AT 2. (18)
14

In particular, KJ = Ao, K! = Ay, K? = I. The differential d: K; — K;_; is defined as the
restriction of the map d:A ®a4, A‘?" —- A®a4, A?(“l) given as

ARV Q- Quir> (av) QU ® - R Vj_1. (19)
Clearly d?> = 0. The complex (16) is called the Koszul complex of the quadratic algebra A.
Lemma. Let A = (Ao, A1, I) be a quadratic algebra, A1 and I flat Ag-bimodules. Suppose,

additionally, that Ay is a finite-dimensional semisimple algebra over k. Then its Koszul complex
is acyclic except degree O iff A is Koszul.
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See [3], Theorem 2.6.1 for a proof. In the proof it is essential that the modules Kll are flat left
Ag-bimodules. In general the tensor product of two flat modules is flat, but there is no theorem
which guarantees the same about the intersection of two flat submodules. In the case which is
considered in [3], any module over a finite-dimensional semisimple algebra is flat. Let us note
that the part “only if”” also follows from Lemma 1.2.4. The proposition follows from this lemma
easily. Indeed, it is clear that K; = A ®4, [(AY*]{[—i] and that the Koszul complex K of a
Koszul algebra satisfies Definition 1.1. Then the dual complex K* also satisfies Definition 1.1
and can be written as K* = A* ® Ag A'. We 1mmed1ate1y check that it coincides with the Koszul
complex of the quadratic algebra A' because (A')' = A for any quadratic algebra A. Then from
its acyclicity follows that A' is Koszul.

1.2.6. 'We summarize the discussion above in the following theorem.

Theorem. Let A = (Ao, A1, I) be a quadratic algebra, A1 and I be flat Ay-bimodules, and Ay
be semisimple finite-dimensional algebra over k. Then A is Koszul if and only if the quadratic
dual A is also Koszul, and in this case

Ext)y poa (Ao, Ao) = [(A)°PP],[—i] 20)
and

EXy, yoa(Ao. Ag) = [A™P],[—i] 1)
for any integeri > 0.

1.3.  In the context of deformation quantization, all our algebras are algebras over the formal
power series C[[A], therefore, A9 = C[[#i]. The theory of Koszul algebras as it is developed in [3]
does not cover this case. In this subsection we explain that in the theory of Koszul duality Ag
may be any commutative discrete valuation ring (see [2,14]). L. Positselski announced in [16]
that Agp may be any algebra over k. Recall the definition of a discrete valuation ring.

Definition. A commutative ring is called a discrete valuation ring if it is an integrally closed
domain with only one non-zero prime ideal. In particular, a discrete valuation ring is a local ring.

The two main examples are the following: (1) Let C be an affine algebraic curve, and let
p € C be a non-singular point (not necessarily closed). Then the local ring O, (C) is a discrete
valuation ring (recall that in dimension 1 integrally closed = non-singular); (2) let C and p be
as above; we can consider the completion of the local ring O, (C) by the powers of the maximal
ideal. Denote this ring by ) »(C), this is a discrete valuation ring. In particular, k [#] is a discrete
valuation ring. It is known that any discrete valuation ring is Noetherian and is a principal ideal
domain (see [14], Theorem 11.1). To extend the theory of Section 1.2 to the case when A is a
discrete valuation ring we need to know that the intersection of flat submodules over a discrete
valuation ring (Section 1.2.5), and the kernel of a map of flat modules over a discrete valuation
ring (Section 1.2.4) are flat. This is guaranteed by the following, more general, result:

Lemma. Let R be a discrete valuation ring, and let M be a flat R-module. Then any submodule
of M is again flat.
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Proof. Let R be aring and M is an R-module. Then M is flat if and only if for any finitely
generated ideal / C R the natural map I @ g M — R @ M is injective (see [14, Theorem 7.7]).
Any ideal in a discrete valuation ring is principal [14, Theorem 11.1]; therefore flatness of a
module over a discrete valuation ring is the same that torsion-free (a module M is called torsion-
free if x # 0, m # 0 implies xm # 0). So now our lemma follows from the fact that a submodule
over a torsion-free module is torsion-free. 0O

Remark. If R is any local ring and M is a finite R-module, then flatness of M implies that M is
free [14, Theorem 7.10]. Nevertheless, in dimension > 2 a submodule of a free module may be
not free. For example, one can take the (localization of the) coordinate ring of a curve in A

Combining the lemma above with the discussion of Section 1.2, we get the following theorem:

Theorem. Let A = (Ag, A1, I) be a quadratic algebra, with Ag a commutative discrete valuation
ring, and Ay, I flat Ag-modules. Then A is Koszul iff Alis, and in this case

EXt)y o0 (A0, Ao) = [(A)°PP] [—i] (22)
and

X1 pog (A0, A0) = [A%P] [—i] (23)

i
for any integer i > 0.
We will use this theorem only for Ay = k[[A].

Remark. This theorem has an analogue for Dedekind domains. Namely, the localization of a
Dedekind domain at any prime ideal is a discrete valuation ring, this is a global version of it.
The main example of a Dedekind domain is the coordinate ring of a non-singular affine curve.
Suppose Ag is a Dedekind domain. We say that a quadratic algebra over Ag is Koszul if its
localization at any prime ideal is Koszul. Then we can prove the theorem analogous to the above
for Ag a Dedekind domain. More generally, we can speak about sheaves of Koszul dual quadratic
algebras. At the moment the author does not know any interesting example of such situation, but
he does not doubt that these examples exist.

Remark. Leonid Positselski claims in [16] that he constructed the analogous theory for any Ag.
The arguments in [16] are rather complicated comparably with ours’; for the readers’ conve-
nience, we gave here a more direct simple proof in the case of discrete valuation rings.

2. Tamarkin’s approach to the Kontsevich formality

Here we overview the Tamarkin’s proof of Kontsevich formality theorem. The main refer-
ences are [19] and [8], some variations which allow to avoid the using of the Etingof-Kazhdan
quantization (but replace it by another transcendental construction) were made by Kontsevich
in [13].
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2.1. Kontsevich formality

For any associative algebra A we denote by Hoch® (A) the cohomological Hochschild complex
of A. When A = C°°(M) is the algebra of smooth functions on a smooth manifold M, we
consider some completed tensor powers, or the polydifferential part of the usual Hochschild
complex (see, e.g., [12]). Under this assumption, the Hochschild cohomology of A = C*°(M) is
equal to smooth polyvector fields T},01y(M). More precisely, consider the following Hochschild—
Kostant—Rosenberg map ¢ : Tyoly (M) — Hoch™ (C*°(M)):

1
@(V)={f1®~-®fkf—> Ey(dfl/\"'/\dfk)} (24)

for y a k-polyvector field. Then the Hochschild—Kostant—Rosenberg theorem is
Lemma.

1. For any polyvector field y, the cochain ¢(y) is a cocycle; this gives an isomorphism of
(completed or polydifferential) Hochschild cohomology of A = C*° (M) with Tyo1y(M);

2. the bracket induced on the Hochschild cohomology from the Gerstenhaber bracket coincides,
via the map ¢, with the Schouten—Nijenhuis bracket of polyvector fields.

See, e.g., [12] for definition of the Gerstenhaber and Schouten—Nijenhuis brackets. The second
claim of the lemma means that

o), 0(12)]; = 2(Iv1, v2lsn) + daocnlha (v1, v2) (25)

for some U, : Az(Tpoly(M)) — Hoch"(C*®(M))[—1] (we denoted by [, ]g the Gerstenhaber
bracket and by [, ]sx the Schouten—Nijenhuis bracket). In the case when M = C4 M. Kontsevich
constructed in [12] an Lo morphism U : Tpoly (C?) — Hoch' (S(C%*)) whose first Taylor com-
ponent is the Hochschild—Kostant—Rosenberg map ¢. (Here we consider polynomial polyvector
fields, and there is no necessity to complete the Hochschild complex.) The second Taylor com-
ponent U should then satisfy (25), and so on. This result is called the Kontsevich’s formality
theorem. (The result for a general manifold M can be deduced from this local statement, see [12,
Section 7].) The original Kontsevich’s proof uses ideas of topological field theory, namely, the
Alexandrov—Kontsevich—-Schwarz—Zaboronsky (AKSZ) model, see [1]. Therefore, some tran-
scendental complex numbers, the “Feynmann integrals” of the theory, are involved into the
construction. The Kontsevich’s proof appeared in 1997. One year later, in 1998, D. Tamarkin
found in [19] another proof of the Kontsevich formality for C?, using absolutely different tech-
nique. In the rest of this section we outline the Tamarkin’s proof [19], [8] in the form we use it
in the sequel.

2.2. The idea of the Tamarkin’s proof
The main idea it to construct not only an L, map from Tpoly(Cd) to Hoch® (S(C?*)) but to

involve the entire structure on polyvector fields and the Hochschild complex. This is the structure
of (homotopy) Gerstenhaber algebra. For example, on polyvector fields (on any manifold) one
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has two operations: the wedge product y; A y; of degree 0, and the Lie bracket [y1, y2]sy of
degree —1, and they are compatible as

i, 2 Avsl =y, val Av2 £ y2 Alye, w3l (26)

This is called a Gerstenhaber algebra. To consider Tpoly((Cd ) as a Gerstenhaber algebra simplifies
the problem because of the following lemma:

Lemma. The polyvector field Tpoly (C9) is rigid as a homotopy Gerstenhaber algebra. More pre-
cisely, any Aff(C?)-equivariant deformation of Tholy (C%) as a homotopy Gerstenhaber algebra
is homotopically equivalent to trivial deformation.

We should explain what these words mean, we do it in the next subsections. Let us now
explain how it helps to prove the Kontsevich’s formality theorem. It is true, and technically it
is the hardest place in the proof, that there is a structure of homotopical Gerstenhaber algebra
(see Section 2.3) on the Hochschild complex Hoch' (A) of any associative algebra A. It is non-
trivial, because the cup-product of Hochschild cochains ¥; U ¥, and the Gerstenhaber bracket
[V1, Y] do not obey the compatibility (26), as it should be in a Gerstenhaber algebra. It obeys
it only up to a homotopy, and to find explicitly this structure uses also either some integrals
like in [13], or Drinfeld’s Knizhnik—Zamolodchikov iterated integrals, as in [19]. We discuss it
in Section 2.5. Now suppose that this structure exists, such that the Lie and Commutative parts
of this structure are equivalent to the Gerstenhaber bracket and the cup-product on Hochschild
cochains. Then, as usual in homotopical algebra, there exists a homotopical Gerstenhaber alge-
bra structure on the cohomology, equivalent to this structure on the cochains (it is something like
“Massey operations” by Merkulov and Kontsevich—Soibelman). This push-forwarded structure
is uniquely defined up to homotopy. Now we can consider this structure as a formal deformation
of the classical pure Gerstenhaber algebra on Tp(,]y((Cd ). Indeed, we rescale the Taylor compo-
nents of this structure, such that the weight of k-linear Taylor components is A*=2. This gives
again a homotopical Gerstenhaber structure, which value at A = 0 is the classical Gerstenhaber
structure on polyvector fields, because of the compatibility with Lie and Commutative structure,
and by the Hochschild—Kostant—Rosenberg theorem. Now we apply the lemma above. All steps
of our construction are Aff((Cd )-invariant, therefore, the obtained deformation can be chosen
Aff(C?)-equivariant. Then the lemma says that this deformation is trivial, and the two homotopi-
cal Gerstenhaber structures on Tpoly (C?) are in fact isomorphic. This implies the Kontsevich’s
formality in the stronger, Gerstenhaber algebra isomorphism, form.

2.3. Koszul operads

From our point of view, the Koszulness of an operad P is very important because in this
case any P-algebra A has “very economic” resolution which is free dg P-algebra. In the case of
the operad P = Assoc, this “very economic” resolution is the Quillen’s bar—cobar construction.
Thereafter, we use this free resolution to compute the (truncated) deformation complex of A as
P-algebra. In the case of P = Assoc this deformation complex is the Hochschild cohomological
complex of A without the zero degree term, that is Hoch"(A)/A. We will consider only oper-
ads of dg C-vector spaces here, with one of the two possible symmetric monoidal structures. A
quadratic operad generated by a vector space E over C with an action of the symmetric group
X of two variables, with a X3-invariant space of relations R C Indng ® E (here X acts only



B. Shoikhet / Advances in Mathematics 224 (2010) 731-771 745

on the second factor) is the quotient of the free operad P generated by P(2) = E by the space of
relations R C P(3). The operads Lie, Comm, Assoc are quadratic, as well as the Gerstenhaber
and the Poisson operads. See [7], Section 2.1 for more detail. For a quadratic operad P define
the quadratic dual operad P' as the quadratic operad generated by P'(2) = E*[1], with the space
of relations R* in IndggE *[11® E*[1] equal to the orthogonal complement to R C Indgg EQE.

Example: Com' = Lie[—1], Assoc' = Assoc[—1], (P')! =P.Let P be a general, not necessarily
quadratic, operad. For simplicity, we suppose that all vector spaces P(n) of an operad P are
finite-dimensional. Recall the construction of the bar-complex of P, see [7], Section 3.2. Denote
the bar complex of P by D(P). Then one has: D(D(P)) is quasi-isomorphic to P ([7], Theo-
rem 3.2.16). Let now P be a quadratic operad. Then the bar-complex D(/P) is a negatively-graded
dg operad whose 0-th cohomology is canonically the quadratic dual operad P'. A quadratic op-
erad P is called Koszul if the bar-complex D(P) is a resolution of P! In this case D(P") gives a
free resolution of the operad P.

Example. The operads Lie, Comm, Assoc, the Gerstenhaber and the Poisson operads, are
Koszul. See [7], Section 4 for a proof.

Definition. Let P be a quadratic Koszul operad. A homotopy P-algebra (or Pyo-algebra) is an
algebra over the free dg operad D(P").

We denote by P* the cooperad dual to an operad P, if all spaces P (n) are finite-dimensional.
Let P be a Koszul operad. Then to define a Pyo-algebra structure on X is the same that to define a
differential on the free coalgebra IF7V>,* (X) which is a coderivation of the coalgebra structure. Any
‘P algebra is naturally a P-algebra. We denote by Fp (V) the free algebra over the operad P,
and by ]F7V3* the free coalgebra over the cooperad P*. Here we suppose that all spaces P(n) are
finite-dimensional. Recall the following statement [7], Theorem 4.2.5:

Lemma. Let P be a Koszul operad, and V a vector space. Let X = Fp (V). Then the natural
projection

(Fhu (X)) =V (27)

is a quasi-isomorphism.
It follows from this statement that any P-algebra A has the following free resolution R" (A):
R (A) = (Fp(Fpu(A), 1), Q2) (28)
with the natural differentials Q1 and Q». Now we define the truncated deformation complex
of the P-algebra A as (Der(R'(A)), Q) where Q comes from the differential in R"(A). This
deformation complex is naturally a dg Lie algebra with the Lie bracket of derivations. We have

the following statement:

Proposition. The truncated deformation functor associated with this dg Lie algebra governs the
formal deformations of A as Pso-algebra.
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Remark. The word “truncated” means that for the “full” deformation functor we should take
the quotient modulo the inner derivations. Although, a map X — Der(X) is not defined for an
arbitrary operad. Our truncated deformation functor looks like the Hochschild cohomological
complex of A without the degree 0 term A.

The following trick simplifies computations with the deformation complex. Any coderivation
of the coalgebra (F%l*(A), Q1) can be extended to a derivation of R"(A) by the Leibniz rule.
We have the following theorem:

Theorem. The natural inclusion
Coder(F},, (A), Q1) — Der(R"(4)) (29)
is a quasi-isomorphism of dg Lie algebras.

It follows from this theorem and the proposition above that the dg Lie algebra
Coder(F%!* (A), Q1) governs the formal deformation of the Py, -structure on A. This, of course,
can be seen more directly. Indeed, a Po structure on A is a differential on F%,*(A) making
latter a dg coalgebra over P'. We have some distinguished differential Q; on it, arisen from
the P-algebra structure on A. When we deform it, it is replaced by Qn = Q1 + fidy such that
(Q1 + hdp)* = 0. In the first order in & we have the condition [Q1, ds] = 0, where the zero
square condition is the Maurer—Cartan equation in the corresponding dg Lie algebra.

2.4. The main computation in the Tamarkin’s theory

Here we compute the deformation cohomology of Tpoly(V), V a complex vector space, as
Gerstenhaber algebra. We prove here Lemma 2.2, and a more general statement. We start with
the following lemma:

Lemma. The Gerstenhaber operad G is Koszul. The Koszul dual operad G' is G[—2)].

Proof. We know that Lie' = Comm[—1] and Comm' = Lie[—1]. A structure of a Gerstenhaber
algebra on W consists from compatible actions of Comm and Lie[1] on W. The quadratic dual
to Comm is Lie[—1], and the quadratic dual to Lie[1] is Comm[—2]. Therefore, the quadratic
dual to G is G[—2]. The Koszulity of G is proven in [6], see also [7] and [8]. O

Theorem 2.3 gives us a way how to compute the deformation functor for formal deformations
of Tyo1y(V) as homotopy Gerstenhaber algebra. We take the free coalgebra Fé[_Z]*(Tpoly(V))
over the cooperad G[—2]* cogenerated by Ty,o1y (V). It is clear that

Fé*[g] (Tpoly(v)) =5 ((FLieTpoly(V)[l])[1])[_2]- (30)

The product A : S?Tyoly (V) — Tpoty(V) and the Lie bracket [, 1: 5> Tpory (V) — Tpoty(V)[—1]
define two coderivations of the Gerstenhaber coalgebra structure on Fé*[z](Tpoly(V)); denote
them by Scomm and dpie, correspondingly. The deformation complex of Tp,o1y(V), as of Gersten-
haber algebra, is then Coder’ (IE‘V*[Z] (Tpoly(V))) endowed with the differential d = ad (§comm) +
ad(81ie). We denote the two summands by dcomm and dy e, correspondingly.
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Theorem. The Aff(V)-invariant subcomplex in the “positive” deformation complex
(Coder™ (IFV*[Z] (Tpoly(V))), dcomm + dLie) has all vanishing cohomology.

Remark. Here the positive deformation complex means that we exclude the constant coderiva-
tions Hom(C, Tpo1y(V)[2]). The reason to consider the positive complex is that the constant
coderivations do not appear in the formal deformations of G, algebra structure.

Proof. First of all we compute the cohomology of all derivations, then concentrate on positive
Aff-invariant subcomplex. Recall in the beginning some tautological facts. The free Gersten-
haber algebra generated by a vector space W is S” (FL;ie(W[1])[—1]). The cofree Gerstenhaber
coalgebra cogenerated by W is S* (]Fl\fie(W[_l])[l])’ Finally, the cofree G*[2]-coalgebra cogen-
erated by W is §° (Fi/ie(W[l])[l])[—2]. We deal with the coderivations of the cofree coalgebra
S* (]F‘Kie(W[l])[l])[—Z], and they are defined uniquely by their restrictions to cogenerators which
may be arbitrary. Therefore, we need to compute the cohomology of the complex

Homc (S. ((FLie(Tpoly(V)[l]))[l])v Tpoly(V)) (2]. (31

This is a bicomplex with the differentials dcomm and dpie. We use the spectral sequence of the
bicomplex which computes firstly the cohomology of dcomm. We leave to the reader the simple
check that this spectral sequence converges to the (associated graded of) cohomology of the total
complex. Compute the first term of the spectral sequence. When we take in the account the only
differential dcomm, the deformation complex Homg (S* ((FreeLie (Tpoty (VH[1IDI1]), Tpory (V)I2]
is a direct sum of complexes:

Hom¢ (S. ((FreeLie(Tpoly(v)[l]))[l]): Tpoly(V)) [2]

= Tpoly(V)I[2] @(Hom(sk((FreeLieTpoly(V)[l])[1])7 Tpoly(v))» dComm) (2]. (32)
k>1

Lemma. Let k > 1. The cohomology of the complex (Horn(Sk((FreeLie Tooty(VHIID[1D),
Tpoty(V)), dcomm)[2] is S](‘,)(Vect(T*[—l]V))[—Zk + 2]. Here Sé‘Q(Vect(T*[—l]V)) is (the sec-
tions of) the k-th symmetric power of the vector bundle of vector fields on the space T*[—1]V.
(Recall that Tyoly (V) is the functions on T*[—1]V.)

Proof. We only “explain” the statement, the complete proof will appear somewhere. The com-
plex (Hom(Sk((FreeLieTpoly(V)[1])[1]), Tpoty(V)), dcomm)[2] ~ “starts”  with the term
Hom(S§ k (Tpoty (V) Tpoly (V) [—2k + 2] (we take only the generators of the free Lie (co)algebra).
The differential dcomm in this term is

(dcomm¥) (y1 - -+ Vir1) =SymmW& (Y1 Ay2) -3+ Vit1)
FSymm(yi A¥ (Y2 Vit1)
ERAY@L V3 V). (33)

The kernel of this differential is exactly the answer given in the statement of the lemma (this is
clear). The more non-trivial is to show that the “higher” cohomology vanishes. O
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Thus, in the term E{ we have @k}o Sé(Vect(T*[—l]V))[—Zk + 2]. Now consider the dif-
ferential dp i acting on E1. The Schouten bracket is an element of SéVect(T*[— 1]V)[—1]. One
easily sees that the cohomology belongs to Ty (V)[2] C @k;O S](‘9 (Vect(T*[—11V)[—2k + 2]
(the summand for k = 0). This cohomology is 1-dimensional and is represented by a constant
function in Tpooly(V)[Z]. We conclude that the cohomology of the full deformation complex (31)
is 1-dimensional and is concentrated in degree —2. Now consider the Aff-invariant subcomplex
of the full deformation complex. More precisely, we compute the cohomology of

Home (S ((Freetie(Tyoty (V)I11))[11), Tpoty (V) "21. (34)

From a very general point of view, the terms of our complex are Aff-invariants in Hom(V®¢ ®
V*®b y®c @ y*®d) The Lie group GL(n) acts in the natural way, and the shift x > x +
(ai,...,ap) acts trivially on all V factors, and by shifts x; — x; + @; on all V* factors. We
know all GL(n)-invariants from the main theorem of invariant theory. They are constructed
from the following 4 elementary operations. These 4 operations are: id:V — V,id:V* — V*,
V®V*— C,and C — V ® V*. From these 4 operations, only the last one, C - V ® V*, is
not Aff-invariant. On the other hand, the group GL(n) acts reductively, and the cohomology of
the complex is equal to the cohomology of its GL(n)-invariant part. On the other hand, due to
the symmetrization conditions, the invariant ¢:C — V ® V* can be applied only 0 or 1 times.
So schematically as a vector space the space of GL(n)-invariants of (32) is K* @ ¢ - K* where
K" is the space of Aff-invariants of (32). One easily sees that this decomposition agrees with the
complex structure. We conclude that the cohomology of (34) is equal to the Aff-invariants of the
cohomology of

GL(n)

Hom(C(S.((FreeLie(Tpoly(V)[”))[”)a Tpoly(V)) [2]. (35)

As was already mentioned above, the latter cohomology is equal to the Aff-invariants of the co-
homology of (34), because the group GL(n) acts reductively. We conclude that the cohomology
of (35) is equal to C[2]. The last step is to compute the cohomology of the positive subcomplex.
This is easy to do. In the term E3 one has (Tpo1y (V) /C)[0], and after taking of the Aff-invariants,
we get 0.

Theorem is proven. O

2.5. The final point: relation with the Etingof-Kazhdan quantization [5]

The remaining part of the Tamarkin’s proof of Kontsevich formality goes as follows. One
firstly proves the Deligne conjecture that there is a homotopy Gerstenhaber algebra structure on
the Hochschild cohomological complex Hoch® (A) of any associative algebra such that it induces
the Schouten bracket and the wedge product on the cohomology. This is the only transcendental
step of the construction, this structure, as it is defined in [19], depends on a choice of Drinfeld
associator [4]. We apply this fact for A = S(V*), V a vector space over C. One can push forward
(given by the “Massey operations™) this G, structure from Hoch® (S(V*)) to its cohomology
Thoy(V). Then we get two G structures on Tpoly(V), the first is given from the Schouten
bracket and the wedge product of polyvector fields, the second is the above push-forward. More-
over, one can introduce a formal parameter % to the push-forward, such that the original one is
given when /i = 1. Then for 7 = 0 we get the Schouten structure: it follows from the compat-
ibility of the Deligne’s conjecture G, structure with the one on the cohomology. Thus we get
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Fig. 1. The brace operation: we insert g1, ..., gj into arguments of f, preserving the order of g1, ..., 8k, with the natural
sign, and take the sum over all possible insertions.

a formal deformation of the classical Gerstenhaber algebra structure on Tpory (V). This defor-
mation is clearly Aff(V)-invariant. By Theorem 2.4, infinitesimally all such deformations are
trivial; therefore, they are trivial globally. This concludes the Tamarkin’s proof. In this subsec-
tion we explain the Tamarkin’s proof of the Deligne conjecture, based on the Etingof-Kazhdan
quantization. Recall the definitions of the dg operads B, and By ;e. By definition, a vector space
X is an algebra over the operad By if there is a structure of a dg associative bialgebra on the
cofree coalgebra FY__ (X[1]) such that the coalgebra structure coincides with the given one.

Assoc
This definition leads to the following data (see [8, Section 5] and [6, Section 5] for more detail):

(1) a differential d: X[1]®" — X[1]®™ of degree 1, m,n > 1 being a differential of the free
coalgebra structure is uniquely defined by the projections to the cogenerators. We denote
them m,, : X[1]%" — X[2];

(2) the algebra structure, it is also given by the projection to X[1]. These are maps
Mpg: X[11%7 @ X[1]%7 — X[1], 0r mpq: X®P @ X®1 — X[1 — p —q].

These data should define three series of equations: the first comes from the associativity of {m ,},
the second comes from the fact that d is a derivation of the algebra structure, and the third
comes from the condition d> = 0. These equations define a very complicated operad Bno. It
is a remarkable and surprising result of Getzler and Jones [6], Section 5, that X = Hoch"(A),
A an arbitrary associative algebra, is an algebra over the operad B. This structure is defined as
follows:

(1) m; is the Hochschild differential;

(2) my, is the cup-product on Hoch® (A);

3) mj =0fori >3;

@) mu(f ®g1 ®---® gr) is the brace operation f{gy, ..., gk} defined below;
(5) myr =0fora > 2.

Now is the definition of the braces due to Getzler—Jones. It is better to describe it graphically,
as is shown in Fig. 1. Let us emphasize again that it is a highly non-evident fact, proven by a
direct computation, that in this way we make a B, algebra structure on Hoch® (A). The role of
this construction is that the cohomology operad of the dg operad B, is equal to the Gersten-
haber operad G (probably, even to prove this fact we need the Etingof—-Kazhdan quantization).
So the idea is to prove that there is a quasi-isomorphism of operads G ~» B, and then we can
consider Hoch® (A) as G algebra for any associative algebra A. The only transcendental step
in the Tamarkin’s construction is this quasi-isomorphism of operads G ~~ B,. Technically it is
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done as follows. Introduce some operad Bp;. as follows. A vector space X is an algebra over
the operad B if there is a dg Lie bialgebra structure on the free Lie coalgebra F}’, (X[1]) gen-
erated by X[1] such that the Lie coalgebra structure coincides with the given one. The operad
By e is also quasi-isomorphic to the Gerstenhaber operad G. Moreover, there is a simple con-
struction of a quasi-isomorphism G, — Bpje, as follows. Let Y be an algebra over Bpie. This
means that there is a Lie dg bialgebra structure on the free coalgebra g = Ffie(Y[l]). In particu-
lar, g is a Lie algebra, and this defines a differential on the Lie chain complex % (g[1]). Thus
we get a differential on the free Gerstenhaber coalgebra IF ., (Y[1]) cogenerated by Y[1], which
by definition means that Y is a G -algebra. This assignment is functorial, and therefore gives a
map of operads G, — B, Which easily checked to be a quasi-isomorphism. So, the conclu-
sion is that the operad By can be connected to the Gerstenhaber operad in a very simple way,
and now we should connect the operad B, with the operad By;e. This is given exactly by the
Etingof—Kazhdan (de)quantization (see [19] and [8, Section 7] for detail). The Etingof-Kazhdan
dequantization is applied in a sense to IF{ . (Hoch® (A)[1]) which is an associative bialgebra by
the Getzler—Jones braces’ construction.

Remark. Let P be a Poisson algebra. Its Poisson complex Pois” (P) is defined as the dg space of
coderivations of the free coalgebra over the dual cooperad P**[1] by the space P[1]. This space of
coderivations is naturally equipped with a differential dpy;s arising from the Poisson bracket and
the product on P. The author thinks that for any Poisson algebra P the Poisson complex Pois” (P)
is an algebra over the operad By ie. This structure is defined exactly by some generalization of
the braces construction. Now, if P = S(V*) be the Poisson algebra with zero bracket, then by
Getzler-Jones Hoch® (P) is a By, algebra, and Pois’ (P) is a Bpj. algebra. The author thinks
that some the most natural Etingof—-Kazhdan dequantization gives from the associative bialgebra
]FXSSOC(HOCH (P)[1]) the Lie bialgebra F{ie(Pois° (P)[1]). So far, the author does not know any
direct proof of the last fact.

Appendix

Here we explain a construction of the Kontsevich formality morphism over Q. The usual
construction uses the Drinfeld’s associator over Q and the Tamarkin’s theory. This associator is
not given by an explicit formula, it is constructed in [4] by proving that all associators over Q
form a torsor over the Grothendieck—Teichmiiller group. The Knizhnik—Zamolodchikov associ-
ator gives an example of associator over C; therefore, there exists an associator over Q. It proves
that this torsor is trivial over Q. Then the torsor is trivial also over Q, because the Grothendieck—
Teichmiiller group is pro-unipotent. Here we propose a different proof, which seems to be more
constructive. This approach seems to be new. It follows from the previous results that if we suc-
ceed to construct a quasi-isomorphism of operads Bo, — G over QQ, we will be done. Consider
the operad B. It is a dg operad. All dg operads form a closed model category because they are
algebras over some universal colored operad. In particular, there is a homotopy operad structure
on the cohomology of B, given by a kind of “Massey operations”. This homotopy operad struc-
ture clearly is defined over Q. To construct it explicitly, we should firstly split By as a complex
into a direct sum of its cohomology and a contractible complex and, secondly, to contract this
complex explicitly by a homotopy. It is clear that these two steps can be performed over Q. Now
we have two homotopy operad structures on G: one is the Gerstenhaber operad, and another
one is given by the Massey operations. Moreover, there is a formal family of homotopy dg op-
erads depending on # whose value at i = 1 is the “Massey” homotopy operad structure on G,
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and whose value at /i = 0 is the Gerstenhaber operad. We know from the Tamarkin’s theory de-
scribed above that this deformation is trivial over C, because the “Massey” homotopy operad
is quasi-isomorphic to B by construction, which is quasi-isomorphic over C to the Gersten-
haber operad by Section 2.5. We are going to prove that this formal deformation is trivial also
over Q. For this it is sufficient to prove that infinitesimally this deformation is trivial over Q
at each 0 < i < 1. Consider a resolution R"(G) of the Gerstenhaber operad over Q; as G is a
Koszul operad, we can take its Koszul resolution. Consider the truncated deformation complex
DT (G) = Der(R’(G)). We need to prove that all infinitesimal deformations give trivial classes
in H'(D*(G)). It is probably not true that H!(D*(G)) = 0, it would be very unexpected, be-
cause Tamarkin imbedded in [20] the Grothendieck—Teichmiiller Lie algebra into H 0D (G)).
But we know that all classes are trivial in H'(D1(G), C) from the Tamarkin’s theory. As the
complex DT (G) is defined over Q, we have that the natural map

H'(D™(G),Q) = H" (D" (G) ® C) = H" (D*(G),C) (36)

is an embedding. Therefore, all our infinitesimal classes are trivial over Q, and we get that the
global formal deformation is trivial over Q. We think that this speculation is as explicit as it can
give some explicit formulas for the Kontsevich’s formality over Q. We are going to describe it in
detail in the sequel.

3. Two infinite-dimensional varieties (and a morphism between them)

In this section we associate with each quasi-isomorphism of operads ® : Go, — B defined
up to homotopy an L, morphism U(®) : Tpely (V) — Hoch® (V) (for any vector space V) defined
up to homotopy. We show that this L, morphism is given by a universal formula, that is by
prediction of some weights to all Kontsevich graphs from [12], but our graphs may contain
simple loops. The image of the map @ — U(O®) gives that L, morphisms for deformation
quantizations associated with which we can prove our Koszul duality theorem.

3.1. Few words about homotopy

Starting from now, we often use the word “homotopy” in the context like “homotopical map of
dg operads” or “homotopical Ly, morphisms”. Here are some generalities on this. The Quillen’s
formalism of closed model categories [17] gives a tool for the inverting of quasi-isomorphisms in
a non-abelian case. Let O be an operad. Consider the category DGA(QO) of dg algebras over O.
We want to construct a universal category in which the quasi-isomorphisms in DGA(O) are
invertible. This category can be constructed for any operad O and is called the homotopy category
of DGA(Q), because the category DGA(Q) admits a closed model structure in which the weak
equivalences coincide with the quasi-isomorphisms [9]. There are several constructions of this
category, but all them are equivalent due to the universal property with respect to the localization
by quasi-isomorphisms. In Section 5 we recall a very explicit construction in the case when O
is a Koszul operad. Contrary, the dg algebras over a PROP do not form a closed model category
(the Quillen’s Axiom O that the category admits all finite limits and colimits fails in this case; for
example we do not know what is a free algebra over a PROP). Therefore, for dg algebras over a
PROP any construction of the homotopical category (to the best of our knowledge) is not known.
On the other hand, all dg operads form a closed model category as algebras over the universal
colored operad, therefore, for dg operads the Quillen’s construction works. In the sequel we will
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skip some details concerning that homotopical maps of operads induce homotopical maps of dg
algebras, avoiding to enlarge this already rather long paper. Only what we need to know is that
the homotopical category is unique, and in the final step we use a particular construction of it for
dg Lie algebras in Section 5, appropriate for our needs.

3.2. The Kontsevich’s variety R

The Kontsevich’s variety £ is the variety of all universal L, quasi-isomorphisms Tpoly (V) —
Hoch® (§(V*)) defined for all vector spaces V. Any such universal L, morphism is by definition
given by prediction of some complex weights W to all Kontsevich graphs I” from [12] possibly
with simple loops and not connected. These W are subject to some quadratic equations, arising
from the Lo, condition. The first Hochschild—Kostant—Rosenberg graph has the fixed weight, as
in the Kontsevich’s paper [12]. This variety is not empty as is proven in [12]. The homotopies
acts by gauge action (see Section 5).

3.3. The Tamarkin’s variety ¥

The Tamarkin’s variety in our strict sense is formed from all quasi-isomorphisms of operads
G — B which are identity on cohomology, modulo homotopies. As G is a free dg operad,
any such map is uniquely defined by the generators G[—2]. So, a map of operads G, — Boo 1S
given by a map of vector spaces G[—2] — B subject to some quadratic relations arose from
the compatibility with the differentials in the dg operads. This variety is not empty because we
have constructed in Section 2, following [19], such a particular quasi-isomorphism. In a wider
setting, one can consider Op, maps of dg operads Go, — B, but we do not do this.

34. Amap X: T — R

Suppose a point ¢ of the Tamarkin’s variety £ is fixed. Then the Hochschild complex
Hoch® (A) of any algebra A has a fixed structure of homotopy Gerstenhaber algebra (fixed
modulo homotopy). Consider the case A = S(V*) for some vector space V. Then we get, as
is explained in Section 2, two structures of G, algebra on Tpoy (V) which are specifications
of some formal deformation at # = 0 and % = 1. Then they should coincide, up to a homo-
topy, because the first cohomology H 1(Coder(IF‘V*[Z](Tpoly(V)))) = szoly(V) by Theorem 2.4,
and there is no Aff(V)-invariant classes (but our formal deformation is Aff-invariant). Thus
we get a map of G, algebras x0(r): Tpoy (V) — Hoch® (S(V*)), where Tpory (V) is consid-
ered with the standard Schouten—Nijenhuis Gerstenhaber structure, and the G, structure on
Hoch" (S(V*)) depends on the point ¢ € £. Then we restrict it to the Lie operad and get an Lo
map X(t) : Tpoly(V) — Hoch' (S(V*)) which is an L, morphism for the standard Lie structures
on Tpoly(V) and Hoch® (S(V*)), and this L, morphism is defined up to homotopy. This is the
construction of the map X. It is, although, not proven yet that X(¢) is defined uniquely up to a
homotopy.

Lemma. For a fixed V, the L, morphism X(t) is uniquely defined up to a homotopy.
Proof. Suppose there are two different Go, morphisms, for the same fixed G, structure on

Hoch® (S(V*)). Then we can get defined up to a homotopy G oo quasi-automorphism of Tpory (V).
It has the identity first Taylor component by the constructions (a point ¢ € ¥ is defined such we
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get the canonical Gerstenhaber structure on the cohomology of Hoch® (A) for any A). Therefore,
the logarithm of this automorphism is well defined and gives a G, derivation of T},01y (V). Now
we use the computation of Theorem 2.4 for 0-th cohomology: H O(Coder(IFv*m (Tpoly(V)))) =
Tploly(V) is the vector fields. Again, there are no Aff(V)-invariant vector fields. Therefore, our
derivation is inner. But then it is zero, because any inner derivation acts non-trivially on the first
Taylor component which is fixed to be identity. Thus, we have proved that X(¢) is well defined up
to homotopy as G, map, and therefore the same is true for its L, part. (Compare with lemma

in the end of Section 4.4.) O
Now we prove the following almost evident corollary of the previous lemma:

Theorem. The Lo, morphism X(t) is a universal Lo, morphism, that is, it is given by prediction
of some weights to all Kontsevich graphs, possibly non-connected and with simple loops, and
these weights up to a homotopy do not depend on the vector space V.

Proof. Let W C V be a subspace. Then we can decompose V = W @ W+, and a G struc-
ture on Hoch®(S(V*)) defines a G structure on Hoch® (S(W*)). Clearly (because the G
structures are gl(V)-invariant) it is, up to a homotopy, the structure on Hoch®(S(W*)) one
gets from the map of operads 7: G — Boo. We have then two definitions of Ly, morphisms
Tyoty(W) — Hoch® (S(W*)): one is the direct X()w, and the second one is the restriction to W
of X(#)y. They coincide up to a homotopy by the lemma above, because the two G, structures
on Hoch® (S(W*)) are the same up to a homotopy. The remaining part of the theorem (that the
L o, morphism is given by a universal formula though Kontsevich graphs) follows from the gl(V)
invariance of it. O

It is not known if the map 7 — X(¢) is surjective, even when we allow ¢ to be an Op,, map of
dg operads G, — Bso. Our Main Theorem of this paper about the Koszul duality holds for the
star-product obtained from any L, morphism in the image of X, i/ = X(t), by the usual formula

frg=f-g+hah((f @8+ %hzuz(a,a)(f g+ (37
where « is a (quadratic) Poisson bivector field on V.
4. Koszul duality and dg categories
4.1. Some generalities on dg categories

We give here some basic definitions on dg categories. We define only the things we will
directly use, see [11] for much more detailed and sophisticated overview. A differential graded
(dg) category A over a field k is a category, in which the sets of morphisms A(X, Y) between
any two objects X, Y € Ob(A) are k-linear dg spaces (complexes of k-vector spaces) such that
the compositions are defined as maps A(Y, Z) ® A(X,Y) - A(X, Z) forany X, Y, Z € Ob(A)
which are maps of complexes. In the last condition we regard A(Y, Z) ® A(X, Y) as a complex
with the differential defined by the Leibniz rule

d(f®g) =df)@g+ (D% f® (dg). (38)
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It is clear that a differential graded category with one object is just a differential graded associa-
tive algebra. Then dg categories can be considered as “dg algebras with many objects”. For dg
algebras we have a definition when a map F: A" — B is a quasi-isomorphism: it means that
the map F' is a map of algebras and induces an isomorphism on cohomology. Such a map in
general is not invertible, it can be inverted only as an A,, map. What should be a definition of
a quasi-isomorphism for dg categories? We say that a functor F : A — 5 between two dg cate-
gories A and B is a quasi-equivalence if it is a functor, which is k-linear on morphisms (and, as
such, preserves tensor compositions of morphisms), induces an equivalence on the level of coho-
mology, and is essentially surjective. The last condition means that for a dg category A we can
consider the category H' (A) with the same objects, and with (H" A)(X,Y) = H (A(X,Y)).
Then a quasi-equivalence is not invertible in general, but it can be inverted as an A, quasi-
equivalence between two dg categories. We will not use this concept directly, and we refer to the
reader to give the definition. Now if we have a dg algebra, we know what is the cohomological
Hochschild complex of it. It governs the A, deformations of the dg algebra. It is possible to
define the Hochschild cohomological complex of a dg category. This will be in a sense the main
object of our study in this paper for some particular dg category, namely, for the B. Keller’s dg
category introduced in the next subsection. Let us give the definition of it. At first, it is the total
product complex of a bicomplex. The vertical differential will be the inner differential appeared
from the differential on A(X, Y) for any pair X,Y € Ob.A. The horizontal differential will an
analog of the Hochschild cohomological differential. The columns have degrees > 0. In degree
0 we have

Hoch(A)= [] AX.Xx) (39)
XeOb A
and in degree p > 1
Hoch*?(A) = l_[ Homy (AXp—1, Xp) @ A(Xp—2, X p—1) @ - -+
X0, X1,.0s XPGObA
where the product is taken over all chains of objects Xy, X1,..., X, € Ob.A of length p + 1.

The Hochschild differential diocn : Hoch*? (A) — Hoch®?*1(A) is defined in the natural way.
Let us note that even if a cochain ¥ € Hoch*” (A) is non-zero only for a single chain of objects
Xo, X1, ..., X, its Hochschild differential dgoch ¥ in general is non-zero on many other chains
of objects. Namely, at first it may be non-zero on any chain

X0, Xi, Y, Xiqq, ..., Xp for0<i<p—1 41

such that there are non-zero compositions A(Y, X;11) ® A(X;,Y) — A(X;, X;1) (this is cor-
responded to the regular terms in the Hochschild differential), and on the chains

Z_.Xo,....Xp (42)
and

X0, s Xp, Z4 (43)
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such that there are non-zero compositions A(Xg,X,) ® A(Z_,Xo) — A(Z_,X,) and
AXp, Z4) ® A(Xo, Xp) — A(Xo, Z4) (this is corresponded to the left and to the right
boundary terms in the Hochschild differential, correspondingly). The Hochschild cohomological
complex of a dg category A is a dg Lie algebra with the direct generalization of the Gersten-
haber bracket. The solutions of the Maurer—Cartan equation of Hoch® (A) ® k[[/i] give the formal
deformations of the dg category A as Ao, category.

4.2. The B. Keller’s dg category cat(A, B, K)

Introduce here the main object of our story—the B. Keller’s dg category cat(A, B, K).
Here A and B are two dg associative algebras, and K is B-A-bimodule. The dg category
A = cat(A, B, K) has two objects, called say a and b, such that A(a,a) = A, A(b,b) = B,
A(a, b) =0, A(b, a) = K. Only what we need from K to define such a dg category is a structure
on K of differential graded B-A-bimodule. Consider in details the Hochschild complex of the
category cat(A, B, K). It contains as subspaces Hoch®(A) and Hoch® (B), the usual Hochschild
cohomological complexes of the algebras A and B, and also it contains the subspace

Hoch' (B, K, A) = Z Hom(B®™ @ K ® A®™, K)[—m| — m]. (44)
myi,mpy>0
As a graded space,
Hoch® (cat(A, B, K)) = Hoch' (A) @ Hoch® (B) @ Hoch' (B, K, A) (45)

but certainly it is not a direct sum of subcomplexes. Namely, Hoch® (B, K, A) is a subcomplex
of Hoch'(cat(A, B, K)), but Hoch®(A) and Hoch'(B) are not. There are well-defined pro-
jections p4 :Hoch®(cat(A, B, K)) — Hoch®(A) and Hoch®(cat(A, B, K)) — Hoch®(B). The
Hochschild component of the total differential acts like this:

K
dHoch

S

X3
K

A BK
dHV wm
A B
dHoch C Xl X2 D dHoch

where X| = Hoch® (A), X, = Hoch®(B), X3 =Hoch' (B, K, A). In [10], Bernhard Keller poses
the following question: what is a sufficient condition on the triple (A, B, K) which would guar-
antee that the projections p4 : Hoch® (cat(A, B, K)) — Hoch®(A) and Hoch®(cat(A, B, K)) —
Hoch® (B) are quasi-isomorphisms of complexes? (They are always maps of dg Lie algebras, it
is clear.) The answer is given as follows: it is enough if the following conditions are satisfied:
Consider the left action of B on K. It is a map of right A-modules, and we get a map L% :B—
Hompeg.4 (K, K). We can also derive this map to a map Lp: B — RHompyeg.4 (K, K). Analo-
gously, we define from the right A-action on K the map R4 : A°°P — RHomp 10d(K, K).

(46)

Definition. Let A and B be two dg associative algebras, and let K be dg B-A-bimodule. We say
that the triple (A, B, K) is Keller’s admissible triple if the maps
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Lp:B — RHompyog-4(K, K)
R4 : A°PP - RHompg.mod(K, K) 47)

are quasi-isomorphisms of algebras.
There are known two examples when the Keller’s condition is satisfied:

(1) A is any dg associative algebra, and there is a map ¢ : B — A which is a quasi-isomorphism
of algebras. We set K = A with the tautological structure of right A-module on it, and with
the left B-module structure given by the map ¢;

(2) A is a quadratic Koszul algebra, B = A' is the Koszul dual algebra, and K is the Koszul
complex of A considered as a B-A-bimodule.

The both statements are proven in [10]. The theory developed in Section 1 makes the general-
ization of (2) for Koszul algebras over discrete valuation rings straightforward. The following
theorem was found and proven in [10]:

Theorem. Let (A, B,K) be Keller’s admissible triple. Then the natural projections
pa:Hoch' (cat(A, B, K)) — Hoch® (A) and pp:Hoch’ (cat(A, B, K)) — Hoch® (B) are quasi-
isomorphisms of dg Lie algebras.

Proof. Let r:L° — M" be a map of complexes. Recall that its cone Cone(t) is defined as
Cone(r) = L'[1] ® M~ with the differential given by matrix

(i 2
1] dy )’

To prove that the map 7:L" — M’ is a quasi-isomorphism, it is equivalently than to prove
that the cone Cone(z) is acyclic in all degrees. Let us consider the cone Cone(ps) where
pa :Hoch' (cat) — Hoch®(A) is the natural projection. Let us prove that if the first condition
of (47) is satisfied, the cone Cone(p4) is acyclic. We can regard Cone(p4) as a bicomplex
where the vertical differentials are the Hochschild differentials and the horizontal differential
is p4[1]. This bicomplex has two columns, therefore its spectral sequences converge. Compute
firstly the differential p4[1]. Then the term E; is the sum of Hoch®(B) @ Hoch’ (B, K, A), as a
graded vector space. There are 3 components of the differential in E;: the Hochschild differen-
tials in Hoch® (B) and in Hoch' (B, K, A), and exactly the same differential d5X, : Hoch®(B) —
Hoch® (B, K, A)[1], as in the Hochschild complex of the category Hoch® (cat(A, B, K)). Com-
pute firstly the cohomology of Hoch' (B, K, A) with the only Hochschild differential. One can
write:

Hoch® (B, K, A) = Hom(T (B), Hom(K ® T(A), K)) (48)

with some differentials, where we denote by 7' (V) the free associative algebra generated by V.
More precisely, the term Homc(K ® T(A),K) is equal to the complex
Homyeg-4 (Bary, 4 4(K), K) of maps from the bar-resolution of K in the category of right A-
modules to K. This is equal to RHompeq.4 (K, K), which is quasi-isomorphic to B by the first
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Keller’s condition. But this is not all what we need—we also need to know that the left B-
module structures on B and on RHompyeg.4 (K, K) are the same. This is exactly guaranteed by
the Keller’s condition, which says that the quasi-isomorphism B — RHomyg.4 (K, K) is in-
duced by the left action of B on K. Now we have two complexes, which are exactly the same,
and are Hoch® (B), but there is also the component dg(fgh from one to another. In other words,
so far our complex is the cone of the identity map from Hoch®(B) to itself, and this cone is
clearly acyclic. We have proved that if the first Keller’s condition is satisfied, the natural pro-
jection p4 :Hoch® (cat) — Hoch' (A) is a quasi-isomorphism. If the second Keller’s condition is
satisfied, we conclude, analogously, that the projection pp : Hoch® (cat) — Hoch' (B) is a quasi-
isomorphism. 0O

B. Keller used this theorem in [10] to show that in the two cases listed above when the
Keller’s conditions are satisfied, the Hochschild cohomological complexes of A and B are quasi-
isomorphic as dg Lie algebras. In particular, this is true when A and B are Koszul dual algebras,
the case of the most interest for us.

Remark. If A and B are Koszul dual algebras, but K is replaced by C, the only cohomology of
the Koszul complex, we still have the quasi-isomorphisms B — RHomyq.4 (C, C) and A°PP —
RHomp 1m0d(C, C), but these maps are not induced by the left (correspondingly, right) actions
of B (correspondingly, A) on C. These actions define some stupid maps which are not quasi-
isomorphisms. This example shows that the Keller’s dg category in this case may be not quasi-
equivalent (and it is really the case) to its homology dg category.

4.2.1. The Keller’s condition in the (bi)graded case

As we already mentioned in remark in Section 0.3, when the algebras S(V*) and A(V)
are considered just as associative algebras, they are not Koszul dual. Namely, Extv)(k, k) =
S[V*], the formal power series instead of polynomials. To avoid this problem, we should work
in the category of algebras with inner Z-grading and with cohomological Z-grading. Finally,
A¥(V) should have the inner grading k and the cohomological grading k, while S*(V*) has
the inner grading k and the cohomological grading 0. Then we should switch to the category
of bigraded modules, and compute Ext algebras in this category. In this definition such Ext al-
gebras will be automatically bigraded. This completely agrees with the theory of Koszul dually
discussed in Section 1. The only problem is that the Keller’s Theorem 4.2 was proven above
for the category of graded algebras when only the cohomological grading is taken into the ac-
count. To make this theorem valid for the bigraded case, we should modify the definition of the
Hochschild cohomological complex of a bigraded algebra and of a bigraded dg category. We
give the following definition. Let A be a bigraded algebra (one grading is inner and another one
is cohomological). We define the graded Hochschild complex Hochér(A) as the direct sum of its
bigraded components. The same definition will be done for bigraded dg categories. In general,
it is not true that the graded Hochschild complex is quasi-isomorphic to the usual one (which is
graded only with respect to the cohomological grading but not with respect to the inner). They
are quasi-isomorphic for A = S(V*), but for A = A(V) this quasi-isomorphism fails. Indeed,
the cohomology of the usual Hochschild complex for A = A(V) is the formal polyvector fields
on V while the cohomology of the graded Hochschild complex is in this case the polynomial
polyvector fields on V. Therefore, if we need to work in the bigraded category, we should re-
prove Theorem 4.2 in this case.
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Let A and B be two associative bigraded algebras, and let K be dg bigraded B-A-bimodule.
We say that the triple (A, B, K) satisfies the graded Keller’s condition if the natural maps

Lp: B — RHomgeg-4 (K, K)
R4 : A°PP — RHomp.grmod (K, K) (49)

are bigraded quasi-isomorphisms. Here the derived functors are taken in the categories of graded
modules.

Theorem. Let (A, B, K) satisfy the graded Keller’s condition. Then the natural projections
DA :Hoch;,r(cat(A, B,K)) — Hoch;,r(A) and pp :Hoch;,r(cat(A, B,K)) — Hoch;,r(B) are
quasi-isomorphisms.

The proof is completely analogous to the usual case, and we leave the details to the reader.
In the sequel we will omit the subscript gr with the notation of the Hochschild complex, always
assuming the theory developing here.

4.3. The maps pa and pp are maps of B algebras

Let A, B be two associative algebras, and let K be any B-A-bimodule, not neces-
sarily satisfying the Keller’s condition from Section 4.2. Then we have two projections
pa:Hoch' (cat(A, B, K)) — Hoch'(A) and pp:Hoch®(cat(A, B, K)) — Hoch® (B). We know
from Section 2 that the Hochschild complex Hoch® (A) of any associative algebra has the natural
structure of By, algebra by means of the Getzler—Jones’ braces (see Fig. 2). The same is true for
Hoch® (C) where C is a dg category, which is established by the same braces’ construction. The
following simple lemma, due to Bernhard Keller [10], is very important for our paper:

Lemma. Let A, B be two associative algebras, and let K be a B-A-bimodule. Then the natural
projections p 4 :Hoch® (cat(A, B, K)) — Hoch' (A) and pg :Hoch® (cat(A, B, K)) — Hoch'(B)
are maps of Beo algebras.

Proof. It is clear because the projections p4 and pp are compatible with the braces, and with
the cup-products. That is, they are compatible with the maps m; and m;; of the By, structure, see
Section 2.5. O

4.4. We formulate a new version of the Main Theorem

Let A= S(V*), B= A(V), and K = K" (S(V*)). We know from Section 1.1 the algebra
S(V*) is Koszul, and its Koszul dual A' = A(V). Thus, we can apply Theorem 4.2 to the
triple (S(V*), A(V), K" (S(V*))). We have constructed a By, algebra Hoch® (cat(A, B, K)) for
A, B, K as above, and the diagram

Hoch' (cat(A, B, K))

/ K (50)

Hoch®(A) Hoch' (B)
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where the two right maps are maps of By, algebras. Let now 7 : G, — B be a point of the
Tamarkin’s manifold, see Section 3.3. Then the diagram (50) is a diagram of maps of G, alge-
bras, depending on t € ¥. Let now U = %9(r) be the universal G o morphism Gy : Tpoty (V) —
Hoch® (S(V*)) defined for all finite-dimensional (graded) vector spaces V, see Section 3.4. It
depends on the point # € ¥ and is defined up to a homotopy. Denote by G5(¢) and G4 (¢) the
specializations of this universal G, morphism for the vector spaces V and V*[1], correspond-
ingly. Identify Tpo1y (V) with Thory (V*[1]) as in Section 0.1 of the introduction. Then we have
the following diagram of G, maps:

Hoch'(A)

Wx

Tpoty(V) Hoch' (cat(A, B, K)) (51

m‘/

Hoch"(B)
depending on ¢t € . Here and in Section 6 we prove the following statement:

Theorem. For any fixed t € X, the diagram (51) is homotopically commutative, that is, it is
commutative in the Quillen’s homotopical category.

Now restrict ourselves with the Lo, component of the G, maps. Then clearly the diagram
remains to be homotopically commutative. We have the following

Corollary (A new version of the Main Theorem). For any t € T, the diagram (51) defines a
homotopically commutative diagram of L, maps.

We explain in Section 7 in detail why this corollary implies the Main Theorem in our previous
version, for Koszul duality in deformation quantization. Now let us begin to prove the theorem
above.

Proof of Theorem (beginning). The proof is based on the following Key-Lemma:

Key-Lemma. For any t € T, the diagram (51) defines a commutative diagram of isomorphisms
maps on cohomology.

We prove this lemma in Section 6, and it will take some work. Now let us explain how
the theorem follows from the Key-Lemma. The diagram (51) is a diagram of G quasi-
isomorphisms (the two left arrows clearly are quasi-isomorphisms, and the two right ones are
by the Keller’s Theorem proven in Section 4.2). We can uniquely up to a homotopy invert a G,
quasi-isomorphism. Then the map

G()=(G20) " o propyodi®) (52)
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is uniquely defined, up to a homotopy, G quasi-automorphism of 701y (V). Now, by the Key-
Lemma, its first Taylor component is the identity map. Then we can take the logarithm

D =log(9) (53)
which is a G, derivation of Tp,01y (V). We are in the situation of the following lemma:

Lemma. Let G be an Aft(V)-equivariant Goo automorphism of the Gerstenhaber algebra
Tpoy (V) with the standard Gerstenhaber structure, whose first component is the identity map.
Then the G o, automorphism G is the identity.

Proof. As above, we can take D = logG, then D is an Aff(V)-invariant G, derivation of
Tpoly (V). By Theorem 2.4, this G », derivation is 0. Therefore, G = exp D is the identity. O

The theorem is now proven mod out the Key-Lemma which we prove in Section 6.
5. The homotopical category of dg algebras over a Koszul operad

Here we give, following [18], a construction of the homotopy category, appropriate for our
needs in the next sections of this paper. Our emphasis here is how the homotopy relation reflects
in the gauge equivalence condition for deformation quantization. We restrict ourselves with the
case of the operad of Lie algebras because this is the only case we will use. The constructions
for general Koszul operad are analogous. Here we use the construction of Quillen homotopical
category given in [18]. In a sense, it is “the right cylinder homotopy relation”. Recall here the
definition.

5.1. The homotopy relation from [18]

Let g1, g» be two dg Lie algebras. Then there is a dg Lie algebra k(g;, g») which is pro-
nilpotent and such that the solutions of the Maurer—Cartan equation in k(gy, g2)' are exactly the
Lo morphisms from g; to gs. Then the zero degree component k(g g2)° acts on the Maurer—
Cartan solutions, as usual in deformation theory (the dg Lie algebra k(gi, g2) is pro-nilpotent),
and this action gives a homotopy relation. The dg Lie algebra k(g;, g») is constructed as follows.
As a dg vector space, it is

k(g1. g2) =Hom(C (g1, C), g2). (54)

Here C (g1, C) is the chain complex of the dg Lie algebra g, it is naturally a counital dg coalge-
bra, and C (g, C) is the kernel of the counit map. Define now a Lie bracket on k(gi, g2). Let
01, 02 € k(g1, g2) be two elements. Their bracket [61, 6>] is defined (up to a sign) as

01 Q0. N
Ci(g1.C) 2> Cy(g. O 222, g g g, Ll ¢, (55)

where A is the coproduct in C4(g;, C) and [,] is the Lie bracket in g,. It follows from the
cocommutativity of A that in this way we get a Lie algebra. An element F of degree 1 ink(g1, g2)
is a collection of maps
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Fi:g1 — g2,
Fy: A%(g1) > gal—11,
F3: A% (g1) — ga[ 21,
(56)

and the Maurer—Cartan equation dy F + %[F , Flx = 0 is the same that the collection {F;} are
the Taylor components of an Ly, map which we denote also by F. Note that the differential
in k(g1, g2) comes from 3 differentials: the both inner differentials in g; and g», and from the
chain differential in Cy (g1, C). Now the solutions of the Maurer—Cartan equation form a quadric
in g!, and for any pro-nilpotent dg Lie algebra g, the component g° acts on (the pro-nilpotent
completion of) this quadric by vector fields. Namely, each X € g° defines a vector field

dF
= —dX+[X. F]. (57)

It can be directly checked that this vector field indeed preserves the quadric. In our case, this
vector field can be exponentiated to an action on the pro-nilpotent completion on k. This action
gives our homotopy relation on L, morphisms.

5.2. Application to deformation quantization

Let g1, g be two dg Lie algebras, and let F!, F2:g; — g, be two homotopic in the sense of
Section 2.4.1 L, morphisms. Let & be a solution of the Maurer—Cartan equation in g;. Any L
morphism F : g; — g2 gives a solution Fo of the Maurer—Cartan equation in g, by the formula

1 1
Fie=Fi@+5Fra) + cFlarana) + (58)

(suppose that this infinite sum makes sense). Then in our situation we have two solutions )«
and ffa of the Maurer—Cartan equation in g2.

Lemma. Suppose that all infinite sums (exponents) we need make sense in our situation. Suppose
two Lo morphisms F1,F>:g1 — g2 are homotopic in the sense of Section 2.4.1, and suppose
that o is a solution of the Maurer—Cartan equation in g1. Then the two solutions .7{:01 and ffoz
of the Maurer—Cartan equation in gy are gauge equivalent.

Proof. Let X € k(gi, g2)° be the generator of the homotopy between F'! and F2. Define
1 1
X*oer(a)+5X(a/\a)~|—gX((x/\a/\a)+~--. 59)

Then X,a € (gz)o. Consider the vector field on (gz)l:

d
d—f = —d(X.a) + [X.a, g]. (60)

Then the exponent of this vector field maps F! * o to F2a. O
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6. The main computation
Here we prove the Key-Lemma 4.4 which only remains to conclude the proof of Theorem 4.4.

6.1.  We are going to construct “the Hochschild-Kostant-Rosenberg map” ¢Sty : Tyory (V) —
Hoch’ (cat(A, B, K)) where A = S(V*), B= A(V), and K is the Koszul complex of S(V*). At
the final step of the computation, we normalize the Koszul differential by dim V, as follows:

1 dimV 9
dRoszul = Imv > Yage (61)
a=1

However, in the computation below we suppose that the Koszul complex is not normalized.
The normalized Koszul complex defines the equivalent Keller’s category, so it is irrelevant. Our
Hochschild-Kostant-Rosenberg map ¢fa, will make the following diagram commutative (up to

a sign) on the cohomology:

Hoch® (A)
fikr .
Tyoly (V) ~ Hoch® (cat(A, B, K)). (62)
Hoch® (B)

We did not specify the sign, but it does not make any problem. In the computation below we
use the graphical representation of the cochains in Hom(A(V)®" @ K ® S(V*), K). The reader
familiar with the Kontsevich’s paper [12] will immediately understand our graphical representa-
tion. (But for other readers, we define our cochains by the explicit formulas, see (63)—(65) below.)
In our graphical cochains, we consider a circle with two fixed points, 0 and co. The arguments
from A(V) are placed on the left half of the circle, and the arguments from S(V*) are placed
on the right half. Any arrow is the operator Zg‘flv agu . % In our convention, which coincides
with the one in [12], the start-point of any arrow “differentiates” the odd arguments, while the
end-point differentiates the even arguments. We have one point inside the disc bounded by the
circle, where we place our polyvector field . We use the notation y = 5 ® y4 (where yS and
y# are the even and the odd coordinates of y) and suppose that y is homogeneous in the both
x;’s and &;’s coordinates. After this general remark, let us start.

6.2. Some graph-complex

The problem of a construction of quasi-isomorphism @§fyy : Tpoty (V) — Hoch® (cat) is rather
non-trivial. Indeed, the usual Hochschild—Kostant—Rosenberg cochains <pf,KR(y) € Hoch(S(V*))
and go,/}KR(y) € Hoch® (A(V)) are not cocycles when considered as cochains in Hoch® (cat). In-
deed, their boundaries have components which belong in Hom(K® ®
S(v*)®m K*) and in Hom(A(V)®™ ® K*, K"), correspondingly. Our map ¢§f, contains as
summand the both cochains wf,KR and (pg}KR, and many other summands. These other summands
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infinity infinity infinity
0 0 0
infinity 0
1:“1111m2 le m, G m{m3z

Fig. 2. The cochains F, ml o> Fr(r)ll,mr and Gy m, formy =3,my =4.

are the cochains associated with the graphs F& o and F ¢, shown in Fig. 2. It is instruc-
tive to formulate the following proposition in a bit more generality than we really need, for
all graphs F, m1 m, and le _— Denote the corresponding maps @ in Hom(A(V)®" @ K* ®
S(V*)®m2 K*) by F mmy, (V) F, m1 mo V), and Gy m, (), where y € Tyory (V). Suppose that
y is homogeneous in both x;’s and &’s. As maps Tpoly (V) — Hoch’ (cat) the maps F, m Ly and
F. m, have degree 0, and the map G m, has degree 1.

We have the following explicit formulas for these maps:

11 dimV dimV
Gy (V)R = —— 3 >
’ i]yeees lml—l Jis- ]m2—1
£ k(A A0& (M) A+ A&, Oomy) A (08, 0+ 008, (v")))
X (0xiy 0+ 00xi, ) (¥®) - 0xj, (1) ... 0%, (finy) (63)
dimV dimV
Foyny (1)) = —(mz +D > Z
i1sees ’ml:l a,ji,. v/mz
+ 0Xa (k) (A A 9, 1) A+ A 0&;,, (i) A (082 0 0Ej, 0+ 0 0E;,,, (™))
X (0xiy 0+ 00x;, )(¥®) - 0xj, (1) ... 0%, (finy) (64)
1 1 dimV dimV
Fo, mz(V)()») mmz Z y ;
b,iy,..., lml— 1,

+ k(08 (2 A 0 1) A+ A D, (my) A (38, 0008, (v7))))

X (0Xp 0 9xjy 0+ 0 3x;, )(¥®) - xj, (f1) ... 9%y, (fimy)- (65)
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Here, as usual, we denote by {x;} some basis in V*, and by {&;} the dual basis in V[—1]. Let y be
a polynomial polyvector field in Tpo1y(V), homogeneous in both x’s and &’s. Denote degg y and
deg , v the corresponding homogeneity degrees. (We have the Lie degree degy =deg, y — 1.)
Denote dyoch and dgoszul the Hochschild and Koszul components of the differential acting on
Hoch® (A(V), K", S(V*)) C Hoch’ (cat).

Proposition. Suppose fInr(v) < degg y and f Star(v) < deg, y for each separate graph I' in
the claims below, where v is the only vertex of the first type. Suppose that F,ggn(y) etc. means
the sum over all orderings of the sets Star(v) and In(v) (see (10) and (11) in the definition of
an admissible graph), that is, over all admissible graphs which are the same geometrically. (The
sum should be taken with the appropriate signs depending naturally on the orderings.) Then we
have:

(i) dHoch Fo () = £G 1 (¥),

(i) doszu1 ), (v)=+dimV - (deg,(y) —n) - G (y),
(iii) dtoch F30, (V) = £Gmi1.n(¥),
(iv) dKoszuani?n (y)=+dimV . (degs(y) —m) - Gpn(y).

Proof. The proof of the proposition is just a straightforward computation. For convenience of
the reader, we present it here in all details. We give the proofs of (i) and (ii); the proofs of
the second two statements are analogous. Prove (i). It would be instructive for the reader to
recall before the proof the proof that the classical Hochschild—Kostant—Rosenberg (pg,KR(y) isa
Hochschild cocycle in Hoch' (S(V*)) for any y € Thoy (V). It goes as follows: we associate with
a k-polyvector field y the cochain (pgKR(y) € Hom(S(V*)®k, S(V*)) defined as

oL@ fr)

dimV
= > dy(dxi, A Adxi)Oxi, (1) - 9%, (fi)- (66)
ik =1
The only non-zero terms may appear when all iy, .. ., i are different, and the sign = is the sign of

the permutation (1,2, ..., k) — (i1, i2, ..., ix). The proof that <p‘£,KR(y) is a Hochschild cocycle
just uses the Leibniz formula dx,(f; fi+1) = 0x,(fi) fi+1 + fi9x,(fi+1) and the Hochschild
coboundary formula
dioch(P)([1 Q@ ® fir) = [i¥ (2 L ® - ® fir1) — ¥ (1 )R &)
+Y([i®(HLf)® ) F -
+ (D@ ® f) fert (67)

We see that all the terms will be mutually canceled. Now let us see when this kind of phenomenon
may be destroyed in the coboundary of F,(”) (). Itis clear that any problem place is the marked
point O at the boundary of the circle. Consider the sum of two “problematic” summands. This is

£F) )8 @k ® (1K) ® fu ® - ® f1)
FF), DM@ @A @ ((K) fug1) ® fn® - ® f1). (68)
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Here we use the notation A(k) and (k) f for the left action of A(V) and for the right action of
S(V*), correspondingly. These two summands give from (64)

+0x4 (Amt1(k)) = Fhmt1(9x4k) (69)
which clearly is canceled with (a part of) the previous summand,
Fon @) (1 ® - ® Condns1) @k ® f ® - ® f1). (70)

So the first summand in (68) does not contribute to the answer. Contrary, the second summand
gives the term

0xq(k - fur1) = 0xq(k) - fru1 + k- 0xa(fry1). (71)

The first summand in (71) is canceled with the one of two summands in F,(,),yn )M - QA ®
k® (fat1- fn) ®---® f1). The second summand in (71) is not canceled with an other summand,
and it gives the only term which contributes to the answer. This term clearly gives G, »+1(y).
Prove (ii). We need to compute

dimV dimV

> D ddkosa{9xa(K) (A A 9&; (A1) A+ A 0Ei, Oomy)

A (08a00&j, 0 0 9Ej,, (y*)))(@xi, 0+ 0 9%i,,, )(ys) -0xj, (f1) ... 0xj,, (fmn)}
dimV dimV

F Z Y 0% kosatk) (A A 0E (M) A+ A BE;, Oomy)

~~~~~ —la Jise ]mz—1

A (aga 0 3Ej, 0+ 0 0E;,, (v*)))(@xiy 0+ 0 0x;, )(¥°) - 0xj, (f1) ... 0%, (finy)- (72)

We have:
dimV
dkoszulk = Z xpa";:p~ (73)
p=1
Then (72) is equal to
dimV dimV
> Y Expdgp{0xa() (M A 0E, () A+ A D, Oumy)
i]yeens i,,,1=1 aajlv-~-ajm2:1
A (084 0 0Ej, 0+ 0 0, (y™)))(Oxiy 0+ 0 0xi, )(y®) - 0xj, (f1) .. 9%, (fomy) ]
dimV dimV

F Z D H0xa(xpdEpk) (A A 9 (M) A - A 0E, Oomy)

,,,,, —1 a,ji,- sz—l

A (asal 0 0Ej, 0-+-00&j, (v™*)))(@xiy 0+ 0 0x;,, )(r5) - axj, (f1) ... 3%, (fmy)  (74)
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where the summation over p is assumed. Clearly (74) is A 4+ B where

dimV dimV
A= Z Z +Xp [agp{axa(k)(x A& ) A+ A 0, (hmy)
vvvv —1 a, ji,- /mz—1
A (082 0 0Ej, 0 -+ 0 0, (v™))) (0xi, 0 -+ 0 0xi, )(¥®) - 0xj, (f1) .. 05, (fony) }
dimV dimV

F Z D H(050XaK) (A A 0E (A1) A+ A DE, (o)

,,,,, my=1a,ji,.... jmy=1

A (aga 0 98j, 0+ 008j,,, (v))) (@xiy 0+ 0 i, ) ()

. ale (f1) ... 3ijz (fmz)j| (75)

and

dimV dimV
B=%dimV ) D @K (M A& (M) A A D, Oomy)
e imlzl avjls“ﬂjl}lz:l
A (353 0d&j0---0 3“3ij ()/A)))(axil 0---0 3)Ciml )()/S)
20X (f1) - 0xj,, (fimy)- (76)
In the last equation the symbol §,, appears when we take the commutator [0x,, x ] in the second

summand of (74), which gives the factor dim V' and summation only over a in B. We continue
for A and B separately. Let us start with B. We have:

B=FdimV ) Z +K(h A0 A1) A+ A0, (my)

A (§ada 008, 0088, (™)) @iy 0+ 083, ) (™) - 9xj, (f1) - 3x,, (fino)
dimV dimV
=FdimV - (deg,(y) —m2) Y > KA &, () A ADE, Oomy)

ioeensin =1 @1 e iy =1
A(0&j 0008, (¥™)))@xiy 0+ 03x;, )y®) - 9x), (f1) ... 9%y, (fimy)
=+dimV - (deg, () —m2) - Gpn(y). (77
Now turn back to the computation of A. Clearly (up to the sign, but the signs always work for us)

that A = 0. Indeed, schematically the formula (75) for A looks like 0§, (k(AAT)) — (3&, (k) (A A
T) for some T € A(V). If we define k(1) = k(A A T) we need to compute

(95, (k") (1) — (88, (K)) (A A T). (78)
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But (0§, &HHn) = k’(Ep AX)=k(Ep AXLAT). Now we see that the two summands in (78) are
equal.

We have proved the statements (i) and (ii) of the proposition. The proofs of (iii) and (iv) are
analogous. O

6.3. Construction of the Hochschild—Kostant—Rosenberg map (plc_f}t(R

Now we have everything we need to construct the map wﬁf}}R : Tyoty (V) — Hoch’ (cat). Of
course, it would be better to specify the signs in the proposition above; however, we will see
that the construction below does not depend seriously on these signs. Suppose that degg y = m,
deg, y = n. Start with (ZgKR(y) € Hoch® (S(V*)), which is by definition the Hochschild-
Kostant—Rosenberg cochain without division by the n!. It total differential in Hoch'(cat) is
dtm(Zg,KR(y) = (£)Go,n (y). From now on, we will suppose that all the signs in proposition above
are “+4”, if some of them are “—”, the formula will be the same up to some signs. So suppose
that dtmaflKR(y) = Go,»(y) with sign +. We know from statement (i) of the proposition that
dHocth,n_1 () = Go,n(y), the same cochain. Therefore, dHoch(a}?[KR(V) — an_l (y)) =0.But
then JflKR(y) — Fg »—1(¥) has a non-trivial Koszul differential which can be found by propo-
sition (ii). We have: dKoszul(a}-SIKR(V) - an_l(y)) = dKoszul(F(()),n_l(V)) =dimV - Gop-1(y)-
Now we want to kill this coboundary by the Hochschild differential. We have: dyocp (dimV -
an_z(y)) =dimV - Gg ,—1(y). Continuing in this way, we find that (we omit y at each term):

diot(Phixg — Fop_y +dimV - F§, o — -+ -+ (=D)"(n — DIdim" ' V - F)
= (—1)"n!dim" VG . (79)

But we can start also with Q)’ﬁKR(y), and finally get also Go ¢ with some multiplicity. More
precisely, we have:

diod(@hxr — F2 10 +dimV - F° 5 o — -+ (=)™ (m — D!dim" 'V - FY)
= (=1)"m!dim™ VGy. (80)

We finally set:

cat _(_ )Vl

n
g, = Toxr + Z(—l)i(i — 1)!dim‘ ™! Van_i)

i=1

1
n!dim” V(

—(=D" Phxg + Y (=17 (j = Didim/ ' VF® ,,O). 1)

m!dim”™ V( ‘
j=l1

It is a cocycle in the Hochschild cohomological complex Hoch® (cat):

diopfikr () =0 (82)

for any y € Tpoly(V). We can prove the following
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Theorem. The map goflalt(R : Tpoly(V) — Hoch (cat) is a quasi-isomorphism of complexes. When
we use the normalized Koszul differential instead of the usual one (so, it has the same effect as
to set dim V =1 in the formula above), the map (pff}t{R makes the diagram (62) commutative (up
to a non-essential sign) on the level of cohomology.

Proof. The second statement is clear. The first one (that ¢, is a quasi-isomorphism of com-
plexes) follows from the second one and from Theorem 4.2 which says that the maps p4 and pp

are quasi-isomorphisms in our case. O

Key-Lemma 4.4 is proven. 0O
Theorem 4.4 is proven. O

7. Proof of the Main Theorem
First of all, we formulate the Main Theorem exactly in the form we will prove it here.
7.1. The final formulation of the Main Theorem

Theorem (Main Theorem, final form). Suppose t: G~ — B is a quasi-isomorphism of op-
erads, and let Uy = X(t)y : Tpoy (V) — Hoch" (S(V*)) be the corresponding Lo, map, defined
uniquely up to homotopy (see Section 3). Let o be a quadratic Poisson bivector on V, and let
D(«) be the corresponding quadratic Poisson bivector on V*[1]. Denote by S(V*), and A(V)y,
the corresponding deformation quantizations of S(V*) ® C[a] and A(V) ® C[#a] given by

1
f*g=f~g+h'U1(0l)(f®g)+Ehz-uz(a/\a)(f®g)+~w (83)

Then the algebras S(V*)y and A(V)y are graded (where degh = 0, degx; = 1 for all i) and
quadratic. Also, they are Koszul as algebras over the discrete valuation ring C[h], see Section 1.
Moreover, they are Koszul dual to each other.

We prove the theorem throughout this section.

7.2. An elementary lemma

We start with the following simple statement:

Lemma.

(1) Suppose Kp, is a free C[h]-module, which is also a left (or right) C[i]-linear module over
an algebra Ap, which is supposed to be also free as C[h]-module. Then if the specialization
Kn—o is a free module over the specialization Ap—o, Ky is a free left (right) Ap-module;

(2) suppose K, is a complex of free C[h]-modules (degh = 0) with C[h]-linear differential.

Suppose that the i-th cohomology (for some i) of the specialization K;_ is zero. Then the
i-th cohomology of K is also zero.
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Proof. The both statements are standard; let us recall the proofs for convenience of the reader.
(1): Suppose the contrary, then for some k; (%) € K; and some a; (%) € A one has Zi a;(h) -
ki (h) = 0. Let N be the minimal power of # in the equation. Then we can divide the equation over
AN and the equation still holds, because the both A; and K are free C[A]-modules. Then we
reduce over /i and get a non-trivial linear equation for the As—¢-module K5—¢ which contradicts
to the assumption. (2): Let k; (7) be an i-cocycle in K ,;, we should prove that it is a coboundary.

Suppose # is the minimal power of # in k; (%), then we divide over A"V. We get again a cocycle,
because the differential is C[#])-linear and K is a free C[4]-module. Denote this new cocycle
again by k; (7). Then its zero degree in /i term is a cocycle in the reduced complex K;—o and
we can kill it by some coboundary. Then subtract and divide over minimal power of %, and so
on. O

7.3. The algebras S(V*)p and A(V)y are Koszul

We start to prove the theorem. Prove firstly that the algebras S(V*); and A(V)y are graded
quadratic and Koszul. The first statement is proven analogously to the speculation in Section 0.2.
The difference that here in a universal deformation quantization we may have more general
graphs than in the Kontsevich’s quantization, namely non-connected graphs and graphs with
simple loops. But it does not change the proof. Let us prove that these algebras are Koszul. Con-
sider the case of S(V*)y, the proof for A(V)y is analogous. By Lemma 1.2.5, it is necessary to
prove that the Koszul complex K = (S(V*)h ®c[a) Homeyp] (S(VH', C[h], dKOSZul) is acyclic
in all degrees except degree 0. The complex K is clearly a complex of free C[#i]-modules with
a C[A]-linear differential. We are in a situation of Lemma 7.2(2), because the specialization at
h = 0 gives clearly the Koszul complex for the usual algebra S(V*) which is known to be acyclic.
We are done.

7.4. We continue to prove the Main Theorem

Now we prove the only non-trivial part of the theorem, that the algebras S(V*); and
A(V)y are Koszul dual. Consider the diagram (51). It is a diagram of G, quasi-isomorphisms
which is known to be homotopically commutative, see Theorem 4.4. Then we can construct
a G quasi-isomorphism F : Tpoy (V) — Hoch’ (cat(A, B, K)) dividing the diagram into two
commutative triangles. Restrict F to its Lo, part. Then we get an Lo, quasi-isomorphism
F : Tpoty(V) :Hoch’ (cat(A, B, K)). Here A = S(V*) ® C[h], B = A(V) ® C[a], etc. Then this
L map F attaches to the Maurer—Cartan solution o € Tp,01y (V) (our quadratic Poisson bivector
field) a solution of the Maurer—Cartan equation in Hoch® (cat(A, B, K)), by the formula

.7:*(01)=h}'1(a)+%h2f2(oz/\a)+m. (84)

What a solution of the Maurer—Cartan equation in Hoch® (cat(A, B, K)) means in more direct
terms? It consists from the following data:

(i) A deformation quantization Ay of the algebra A = S(V*) ® C[i];
(ii) a deformation quantization By of the algebra B = A(V) ® C[A];
(iii) a deformed differential on the Koszul complex K (S(V*)) ® C[#], we denote the deformed
complex by K ;
(iv) astructure of a By-Ajp-bimodule on K, .
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The crucial point is the following lemma:

Lemma. The algebra Ay, is gauge equivalent (and therefore isomorphic) to the algebra S(V*)y,
from Section 7.1, and the algebra By, is gauge equivalent to A(V)p.

Proof. It follows from the commutativity of the diagram (51), and from Lemma 5.2. 0O
7.5. We finish to prove the Main Theorem

From Lemma 7.4, it is enough to prove that the quadratic graded algebras A; and Bj are
Koszul dual to each other. For this (because the both algebras are Koszul) it is enough to prove
that By = A%. Let us prove it. The complex Kj is a complex of Bj-Aj modules. As complex
of Ap-modules, it is free by Lemma 7.2(1). By Lemma 7.2(2), it is a free Aj-resolution of the
module C[[#i]. Therefore, we can use K, for the computation of the Koszul dual algebra:

(Ap)' = RHomyod 4, (Kn, Kn). (85)

On the other hand, from the bimodule structure (see (iv) in the list in Section 7.4), we have an
algebra homomorphism

B — RHomyod. 4, (Kp, Kp). (86)

We only need to prove that it is an isomorphism. It again follows from the facts that the both
sides are free C[A]-modules (for the 1.h.s. it is clear, for the r.h.s. it follows from (85)), and that
the specialization of (86) at i = 0 is an isomorphism.

Theorem 7.1 is proven.
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