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Abstract

Wald and Wolfowitz [Ann. Math. Statist. 11 (1940) 147-162] introduced the run test for testing whether two
samples of i.i.d. random variables follow the same distribution. Here a run means a consecutive subsequence of
maximal length from only one of the two samples. In this paper we contribute to the problem of runs and resulting
test procedures for the superposition of independent renewal processes which may be interpreted as arrival processe
of customers from two different input channels at the same service station. To be more pre¢ts, let and
(T, -1 be the arrival processes for channel 1 and channel 2, respectivelyiangd. ; their be superposition with

counting procesd/(r) d=efsup{n >1: W, <r}. Let furtherR} be the number of runs iwy, ..., W, andR, = Rj:,(l)

the number of runs observed up to tim&Ve study the asymptotic behavior Bf andR,, first for the case where

(S¢)n>1 and(7,), 1 have exponentially distributed increments with parameteend /o, and then for the more

difficult situation when these increments have an absolutely continuous distribution. These results are used to design
asymptotic levek tests for testing, = /o againstl; # 22 in the first case, and for testing for equal scale parameters

in the second.
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1. Introduction

Wald and Wolfowitz[11] introduced therun testfor testing whether two samples follow the same
distribution: LetXq, X2, ... and Yy, Yo, ... be two independent samples of i.i.d. real-valued random
variables having continuous distribution functidh&ndG, respectively. LeR,, ,, denote the number
of runs in the pooled sampléy, ..., X,,,, Y1, ..., Yy, arranged in ascending order of magnitude, where
arun is a subsequence of maximal length taken only fronXtbetheY sample.

The run test rejects the hypothesis= G if R, ,, is less than some critical value. The distribution of
Ry, Under the hypothesis is of course independent of the particular continuous distribution, and Wald
and Wolfowitz[11] compute this distribution, derive asymptotic normality and show consistency of the
test, asiy, np — oo such thawui/(n1 + n2) — p € (0, 1). The distribution theory of runs is also treated
in[12,9].

Let us now consider the case that only the joint samplersizer1 + n2 is fixed andn1 is a random
variable having a binomial distribution with parameterg. Denoting byR,, the resulting number of
runs, we obtain from the explicit results fay,, ,, that

n

”:D(R;/q =k)= Z P(Rm,nfm =k) (Z) pm(l — p)n—m

m=0
n
_ m—1 n—m-—1 m n—m
m=0
if k=21, and
e=o=3 (1) (") () ()]s e
m=0

if k =21 4+ 1. Under the hypothesis = G, we have
ER, ~2np(1—p) and Vamr, >~ 4np(l— p)(1—3p(l— p))
and
5 def R, —2np(1—p)
" 2ynp1 = p)A=3p(I - p))
asn — oo, se€[9].
If F # G the distributions ofR,, ,, and R, both depend of course dhandG. Given thatF andG
have continuous Lebesgue densifiendg, respectively, Henze and Voiffi] showed that
i Rune g [ BP0+ A - PP
n—00n1 +np Bf(x)+ (1— pgx)
asni, np — oo such that1/(n1 + n2) — B € (0, 1). This easily implies
R, P P22 + (1— p)°g* ()
L —1- d
n pf(x)+ (A —p)gx)

P . .
where— means convergence in probability.

2 N, 1), (1.1)

dx as.
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Inthis paper we wantto contribute to the problem of runs and resulting test procedures for superpositions
of renewal processes which may be interpreted as arrival processes of customers from two different input
channels at the same service station. So let us assum&tha&b, ... andYy, Yo, ... are independent
samples of i.i.d. positive interarrival times, again with continuous distributioasd G, respectively.
Denote the corresponding renewal processesspy, - 1 (channel 1) and7},), - 1 (channel 2), i.e.

S, =X1+---+X, and T,=Y1+---+Y, forn=12,....

We now consider runs in the superpositioi,, ), » 1 say, of(S,,),,~ 1 and(7,),, > 1, defined as subsequences
of maximal length from the first or second of the these processes. We put

def .
R*= number of runs iy, ..., W,

forn=1,2,...and

R; & humber of runs iy, ..., Wnipy = Rji,(,)
forz >0, whereN(t) =}, -1 Lo.q(W).

If the interarrival times in both channels are exponentially distributed, the same holds true for the
superposed arrival process. We will discuss this case in Section 2 and show that we may use the methods
from the i.i.d. situation.

Section 3 deals with the more complicated situation of general interarrival distributions. We will derive
the limiting behavior o' andR; by drawing on the fact shown [d] (see als§7]) that the superposition
of absolutely continuous renewal processes constitutes a Markov renewal process.

2. Exponential interarrival times

We consider exponentially distributed interarrival tim’ég Xo, ... andYq, Yo, ... with means 1.1
and 1/ /o, respectively. Then the following holds:

Theorem 1. Puti‘j:ele + 2, p dzefil//l, and letR), be as in Sectiod. Then

(i) R} hasthe same distribution &, foreachn =1, 2, ... .
(i) PR =k) =), -1 PR}, =ke" "™ /m!for eachs > 0.
s def R —2p(1—p)n d
(i) Ry = 2 /T T3 — N(0, 1), asn — oo.

vy R 9 R-2pd-pN@®) d
W) &= 2 mapasrapmmm VO Dast = oo

Proof. We will pass from renewal processes to their corresponding renewal counting processes and use
some well-known facts for Poisson processes; sed .
(i) Let (N1(1)), > pand(N2(t)), > o denote the resulting counting processesiorS,, .. .andTy, 7z, . .. ,
which are Poisson processes with intensitigand/,, respectively. Then the counting procéas)), - o
of the superpositionV1, Wo, . .. satisfies

N(t) = Ni(t) + Na(t), t>0
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and is also Poisson with intensity Put the mark/,, = 0 or 1 to each,, according to whetheW,, is an
arrival epoch from channels 1 or 2. Hence

Ni(n) = Z Liw,<t,v,=0p and Na(1) = Z Liw, <t.vu=1y-

n>1 n>1

It is well known thatVy, Vo, ... are i.i.d. Bernoulli variables with parametgri.e.P(V, =1)=p=1—
P(V, = 0), and they are independent@¥,),, - 1. With this notation

n
RY =number of runs inVy, ..., Vo =14 > Ly j2v).
i=2
We may thus resort to the combinatorial arguments of Wald and Wolf¢®iizor the i.i.d. situation and
obtain, withU,, def Vi+---+V,forn>1,
n
P(R¥ =k) = Z P(Ry.nm = k)P(U, =m) = P(R, = k)
m=0
for eachn >1 andk >0.
(i) It suffices to note that

PR, =k)= Y PRy =kP(N()=m)
m=0
for all r > 0 andm >0.
(i) This follows immediately from the asymptotic normality result (1.1) of Mood together with (i).

(iv) Put u(p) def 2p(1— p), %(p) d:‘9](419(1 — p)(1—=3p( — p)), and letm(r) be the largest integer
less than or equal téx. Note thatn (1) "IN () — 1 a.s. and write

. @ (R;(,)—m(f)#(P)_i_Rfv(t) R~ (N(t)—l%(t))u(p))

“VNO\ e(p)vm@ o(p)/m (1)

.=

By (i), the first term in parentheses is equally distributedé%) and hence, by (1.1), asymptotically

standard normal as— oo. Therefore it suffices to show that the second one converges to 0 in probability.
a(p)v/m(t)

To that end pick arbitrary, > 0. Then
P ( > 8)
SPN@) —m(0)] > nt)
+ PRy — Ry — (N(@®) — m()u(p)| > ea(p)y/m (1), IN () — m(t)| <nt).

The first probability on the right-hand side of this inequality converges to 0 becat@é(r) —m (1)) — 0
a.s. ag — oo. The second one is bounded by

Ry — Riyoy = (N (@) = m(0)pu(p)

P<k:|kf22)xgm R = Ry — (k = m(@)u(p)| > ea(p)/m (t)
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Form(t) <k <m(t) + nt, we have

k

Ri = Rmay — k—m@)p(p) = Y (Lvi_y£v;) — 1(p)),
i=m(t)+1

which is a sum of 1-dependent stationary random variables with mean zero. By summing over odd and
eveni separately, it can be decomposed into two sums of i.i.d. zero mean random variables. With an
obvious modification the same can be said alijut- R,,,;) — (k — m(t))u(p) for m(t) — nt <k <m(t).

By combining these observations with an application of Kolmogorov’s inequality (applied to the resulting
i.i.d. sums) the conclusion

P < max  |Ri — R — (k —m()u(p)| > eo(p)\/m(t)) <e
k:lk—m(t)| <nt

for n=n(e) sufficiently small and sufficiently large yields as in the proof of Theorem 1.3.14h Further

details are omitted. O

A testing procedureUsing Mood’s result (1.1) and the previous theorem we obtain tests for the
hypothesis of equal intensitids = 1> against the alternative, # 1. Fora € (0, 1) define the critical
value as

c(n,o) = n/2—v,/n/2,

whereuv, is thea-fractile of the standard normal distribution. Lef be the test based upon a sample of
n observed arrivals which rejects the hypothesisipi< c(n, «), i.e.

def
On = LRz <c(n.0)}-

Let ¢, be the corresponding test when sampling from the fixed time intédyal, defined as

def
¢ = LR <c(N(t).2)}-

Then the following corollary shows thaf, and¢, are asymptotically consistent levetests.

Corollary 1. In the situation of exponential interarrival times we haveias- oo, respectively — oo:

() Puw (R <c(n, o)) = aandPq, ) (R; <c(N(t),x)) — «foranyv >0,
(i) Py (R <c(n, o) — LandP, i) (R <c(N(t),x)) — 1foranyiq # io.

Proof. From Theorem 1 we have for anly, 1> with p = 41/(A1 + 12)
Py (Ry =) =P,(R,=")

now explicitly showing the parameters, in particular
Puw(Ry =) =P12(R, =)

for eachv > 0. Hence (i) follows from Theorem 1(iii) and (iv).
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For (ii) it is enough to note thatA1 — p) < % forall p # % again using the asymptotic normality
results. O

Corollary 1 shows that the run statistic provides asymptotically consistentié¥sts for the problem
of testing equal intensities, i.e. equal scale parameters of the interarrival times.

For homogeneous Poisson processes (exponential interarrival times) as treated in this section one ma
want to use the uniformly most powerful unbiased levedst for the i.i.d. Bernoulli sampley, ..., V.
It is given by

Pn = LU, /21> viy2v//2)

when using thatU, — n/2)//n/2 is asymptotically standard normal under e&@gh;, and therefore
normal approximation for the critical value.

On the other hand, leaving homogeneous Poisson processes simple ¢gisiseaso longer available.
But the run statistic still makes sense in more general situations, and it is our opinion that useful discrim-
ination tests can be built upon this statistic. The results in the following section will demonstrate this in
the problem of testing for equal scale parameters for general renewal processes.

3. Superpositions of renewal processes

In this section we will consider the number of ruRs, resp.Rr; for the superposition of two absolutely
continuous renewal processes which no longer forms a renewal process unless the interarrival times ir
both channels are exponentially distributed. However, it is showh]iand briefly summarized below
that it forms a Markov renewal process and can thus be analyzed within the framework of Markov renewal
theory.

Given the interarrival timeX 1, Xo, ... andYy, Yo, ... for the two channels with generic copi&sY,

finite means: def EX, ¢ def EY and associated renewal proces&$s,,~ o and(7,), > o, respectively, let

X*, Y* denote two generic random variables having the stationary renewal distributions for the respective
channels, defined as

P(X* edx)=¢P(X >x)dx and P(Y* edy)=("1P(Y > y)dy.

Let furtherB® = (B,), > o denote the sequence of backward recurrence times associated with the super-
position(W,), > o. This means thab, = (Bf, B,{) gives the elapsed times since the last renewal from
channel 1, respectively channel 2VEt, in particularBg = (0, 0). It is well known thatB forms a Markov
chain with state spac# d=ef{0} x [0, o0) U [0, 00) x {0}. The absolute continuity of andY implies that
B is further positive Harris recurrent with unique stationary distribution
def ¢ ¢
1= ——PX*e)®d+—0QPY* e, (3.1)
¢+ ¢ ¢+

wheredg is Dirac measure at 0 argl denotes product measure, $&k As one can readily verify, the
increments of W), ~ o are conditionally independent givéhand

P(Wn —W,_1€ |B) = Q(Bn—la B, )
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foralln >1and asuitable kern@, seg1]. Therefore(B,, W,), - o constitutes a Markov renewal process
with Harris recurrent driving chaiB.
We next observe that far> 2

(Vac1# Vo) ={BX ;=B =0)u{B!' ;=BY=0} as. (3.2)

The two sets on the right-hand side are a.s. disjoint because the absolute contiXatydYfin combi-

nation with the independence §,), > o and(7,), > o guarantees that the eveliVy = W, for some

k>1} of multiple renewals in the superposition has probability 0. Eq. (3.2) shows that, conditioned upon
B, the indicatorsly, ,-v,) are deterministic and thus independent and that

P(Va—1 # VulB) = 10,0 (BX 1, BY) + 10,0y (B._, BY) as. (3.3)

Since these indicators are the incrementgRjf), - 1 we have proved
Lemma 1. Under the given assumptioB,, R;), -1 forms a Markov renewal process

Theorem 2. Under the given assumptions

nleoo % = & /0 P(X>0)P(Y >t)dr a.s. (3.4)
and
tll)ngo % = f_ZC/o P(X>t)P(Y >t)dt a.s. (3.5)

Proof. Bythe strong law of large numbers for Markov renewal procesggs; converges a.s. B, (R5 —
RY) = Pr(V1 # V2), whereP, denotes the probability measure under whichas initial distribution:
and is hence stationary. Now use (3.1) and (3.3) to infer

Pr(V1 # Vo) = Po(BY =0, By =0) + P,(B) =0, B =0)
¢ g
=— P(X>Y* — P(Y > X*
Ty XY+ P> X0

2 oo
= P(X >t)P(Y >1)dt.
eeh
Of course, the occurring generic variablesX™, Y andY* are here assumed to be mutually independent.
We have thus proved (3.4). Next, by the elementary renewal theorem (sEE0§).g.

im YO im0 gy 22O 1T et e
t—oo f t—00 t t—00 t 5 { fc

which combined with (3.4) yields

R Ry _ N(@) Ry

t t t N(@)
ie. (3.5). O

2 o0
— _f P(X >1)P(Y >t)dr,
¢CJo
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Our next result shows that suitable normalization®pfand R, converge to a standard normal distri-
bution. This will subsequently be used to derive asymptotically consistentiéests for the problem of
testing for equal scale parameters.

Theorem 3. Given the previous assumptigiis{2 < co andEY 2 < oo,

5 def Ry — pn d

R o — N(,1), asn— oo (3.6)
and

5 def Ry — uN(1) d

R="1 """ 35 N1, ast , 3.7
where d—efifoo P(X > t)P(Y > ¢)dr and

=%z Jo

def
PE UL =) +2) " (Pr(VL # Vo, Vi # Vayr) — 1) > 0.

n=2

The proof of this result is not only more difficult than the one of its counterpart Theorem 1 in the
Poisson case but also rather long. It is therefore provided in the next section.

Testing for equal scale paramete@onsider an absolutely continuous positive random variéblih
meanEZ = 1. Let us assume that, fér{ > 0, theX; are distributed ag§Z and theY; are distributed as
{Z.\We want to consider the problem of testing for equal scale parantetefvased on the run statistic
R}. Clearly, R} does not change if we multiply th¥;'s andY;’s by the same positive constant. Hence
the limiting constant of (3.4)

K(E, 0) dﬁﬁfow P(EZ>)P(CZ > 1) dt (3.8)

depends ol and{ only through their ratigp dzefg”/é or, equivalentlyp & E/(E+0=1/(p+1) and may
be written as

M(p)dZEfK(l_ L 1) :2p/oo P(Z>1)P (1_—p2>z> dr, (3.9)
P 0 P

which is also immediate by a change of variables in the integral in (3.8). The obvious inequality

1-—
M(p)<2pmin{1,—p}
p

shows thatu(p) becomes small whenevpris close to its boundary values 0 or 1. In faetp) attains
its absolute maximum gt = % which provides the basis for using the run statistic for discrimination
purposes.
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Lemma 2. Let Z be a positive random variable with finite mean arig) be as defined ir§3.9) for
p € (0,1). Then

w(p) < u(1/2) = / P(Z > 12dr
0
forall p #1/2.

Proof. Using the Cauchy—Schwarz inequality, we obtain

00 1/2 00 1—p 2 172
,u(p)<2p<f [P’(Z>t)2dt> (/ P(—Z>t> dt)
0 0 P
00 12 /1 00 2 \ 12
:2p</ [|3>(Z>t)2dt> ! pf P IP(Z> Pt ) dr
0 p Jo 1-p 1-p

o0
=2p1/2(1—p)1/2/0 P(Z > )% dt

=2p"2(1— p)2u(1/2).
Since 2Y2(1 — p)/? has its unique maximum 1 at= 3 the lemma is proved. O
2

Levela run tests fop = ¢/(¢ + () = 3 againstp # 3, either based upon a samplerddrrivals or upon
the N (¢) arrivals within a time interva(0, ¢], can now be defined along the same lines as in Section 2
for the Poisson case. We writg, for the situation thap is the underlying parameter. Fore (0, 1) the
critical value here takes the form

c(n, o) = p(1/2)n — v,0(1/2)/n,
where as before, is thea-fractile of the standard normal distribution. The following corollary shows

thate, oef LR <c(n.0) @Ndp, oef Lir, <c(N(),2)) re again asymptotically consistent leveests.

Corollary 2. In the described situation of testing for equal scale parameters we hawe-as oo,
respectively — oo:

(i) P12(R; <c(n,a) — aandP12(R; <c(N(1),x)) — «a,
(i) P,(R; <c(n, o)) — LandP,(R; <c(N(t),n)) — 1foranyp # 1/2.

The proof is essentially a copy of the proof of Corollary 1 when substituting Theorem 1 with Theorem
3 there. It is therefore omitted.

4. Proof of Theorem 3

We begin with some further notation and g, dzefP(-|Bé‘ =x, B} =) (S0P = Pg0) with ex-

pectation operatok, ,. The transition kernel ofB,), - is denoted byP and we writePg(x, y) for
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[ g, v)P((x,y),d(u,v)). Fora measurabla c &, the first hitting and first return time @f3,),,»o
to A are denoted ag(A) andz(A), respectively, i.e.

ro(A) |nf{n>0 B, € A} and r(A) |nf{n>1 B, € A}

Proof of Theorem 3. Note that
e Zn(h) det 2k—y M B, RE — Ri_y)

Ay o/

with h(x, y, e) e, _ u, whence (3.6) and (3.7) are central limit theorems for an additive functional
of the temporally homogeneous Markov chaiby,, R;; — RY_,),-o With state space” x {0, 1}. Its
transition kernelﬁ((x, y,e), ), say, is independent efe {0, 1} because, by Lemma 11,, R;;), >0 iS
a Markov renewal process. This property implies ii&t, R, — R;_,), > o inherits the Harris ergodicity
from (B,), > and thatA x {0, 1} is a small set (se8, p. 106) whenever is a small set fo(B,),, - o.
Let 7 be the stationary distribution @B, Ry — R>_1),>0-

We will conclude (3.6) and the asserted formyéfirom Theorem 17.5.3 if8] after the verification of
the drift condition

PG(x,y,e) — G(x,y,e) < —1+blz(x,y,e), (x,y,e) € ¥ x{0,1} (4.1)

for (B, R} — R*_,),>0, Where the functioi > 1 satisfies &2 d < 00, € is a small set andl € (0, c0)
aconstant. For the proof of (3.7) we will first show that;, (%) has the same limiting behavior as another
additive functional possessing stationary, 1-dependent increments. Asymptotic normality of this second
functional is then rather easily obtained by an application of Anscombe’s theorem. The positisity of

will be proved in Lemma 6 in Section 4.

Proof of (3.6): Lemmas 3 and 4 below show that the G@f’:ef{O} x (0, a] is small for(B,), > and
satisfies SUR y)erEx.yT(Ca) <00 for eacha > 0 with P(Y > a) > 0. These two facts imply that, is
(1-)regular (se¢8, p. 333 and Theorem 14.2.4 on p. 38Wonsequently, by Theorem 14.2.38}, the
drift condition

PGu(x,y) — Ga(x, y)< —1+blc,(x,y), (x,y) €S (4.2)

holds true for somé < (0, o0), whereG, (x, y) def x,y70(Cy) for (x, y) € &. Note thatro(C )<1(Cp)

and Lemma 4 ensure that, is a bounded function with supremu®,, || cc- Puttmg\/ efq + Gy, (4.2)
even implies the stronger geometric drift condition

PV, — V< —1+4+blc, < — IV, +blg, (4.3)

with 4 d—Ef(l + 1Gallee) 1 € (0, 1) and therefore the geometric ergodicity(@f,),, - o, Se€[8, Theorem

15.0.1]
Next putGy, (x, y, e) G (x,y)for(x,y,e) € J x{0,1} and observe tha?G, = PG,. Combining
this fact with (4. 2) we infer validity of (4.1) witl = G, andC = C, x {0, 1} for anyawith P(Y > a) > 0.

FurthermorefG di = [ G2dr < oo trivially holds by the boundedness @f,. Since(R}), o has
increments bounded by 1, we conclude (3.6) and the asserted ferfrfroin Theorem 17.5.3 if8].
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Proof of(3.7): Using Nummelin’s split chain (s¢&, p. 101f), each small setinduces arenewal process
(va)n =1 Of regeneration epochs feB,, R; — R_,), -0 such that, under every initial distribution, the

cycles(B;, R;? — R;f_l)vnflgjwn, n>1 are 1-dependent and fet= 2 also stationaryvg d:efO) with the
same distribution as the first cycle undey, qbd:efP([Bvl € -). ConsequentlyX”(h) d:efzvn (h), n>0,

forms a random walk with 1-dependent increments which are further stationary:f2r Its stationary
drift E(X5(h) — 27(h)) equalsEgviE,h (B, R]) = 0. The geometric ergodicity af3,),, » o ensures that
[Ed,vi < oo (se€[8, Theorem 15.0.3]Jand thusE (25 (h) —2"1‘(h))2 < oobecausén| < 1. Putt*(n) & inf {k:
vy =>n}. Then

lzf*(”)(h) — 2l < TR R asn - oo (4.4)
NG VA ’ ’

where> means convergence in probability (under every initial distribution). Combining this result with
(3.6) we infer

2% (h)
% —d> N(0,1), asn— oo.
o/n

With (X} (h)), =1 having stationary, 1-dependent increments it is not difficult to verify that Anscombe’s
theorem applies tﬁj(N(t)) (h) and gives

Do (h)
TH(N (1)) d

——— > N(0,1), asr— oc.
o/ N (1) ©.D

The details are omitted. Since (4.4) remains true whisreplaced withv (7) giving
Zevap® o

o/N() '
we finally infer (3.7). O

P
— 0 ast— oo,

Lemma 3. The setC, = {0} x (0, a] is small for eachz > 0 with P(Y > a) > 0.

Proof. If P(Y >a) >0 thenP(Y*<a) > 0 and thusz(C,) = ({/(¢ + ))P(Y*<a) > 0. ForC, to be
small it hence remains to verify that

inf Pou(Br € ) = pI
ue(0,a]
for somek>1, p € (0, 1] and a probability measute concentrated oq,.

Since, for allm,n>1 andu € (0, 00), S,, andT,, are independent and absolutely continuous with
respect to Lebesgue measuranderPq,, a technical but straightforward argument shows that for some
a > 0 there exisin, n>1 ando € (0, 1) such that

inf  Pou(Sy — T, € dvN (0, a))>al,q)(v)A(dV).
ue(0,a]
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Consequently,
Po.u(Byry, =0, B}, € B)>Po,u(Sy — Ty € BN (0,00), Yoi1> Sy — Tp)
o.¢]
= / PO,u(Sm - Tn €BN (O, y))[P’(Y € dy)
OOO
2/ Po.u(Sm — Ty € BN (0,a))P(Y € dy)
a
>aP(Y >a)4(BN (0, a))
forallu € (0,a], i.e.

inf  Pou(Buin € )=aP(Y >a)do® £(- N (0, a)).
ue(0,a]

This shows that, is a small set wheneversatisfiesP(Y >a) >0. O
Lemma4. The setC,={0} x (0, a] satisfie$ugx,y)€g;[Ex,yr(Ca) < oo foreacha > OwithP(Y > a) > 0.
Proof. We first note that, having proved syp,c« Ex,y7(Ca) < 00, regularity is a direct consequence of
Theorem 14.2.4 i8] becaus&’,, is also small.
Let || - || denote total variation distance. Fix aaywith P(Y > a) > 0. By absolute continuity of

X andy,

lim [|[P(Syyy+1—t €-) —P(X* e )| =0,

[—>00

Nim P (Tvy0+1 =1 € ) =P € )] =0,

which implies that

ir>1f P(Snyi)+1 — t<a)>P(X*<a)/2>2y >0,
121

igf P(Tnyy)+1 — t<a)=P(Y*<a)/2>2y>0
t21

forsomeg > 0, wherey def min{P(X*<a), P(Y*<a)}/4. Choosenlarge enough so that miR(S,, > o),

P (T4 >10)) >1/2. DefineW_1 7, Wo &', ., and

~  def ~  def ~  def

W1 = SNl(W_1)+m+1’ W2 = TNZ(W1)+1’ W3 = TNZ(W1)+m+1’
~  def ~  def ~  def

Wa = SN1(W3)+1’ Ws = SNl(W3)+m+1’ We = TN2(W5)+1’ T

~ def .~
WO:n :e(WO, ceey Wn)

and
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for n>1. Then the conditional distribution undex , of Do, given Woon—1 depends only ofiDy,_2,

Do, 1) andPy (D2, € -|Day—2=u, D2,_1=v) eitherequal® (Sy, u+v)+1—1—v € -) Or P(Tn,(utv)+1—
u—ve-)foru,v>0,(x,y) € ¥ andn>1. FurthermoreD,,_1 is independent oWg.o,_» for n>1,

and its distribution (under eadh, ,) equals either that of,, or of 7,, (underP = Pg ). Noting that
EX2 < oo andEY? < oo ensures

00
/ sup P(SNl(Z)-i—l —t>59) ds <00
0

t>0

and a similar result for SYRo P(Tnyy+1—1 > ), See e.g.13, Theorem 2.4we hence infer the existence
of an integrable distributiof® on [0, co) such that

Pyy(Dy > 1|Won-1)<1— G(1) as. (4.5)

forallt >0, (x, y) € # andn > 1. By choice oftg andm, we further obtain

Px.y min Dy >a | = / / Px,y(Dan > a|Day—2 =u, Dgn—1 =v)
1<k<n (a,00) J (0,00)

X Py y(Dgp-1 € dv)lPx,y (D4n_2 cdu, min Dy > a)

1<k<n-1

<(1- ZV)Px,y(D4n—1 > to) + Hj)x,y(D4n—1<l‘0))

x[P’x,y< min D4k>a>

1<k<n-1

=(1- 27Px,y(D4n—1 > tO))Px,y ( min Dy > a)
1<k<n—
<A-yP min D
( 7) X,y (1<k<n—l Ak > a)
<=y
foralln>1and(x, y) € . We thus see that ™' inf {n : D4, <a} has geometrically decreasing tails of
order less than & y under eacl®, ,, (x, y) € 7. In particular,

sup [y 7 <oo0. (4.6)
(x,y)es

Now (C,) 4 inf {(n>1:8, € C,} is clearly bounded le(W4.;) which may be rewritten as

4
©(Ca) < Z N1(Wi—1, Wil (4.7)
k=1

whereNq(s, t] def N1(t) — N1(s) for s <r. We claim that there exists an integrable distributibisuch
that

Py y(N1(Wi—1, Wil > n|Wox—1)<1— H(n) as. (4.8)
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forall k, n>1. For the proof we will use (4.5) and the inequality
Pyy(Ni(s,s +1]1>n)<P(N1(t) >n — 1) (4.9)

forall (x, y) € #,s,1>0andn>1, see e.g3, p. 810] Now it is readily seen thaV, (Wi_1, Wi] either
equalsmor 1, or satisfies

Px,y(Nl(Wk—l, Wil > n|Woy—1)

= / / Py (NL(Wi—1, Wi + 1] > n)Py , (Dy € dr|Wox—1)
[0,00) J[0,00)

< / PNL() > n — DPyy(Dy € diWou_1) as.
[0,00)

where (4.9) was used for the last inequality. Now use (4.5) and the fagttvatr) > n — 1) is increasing
in t to conclude that eitheW1(Wy_1, Wi] € {1, m}, or

Py (N2 (Wi, Wil > ) < / PNL() > n — DG(dr).
[0,00)

This proves (4.8) for some distributidth and since

Z P(N1(t) > n) <EN1(t) <c(t + 1)

n=0

for a suitable constante (0, co), we further see thatl can be chosen as an integrable distribution with
meanuy, say.
Finally, by combining (4.6), (4.8) and Lemma 5 below, we obtain

sup Eyyt(Co)<2uy sSup Ee T <00,
(x,y)e¥ (x,y)es

which is the asserted result(]

Lemma 5. Let 0 = Z9p<Z1<Z2< --- be an increasing sequence of nonnegative random variables
whose incrementg,, — Z,_ are stochastically bounded by an integrable distributioa., there exists

a distribution function H such thatf (0) = 0, uy d=Eff0°° (1-—H())dr <oo and
P(Zy — Zn_1>tZ0, ..., Zn_1)<1— H(t) a.s. (4.10)
forall r>0andn>1.Then

EZTS,LLH[ET

for each stopping time for (S,), > o.
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Proof. Integration of (4.10) with respect togivesE(Z, — Z,-11Z1, ..., Zyn—1) <py a.s. for alln > 1.
Hence the assertion follows from

EZe=E Y E(Zy—Zn-alZ1, ..., Zo-Dlpzn)

n>1

<E Z ,“Hl{r>n}

n>1

=y k. O
Lemma 6. The asymptotic varianc€® in TheorenB is positive

Proof. For eactawith P(Y > a) > 0, the seC, = {0} x 0, a] is small for(B,), ~ o (Lemma 3). Itis also
small for the chailB,, R, — R;_;),>1becauseB,, R, —R;_,) depends olB;, Ry — R7_1)1<j<n-1
only throughB,,_1. Forafixed andk > 1, letc; € [0, 1] be the maximal value so tﬁat

infuc0.a1 Po,u)(Bx € -)=crdo ® 4(- N (0, a)).
Choosek > 1 ande € {0, 1} such that; > 0 and

def

D, = {y € (0,al: Pox(R; — Ri_q = e|Br = (0, y))/ﬂ(dX)>a/2}

(0.al
is Z-positive. It follows
P X _ 0 Y ¥ px _
0.u(By =0,By € A, Ry — Ry_1=e¢)

26‘%/ / Po,u(R5, — R5;_1 = e|Br = (0, x), Bx = (0, y))A(dx)A(dy)
AN(0,a] J(0,a]

= C;f/ / Po.x(R{ — R{_1 = e|By = (0, y)) Z(dx) A(dy)
AN(0,a] Y (0,a]

ac,%
= 7/2(14 N Dy)

forall u € (0, a] and all measurablga c R and thus with? def 1p, (y)A(dy)/2(Dy).

i[lof ] Pou(BY, =0,BY € dy, Ry, — Ry =e)>ch P(dy) (4.11)
ue(0,a
for somec3, > 0.

Now let./" be the set of all € N for which (4.11) holds true if Ris replaced witH andc, with
somec; > 0 (keepinge and D, fixed). We claim that/” containslp + N for somelp > 1. In fact, since
(B, R; — R:_1),>1is aperiodic, we have thit>1: Py(B; € C,) > 0} containgdy + N for somel; > 1.
Consequently, for all>2k + /1 and allu € (0, a]

[FDO,M(B[ € Ca)>P0,u(B2k € Ca, B; € Ca)>C§kPW(Bl—2k € Ca) >0
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and then, for all > d=ef4k + 11, u € (0, a] and all measurablg C R,
Pou(BY =0,B € A,Rf — R ;=e¢)
> /(0 | Po.x(By =0,B), € A, R}, — R, 1 =e)Po.,(Bi_2 € {0} x dy)
u
> (c5)*Pu(Br_a € Ca)P(A)

which proves our claim.
Let 7 be the stationary distribution ¢8,,, R, — RY_,), 1. SinceC, is a small set fo(B,),, - o with
minorizing measurép ® YV, it is well known that

1 —1
= Esomw (Z 1{(BkaRZ‘—R7§—1)E'})

E T
o0®Y k=0

for some regeneration epoah(see e.g[2] for the construction) and thus>c(6p ® ¥ ® J.) for
c dzef(E%@m)_l > 0. A combination with (4.11), witlh € .4" instead of 2, then implies

Pz((B1, R, Bis1, Ry — RY) € ) 28(30 ® ¥ ® 5,)? (4.12)

for all I € .4 and suitabl€; > 0.
Now assumer? = 0 and observe that € (0, 1). Since(B,, Ry — R*_1),>1 Is Harris ergodic and

satisfying the drift condition (4.1) with bounde®, Proposition 2.4 if6] implies the existence of a
measurable functiont : ¥ x No — R such that

S,(h) = A(B,, R* — R*_;) — A(B1, R}) P;-as. (4.13)

forall n>1. Note that”,, (h) takes values ityj — nu; 0< j <n}. Choosen >1 such thatn — 1 andmare
both elements aoff”. Combining (4.12) and (4.13), we see that there exists a #gueh that

Pz(Zi(h) =s)>¢; / L5 (A(b2, r2) — A(b1,71)) (00 ® P ® 3¢)*(dby, dry, dby, drp) > 0

for bothi =m andi =m + 1. Hence there must ey, m»> € Ng suchthat =m1 —mu=m> — (m + Ly,
i.e.u=mp—m1 € Z. Sinceu € (0, 1), we have produced a contradiction]
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