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For any Biichi automaton f with n states which accepts the (o-regular) language Z’(F), an 
explicit construction is given for a Biichi automaton F with 2n states which, when F is deter- 
ministic, accepts exactly the complementary language Y(f)‘. It follows that the nonemptiness 
of complement problem for deterministic Biichi automata (i.e., whether Y(f)‘= @) is 
solvable in polynomial time. The best previously known construction for complementing a 
deterministic Btichi automaton with n states has O(24”z) states; for nondeterministic r, deter- 
mining whether Y(T)’ = 0, is known to be PSPACE-complete. Interest in deterministic 
B&hi automata arises from the suitability of deterministic automata in general to describe 
properties of physical systems; such properties have been found to be more naturally 
expressible by deterministic automata than by nondeterministic automata. However, if r is 
nondeterministic, then p provides a “poor man’s” approximate inverse to r in the following 
sense: Y(T)’ c Z(p), and as nondeterministic branches of F are removed, the two languages 
become closer. Hence, for example, given two nondeterministic Biichi automata ,4 and f, one 
may test for containment of their associated languages through use of the corollary that 
Y(n * r) = 0 3 Y(n) c Y(f) (where A * r is one of the standard constructions satisfying 
Y(n * p) = Y(n) n U(p)). The “error term” Y = P’(r)\Y(f)’ may be determined exactly, 
and whether Y = 0 may be determined in time O(e*), where e is the number of edges of f. 
0 1987 Academic Press, Inc 

1. INTRODUCTION 

An o-regular language 2 over a finite alphabet C is a subset ~3 c Z:” (CW is the 
set of (infinite) sequences in C) with the property that each element of $8 is “accep- 
ted” by some fixed finite state automaton, of which there are a number of varieties. 
There is an established theory surrounding this concept; a reasonable sample is 
provided by Choueka [CH74] and the references therein. There are many 
similarities and a few profound differences between the theory of w-regular 
languages and the more classical theory of ordinary regular languages [RS59]; this 
is clearly brought out in [Ch74]. One such difference is that while all the different 
varieties of classical finite state automata (which accept finite strings) are easily 
transformable into one another, the same is not true in the o-regular theory. 
Equivalence in the o-regular theory, when it exists, is often very difficult to prove, 
and in one notable case, it is absent (deterministic Bi.ichi automata do not generate 
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all the o-regular languages). Another difference is that while any regular language 
defined by a nondeterministic automaton with n states also may be defined by a 
deterministic automaton with m = 2” states via the “subset construction” [RS59, 
Definition 111, the analogous construction for o-regular languages does not work 
(see Example (3.12)(2)); the best known constructions [Ch74] have m > 22”. 

Nonetheless, the o-regular theory and its generalizations have some applications 
in areas unattainable to the finite theory, such a certain fields of logic [Bu62, Ra69, 
Ra69, Ra72], topology and game theory [Ra69], and modelling non-terminating 
physical systems such as computer communication protocols and their paradigms 
[CE82, MP81, AKS83, MW84, Ku85]. 

Apparently the first variety of finite state automaton used to define o-regular 
languages was defined by Biichi [Bu62]. Biichi automata in general, and the 
problem of their complementation in particular, have been studied in various con- 
texts [Bu62, McN66, Si70, BS73, Ch74, SVWSS]. One attraction of Biichi 
automata over other varieties of automata used to define w-regular languages is 
that Biichi automata are particularly easy to define and to relate to physical 
systems; in particular, temporal logic, as it is used to study physical systems, is 
most conveniently related to Bi.ichi automata [SVWSS]. 

Deterministic Btichi automata suffer from an already mentioned weakness (e.g., 
(a + b)*a”: the set of sequences in {a, b ) which are eventually constantly CI, is not 
definable by any deterministic Biichi automaton, as is easily proved). Nonetheless, 
in the context of physical systems, deterministic Biichi automata have been found to 
provide a more natural medium than the more general nondeterministic Biichi 
automata, for defining system requirements. The reason is that physical system 
requirements, when defined in a practical framework, have branch points which vir- 
tually always are related to observable conditions [CE82, MP8 1, AKS83, MW84, 
Ku85], and hence these conditional branches are deterministic. (For example, a 
system requirement might be stated as “send a message; if it gets lost, resend it; 
otherwise, send the next message” [deterministic branch]. The system requirement 
would probably never be stated as “send a message; then [nondeterministically] 
either resend it or send the next message”.) Consequently, it is more suitable to 
provide other deterministic structures [Ku86a] to compensate for the weakness of 
deterministic Btichi automata, rather than to force descriptions in less natural non- 
deterministic terms. 

The problem of complementation of automata arises in the context of proving 
containment of languages. If L&(r) and Y(n) are the o-regular languages defined 
by the automata r and /1 respectively, the usual technique used to determine 
whether 

is to determine whether the equivalent condition 

qn *F)=@ (1.2) 
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holds, where r is an automaton which defines the complementary language, 
9(r) = 9’(f)‘, and * is a product operator with the property V(A * B) = 
Y(A) n B(B). The problem of determining whether (1.1) holds arises, for example, 
when /i defines a physical system and r defines what is acceptable behavior in n 
[CE82, MW84, SVW86, Ku86a, b]. 

The best previously known construction for complementing a deterministic Biichi 
automaton is a construction [SVW86] which works generally for nondeterministic 
Btichi automata. Given a (nondeterministic) Biichi automaton r with n states, their 
construction provides a (nondeterministic) Biichi automaton p with 0(24”2) states 
such that 

Y(F) = z(r)‘. (1.3) 

Using this construction they prove that determining whether Y(r)‘= 0 is 
PSPACE-complete. 

In this paper, a construction is given for a (nondeterministic) Biichi automaton r 
with only 2n states, which has the property that when r is a deterministic Biichi 
automaton, (1.3) holds. Furthermore, when r is an arbitrary (nondeterministic) 
Biichi automaton, F satisfies 

9(r)’ c z(P), (1.4) 

in which case (1.2) + (1.1). A Biichi automaton A, with O(n*) states is constructed 
which accepts the “error” in (1.4). That is, Y(A.) = Y(~)\Y(r)‘. If (1.2) fails and 

Y(A*A,-)=@ (1.5) 

holds, then clearly (1.1) fails. Thus, when (1.2) holds or (1.2) fails and (1.5) holds, 
for r as constructed here, a proof of (1.1) for arbitrary (nondeterministic) ,4 and r, 
or a proof of its failure, is obtained which is “exponentially cheaper” than what 
would be afforded by the [SVWSS] construction, since their construction may 
require an exponential number of states whether or not n or r is deterministic. 
Furthermore, if one removes one or more nondeterministic branches of r, .9’(p) 
and Y(A,) become smaller in the lattice of subsets of ,Y” (and (1.3) holds when the 
last such branch is removed). One direct consequence of this construction is that 
the emptiness of the complement problem for deterministic Biichi automata is 
solvable in polynomial time. Although this in itself is not a deep result, it turns out 
to be very practical [Ku85; Ku86a, b]. 

A slight variation in the definition of Biichi automata is given here. A conven- 
tional Biichi automaton r, called here a state-recurring Biichi automaton, has 
associated with it a set R(T) of states of I’, the recurring states of r, which are used 
to define acceptance in I? a sequence in C” is accepted by r iff it follows a path in 
r which hits R(T) infiniteiy often. The variation defined here is called an edge- 
recurring Biichi automaton. It is the same as the other but that R(T) is a set of 
edges rather than states. The respective sets of languages defined by the two 
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varieties of automata are the same, in both the nondeterministic and deterministic 
cases, respectively. However, the new variety is expressively more efficient: it 
requires fewer states, fewer by as much as half, to define the same language. It is 
also more convenient to use, in that it provides a finer control in the definition of 
acceptance. 

The construction for p given here is given in terms of an edge-recurring f, and 
has 2n states and 2e + r edges, where r has n states and e edges, and r = card R(T). 
Starting from an edge-recurring automaton r with n states, the construction for P 
given in [SVWSS] would first construct an equivalent state-recurring automaton 
with 2n states. The resulting size of r then would be O(21hn2) states. 

2. PRELIMINARIES 

Conventionally, an automaton is viewed as a set of states and a successor 
relation which takes a “current” state and “current” input and returns a “next” state 
(for deterministic automata) or a set of “next” states, in general. I prefer to view an 
automaton as a directed graph whose vertices are the automaton states, and each 
edge of which is labelled with the set of inputs which enables that state transition. 
The labelled graph is defined in terms of its adjacency matrix. 

Let C, V be nonempty sets, let L = 2z (the set of subsets of C), and let M be a 
map 

M: V2+L 

(where V2 = V x V is the Cartesian product). Then M is said to be an L-matrix with 
state space V(M) = V. The elements of V(M) are said to be states or vertices of M. 
The element Qr EL is denoted by 0 and C E L is denoted by 1. (Thus, always 
(O,i}cL,andifcardZ=l thenL={O,l}.) 

An edge of an L-matrix M is an element e E V(M)2 for which M(e) # 0. (M(e) is 
the “label” on the edge e.) The set of edges of M is denoted by E(M). A cyc2e in M 
of length n is an n-tuple v = (Ok,..., u,)e V(M)” such that M(u,, ui+ ,) #O for all 
0 < i < n and M(u,, uI) # 0. The cycle v contains the edge (u, w) E E(M) if for some i, 
l,<i<n, ui=v, ui+l= w,orifu,=uandu,=w. 

A graph is a (0, 1 }-matrix. The graph of the L-matrix M is the graph &? with 
state space V(R) = V(M), defined by 

if M(e) #O, 
otherwise. 

Clearly, v E V(M)” is a cycle in M iff v is a cycle in I@. 
An L-matrix M is lockup-free if for all u E V(M), IJ,,,, ,,(,,,, M( u, w) = 1. An 

L-matrix M is deterministic if for all U, u, w E V(M), if u # w then 
M(u, u) n M(u, w) = 0. 
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Let C be a nonempty set. A state-recurring Biichi automaton (over the language C) 
is a triple r= (M,, Z(T), R(f)), where Mr, the transition matrix of f, is a lockup- 
free 2=-matrix, 0 #Z(T) c l/(r) (the initial states of r) and R(T) c V(r) (the 
recurring states of ZJ. An edge-recurring Bikhi automaton is defined in the same 
way, except that R(T) c E(T) (the recurring edges of r). Set V(r) = V(M,), 
E(T) = E(M,), and T(v, w) = M,(v, w) for u, w E V(T). 

A chain of a Biichi automaton r is a sequence (uO, u,,...) E V(r)” such that 
v,EZ(ZJ and (ui, vi+ 1) EE(ZJ for all i>O. The set of all chains of r is denoted by 
~‘(0. 

A chain v E G??(r) is an acceptance chain of r if v “hits” R(T) infinitely often (i.e., 
for infinitely many values of i, USE R(T) in the state-recurring case and 
(vi, vi+ 1) E R(T) in the edge-recurring case). The set of all acceptance chains of r is 
denoted by G&(T). 

Let r be a Biichi automaton over .J5’. The sequence (to, tl,...) E,Y (sometimes 
called an “input tape” to ZJ follows a chain v E 59(T) provided ti E f(ui, u, + 1) for all 
i > 0. The sequence t E 22’” is accepted by f if it follows an acceptance chain of f. Set 
,9(r) = (t E C” 1 t is accepted by r>, the language defined by ZY The complementary 
language 6p(r)‘=P\Y(T). 

A Biichi automaton r is deterministic if M, is. Following convention, an 
automaton is called nondeterministic in order to indicate that it may or may not be 
deterministic (so every automaton is nondeterministic). 

It is noa shown that state-recurring Biichi automata define the same set of 
languages as edge-recurring, while the latter are more economical in size of state 
space. 

Let r be an edge-recurring Biichi automaton over C. For each u E I/(T) with the 
property that there exist U, w E V(T) such that (u, u)ER(ZJ, (w, u)EE(ZJ but 
(w, v) 4 R(T), define a new symbol ti 4 V(T), and let f(r) be the set of symbols thus 
defined. Set V = V(T) u v’(r) and define the map 

by d(u) = u for u E: V(r), while 4(C) = u for CE v(r). Extend CJ~ to 4: V2 + V(r)2 by 
defining &v, w) = (4(v), d(w)). Define the 2=-matrix M with state space V(M) = V, 
as follows: let P= P(ZJu (UE V(T) 1 B is undefined} and set 

M(u, w )  = 

Td(u, w) if (d(v, W)E R(T) and w E p) or (b(v, w) # R(T) and w # p(r)), 
o otherwise. 

Define R = E(M) n 4 ~ ‘R(T) and define the edge-recurring Biichi automaton f over 
= bY 

f= (n/i, Z(f), R). 

(2.1) LEMMA. #E(f)=E(T). 

571/3s/i-5 
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Proof: If eEE(f) then p(e) #O so 0 #p(e) = T&e) and $(e)E E(f). If 
(u, w) E R(T) and ti is defined, then f(v, 6) = T(u, ~1) # 0 so (v, G) E E(P) and 
q4(v, I+) = (21, w); if (v, w) E E(T)\R(T) or (v, w)eR(T) and B is not defined, then 
f(v, w) = T(u, w) #O so (v, w) E E(P) and #(v, w) = (u, u.). 

(2.2) THEOREM. Let r be an edge-recurring Biichi automaton. Then 

(a) P=P; 
(b) ? is deterministic ifjf r is; 
(c) 9(f) = Z(T). 

Proof: (a) If p(r) = @ then 4 is the identity and M= M,. Hence, it suffices to 
show that t(f) = fzI. If (u, u) E R(f) then q5(u, v) E R(T) so by the definition of MC, 
either VE p(r) c 9 or VE V(T) and ii is undefined. In either case, for any WE V(T) 
with (w, v) E E(f), by the definition of Mp, if u E p(r) then d(w, v) E R(T) whence 
(w, v) E R(f). Hence, o^ is undefined and it follows that Q(f) = a. 

(b) For u, v, w E V(f) with v # w, if d(v) =4(w) then either f(u, v) =0 (if 
UE p(lcr) and d(u, v) $ R(T) or v $ p(r) and #(u, D)E R(T)) or i‘(u, w) = 0 (if 
f(u,v)#O). Since Z+(u, v)~P(u, w)#@*(T&u,u))n(Tfj(u, w))#(21, if r is 
deterministic then f is as well. On the other hand, if r(a, b) n T(a, c) # 0 for some 
a, 6, c E V(T) with b # c, then by Lemma (2.1) there exist u, u’, v, w E V(f) such that 
qS(u)=&u’)=a, d(v)= b, d(w)=c, v#w and (u, v), (u’, w)~E(f). Then by the 
definition of Mf, (u, w) E E(f) and f(u, v) n F(u, w) = r(a, 6) n r(a, c) # 0. Hence, 
if p is deterministic, so is r. 

(c) By Lemma (2.1) and the definition of p, if v E%‘=,,,(F) then d(v) ~%~,,,(r) 
(where #(v,, vi ,... ) = (b(vO), &v,),...)) and t E Z:” follows v iff t follows 4(v). Thus, 
Y(f) c Z(r). NOW, suppose v = ( uo, U, ,... ) E G&,(r). We inductively construct a 
chain w I%& such that $(w) =v. Define wO= v0 and suppose We,..., W,E V(f) 
have been defined, with &w,)=v, for 1 didn. If (u,, u,+,)~R(r) and d,,, is 
defined, define w, + , = 8,+ 1 ; otherwise define w,, + , = v,, + , It follows that 
w E %&(f) and by construction, t E C”’ follows w iff t follows v. Hence 
z(r) c Y(f). 

(2.3) COROLLARY. For any [deterministic] state-recurring automaton r, there 
exists a [deterministic] edge-recurring automaton r’ with V( r’) = V(T), 
E(f’) = E(T), and 9’(r) = B(T). For any [deterministic] edge-recurring automaton 
r, there exists a [deterministic] state-recurring automaton r’ such that 
card V(r’) Q 2 card V(T) and 9(Y) = 3’(r). Thus, for a given language 9, if A and 
r are the minimum-state [deterministic] edge-recurring and state-recurring 
automata, respectively, with Y(A) = 5?(r) = 8, then card V(A) d card V(T) d 2 
card V(A). 

Proof: If r is a state-recurring automaton then defining P to be r with R(T) 
replaced by R(I”) = {(v, w) E E(T) I w E R(T)}, gives an edge-recurring automaton 
r’ which accepts the same language. Conversely, given an edge-recurring 
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automaton r, define P to be the state-recurring automaton f with R(P) replaced 
by R(P) = {w E V(P) 1 (v, W) E R(f) for some u E V(f)). The inequalities follow 
from the construction of f: The fact that P(P) = 9(r) follows from 
Theorem (2.2~). 

(2.4) Remark. Experience suggests that edge-recurring automata provide a 
more natural medium for expressing certain types of properties than state-recurring 
automata [Ku86a, b]. It is not hard to find examples of languages for which the 
minimum-state edge-recurring automaton which defines the language has fewer 
states than the corresponding state-recurring automaton. For example, it is easy to 
show that (a+b)(a+b+)” requires a 3-state state-recurring automaton, but is 
defined by the 2-state edge-recurring automaton f in the following example. 

(2.5) EXAMPLE. Let r be the deterministic edge-recurring automaton over the 
alphabet Z= (a, /I} where, denoting the singleton sets a = {a}, b = {j?}, r is 
detinedby V(Z)=(l,2}, Z(r)={l}, R(T)={(1,2)} and 

M,= 
Then V(~)={1,2,~},1(~)={1}, R(f)={(l,2)) and 

, 

where the rows and columns are in the order 1,2,2. It is easily seen that Y(T) 
(=Y(f’))=(a+b)(a+b+)“. 

3. CONSTRUCTION OF F 

Let r be an edge-recurring Biichi automaton with n states, over an alphabet Z. A 
(nondeterministic) Biichi automaton p over C will be constructed, with 2n states, 
having the property 

for which equality holds when f is deterministic. 
Define the 2Z-matrix M as follows: V(M) is a “copy” of Y(T), say 

4: V(M) ---f V(T) is a bijection (with V(M) n V(f) = fzr), and for 4: V(M)* + V(r)* 
by 4~ w) = (d(u), 4(w)), let 

jqe) = Mi-he) if d(e) $ R(r) 
0 otherwise. 
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Find (in time linear in card E(M)) a maximal spanning forest F of the graph fi 
[AHU74]. Relative to F, let R be the set of back-edges of ii-i. 

(3.1) LEMMA. Every cycle in A4 contains an edge in R. 

Proof: Define the matrix M’ by V(M) = V(M), M’(e) = M(e) if e 4 R, M’(e) = 0 
otherwise. It is enough to show that there are no cycles in M’. Indeed, by the 
definition of R, F is also a maximal spanning forest of M’. Thus, as is well known 
[AHU74], if M’ contains a cycle, then it contains a cycle with a back-edge of I@‘, 
relative to F, of which there are none. 

The matrix M will be “spliced” to M,, forming a matrix N, as follows. Set 

V’ = V(T) u V(M), 

let $ be a symbol distinct from the elements of v’ and set V= v’ u {S}. Define the 
2=-matrix h with V(N) = V and 

i WV, w) if (u, w) E E(M); 

if (v, w)E E(f); 

if v E V(Z), and w E V(M) and (v, 4(w)) E R(T); I 
z-(v, WI 
z-(v, 4(w)) 

N(v, w) = ' 
2 I u WV, u) 

UE V(M) 

c 

,O 

ifuE(M)andw=$; 

ifv=w=$; 

otherwise. 

(3.2) LEMMA. N is lockup-free. 

Proof Let DE V(N). If VE V(Z) then UntVCNJ N(v, w)xU,.~~,(~) N(v, w)=l. 
Given VE V(M) it follows that U,, YCNj N(v, w) XI (uII,t ,,,M) M(v, w))u N(v, S) = 1. 
Ifv=$then U,tY(N)N(v,~)3N($,$)=1. 

Define Z= Z(Z) u d- ‘Z(Z) and let r be the edge-recurring Biichi automaton over 
C defined by 

$= (N, Z, R). 

Note. p is not a unique function of Z, as R is dependent upon the choice of F. 
At the expense of increasing the size of R we could define R = E(M), with the result 
that i; would then be uniquely determined by Z. 

(3.3) THEOREM. Y(r) 3 Y(r)‘, while U(r) = Y(T)’ when r is deterministic. 

Proof: Let t GE”‘. If t E Y(Z) then t follows a chain of Z which hits some 
element of R(f) infinitely often. If Z’ is deterministic, then Mr is deterministic 
except for transitions from M, to M; since R(T) is missing from E(M), any chain of 
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p which t follows must stay in Mr. By construction, no such chain can reach R(p), 
so t # Y(p). Now suppose t E Z(f)‘. Then any chain of f which t follows must 
eventually never again hit any element of R(T). Let v E V(T) be such a chain (there 
always exists at least 1 ), and let 

n=sup(i>O 1 (Vi&I, UJER(T)}. 

Then -cc<:n<.Ifn= -~,letv’~%(~)bethecopyofvinM.(Suchav’exists 
because in this case v avoids R(T) altogether.) Since V(f) is finite, v must follow a 
cycle in M infinitely often, and by Lemma (3.1) it follows that t E q(r). If - 00 < n 
then define v’ E W(r) to be that chain which stays in M, until u, _, , at which point 
it crosses over into M (and continues there). The previous argument then applies 
and in this case too, t E 9(p). 

(3.4) COROLLARY. Let I be a Biichi automaton. There is an algorithm whose run- 
ning time is polynomial in the number of states of I which can sometimes prove that 
Y(I)’ = 0. In particular, when I is deterministic, the algorithm always determines 
whether or not Z(I)‘= 0. 

Proof. Convert r to an edge-recurring automaton, using (2.2). Use depth-first 
search to determine whether there is a strongly connected component of the graph 
@r which contains both endpoints of an edge in R(r) and is reachable from I(F). 
Clearly Y(F) = fzI iff no such strongly connected component exists. Using Tarjan’s 
algorithm [AHU74], the strongly connected components of G may be found in 
time linear in the number m of edges of Mp. By construction, m = 0(n*), where 
n =card V(T). By Theorem (3.3) 9(F)= 0 *.9(r)‘= 0 and when r is deter- 
ministic, Y(r) = 0 0 P(r)’ = 0. 

Let us now determine the “error term” 9(r)\.P(r)‘. For any Biichi automaton 
r, say that two chains, v, w E %(I) are related, denoted v x w, if for all i 2 0, 

r(“i, Vi+ 1) n r(wj, Wi+ 1) #O. (3.5) 

(3.6) PROPOSITION. Let I be any edge-recurring Biichi automaton. Then 
Lz(F)==!z(I-)' iffvEqr), w E %ae,,,( r), v 25 w * v E %&,( I-). 

Proof Extend 4: I’(M) + V(T) to 4: %‘(F) -V(T) by defining &u,, ul,...)= 
(&vd, 4(v,),...), where b(v) = u f or v E V(T). The key to the proof is the observation 
that by construction of i=, qK&,,,(~) =%?(r)\%&,(r). Thus, Y(r) # P(r)’ o 
9(r)’ P- 9(r) o there exist t E Z”’ and chains v E %&Jr), w E %?(r)\%&(r) such 
that t follows both v and w o by Definition (3.5), there exist chains v E gag,,(r), 
w E %‘(r)\%&Jf) such that v x w. 

The criterion given by (3.6) while sometimes directly useful (e.g., Exam- 
ple (3.12)(2)), is nonconstructive. A polynomial time algorithm is next derived from 
(3.6) to determine whether or not the criterion holds. In the course of doing this, an 
edge-recurring automaton A, is constructed with card V(A,) = O(n*), for 
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n= card V(T), which satisfies LY(d,) = 5?(F)\.Y(Z-)‘. Whether or not .=!?(A,-) = @ 
may be determined in time O(n4). 

Define the 2=-matrix M as follows: V(M) = V(T) u ($) ($ $ V(f)), 

qv, w) if (4 w) E E(O\NO, 

I,) uo, u) ifvE V(T), w=$, 
M(v, w) = (v,u) E R(r) 

z if v = w = $, 

0 otherwise. 

Define the “tensor product” M,OM to be the 2=-matrix with V(M,@ M) = 
V(M,) x V(M) defined by 

(M,QM)((v, w), (v’, w’))=Mr(v, o’)nM(w, w’). 

(3.7) LEMMA. M,@ M is lockup-free. 

ProoJ By definition M, is lockup-free, while by construction M is lockup-free. 
More generally, the tensor product of lockup-free matrices is lockup-free. 
Specifically, for any v E V(M,), w E V(M), we have 

0 M,(v, v’) = 1 

and 

u M(w, w’) = 1 

so 

(3.8) LEMMA. If Mr is deterministic, so is M,Q M. 

Proof: If M, is deterministic, then so is M by construction. More generally, the 
tensor product of deterministic matrices is deterministic, as is easily seen from the 
definitions. 

Define Z = I(IJ2 c V(Mr @ M) and set 

R= {((v, w), (v’, w’l)~E(Mj-@M) I (v’, v’)~R(f), w’#$}. 

Define the edge-recurring automaton A,- = (M,@ M, Z, R). Clearly, card V(A,) = 
n(n + 1) (n = card V(I)), and this may be reduced by discarding states not reachable 
from Z( A,). 
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(3.9) THEOREM. Let r be an edge-recurring B&hi automaton. Then 
~(~)\A?(r)’ = Y(A,). 

Proof. Let t E P’(d r). Then there exists a chain u E c&,,,(d r) such that t follows 
u. Say u= ((u,, w,), (u,, wl) ,... ), where for i>O, (vi, W~)E V(T) x V(M)= V(A.). 
Then for i > 0, uio r(ui, ui+ 1) n M(w,, wi+ ,) so surely t follows 
w = (wO, w1 ,...) E V(r). But, by construction of M, w $ q&r) and thus by construc- 
tion of p, t E Y(p). On other hand, t also follows v = (u,, u, ,...) E %&(f), and thus 
t $ Y(r)‘. Thus g( d,) c Y( F)\Y( r)‘. Now suppose t E ~Z’(r)\g(r)‘. By (3.6) 
there exist chains v E G&,(f), w E %‘(ZJ\%a,,,(T) such that t, E T(u,, vi+ 1) n 
T(w;, ~~+~)for i>O. It follows that u= ((uO, wO), (u,, w~),...)E%~,,(~~) and t follows 
u. Thus, t E P(d,), and the reverse containment is obtained, completing the proof. 

(3.10) COROLLARY. There is an algorithm which, given an edge-recurring Biichi 
automaton r with n edges, determines in time O(n’) whether or not 2’(r)‘= Z(F). 

Proof. Find the strongly connected components of A, which are reachable from 
Z(A.), using Tarjan’s algorithm [AHU74]. By (3.9), P(Z)’ = 2(?1) iff Y(d,) = 0 
iff no such strongly connected component contains both vertices of an edge of 
R(T,). Since vard E(A,) < n*, and Tarjan’s algorithm is linear in E(A,), the time 
bound follows. 

Note that if r is deterministic then (3.8) shows that Ar is deterministic. But then 
%&,(A.) = 0 and (3.9) gives another proof that when r is deterministic, 
Y(F) = 9(r)‘. 

Let r be an edge-recurring Bikhi automaton, and let T,, be the deterministic 
Btichi automaton derived from r through the “subset construction” [RS59, 
Definition 111, in which R(T,) = {(A, B)EE(T~) ) for some (u, W)E R(T), VEA, 
w E 8). It is easily shown that Y(r) c Z(f u) (and the inclusion may be proper, as 
illustrated by (3.12)(2) below). Since Tr, is deterministic, Y(r,,) = qr,)‘. Thus 

2z(FD) c 9(r)’ c 2yF) 

and when r is deterministic, they are all equal. 

(3.11) 

(3.12) EXAMPLES. (1) Let r be the deterministic automaton defined in Exam- 
ple (2.5)(l). By construction, p is unique. Let V(F)= { 1, 2, d-‘(l), @l(2), $1, 
relative to which order on the rows and columns of MP, 

Mp= 

a a b b 0 b 0 0 b 0 
a a b b 0 0 0 0 0 0 t-l- t-l- a 0 b a 0 b 

0 0 a b 0 a b 0 
0 0 1 0 0 1 
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while I(r) = { 1, b-‘(l)} and R(p)= {(4-‘(l), #-r(l)), (&l(2), &l(2)}. It is 
easily checked that Y(p) = (a + b)+(a” + P), and one may verify that 
2yF) = s(r)‘. 

(2) Let I’ be the edge-recurring automaton defined as follows: 
V(T) = { 1,2, 3}, Z(T) = (11, R(T) = { (2,3)} and 

Then the sequence which constantly /II, /?” E -Y(I) while the sequence which is con- 
stantly CI, prefixed by /?, fit? $ g(r). The “subset construction” [RS59] applied to 
r gives the deterministic 2=-matrix M with V(M) = { ( 1 }, { 2, 3) >, defined by 

M= 

(where the first row and column correspond to { 1) and the second to { 2,3 } ). Any 
“chain” in M which is followed by fi” is also followed by /W’ and thus there is no 
chain-dependent definition of acceptance with respect to which M is the transition 
matrix of an automaton over C which defines Y(r). Using the criterion (3.6) it is 
easily seen that Y(T) = (a*b)“. By (3.6), P’(F) = Y(f)’ and thus P(d,-) = @. 

(3) Add (2, 2) to R(T) in Example (2.5). (Of course, I’ remains deter- 
ministic.) Then T(r) = (a + b)*(a*b)“, T(r)’ = (a + b)*aw and by (3.3), 
Y(I)‘= Y(F). There is no deterministic Biichi automaton which accepts exactly 
(a+b) , , *P thus there can be no general construction for p which is deterministic, 
even when I’ is assumed to be deterministic. 
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