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Abstract

Wald and Wolfowitz [Ann. Math. Statist. 11 (1940) 147–162] introduced the run test for testing whether two
samples of i.i.d. random variables follow the same distribution. Here a run means a consecutive subsequence of
maximal length from only one of the two samples. In this paper we contribute to the problem of runs and resulting
test procedures for the superposition of independent renewal processes which may be interpreted as arrival processes
of customers from two different input channels at the same service station. To be more precise, let(Sn)n�1 and
(Tn)n�1 be the arrival processes for channel 1 and channel 2, respectively, and(Wn)n�1 their be superposition with

counting processN(t)
def= sup{n�1 : Wn� t}. Let furtherR∗

n be the number of runs inW1, . . . ,Wn andRt =R∗
N(t)

the number of runs observed up to timet. We study the asymptotic behavior ofR∗
n andRt , first for the case where

(Sn)n�1 and(Tn)n�1 have exponentially distributed increments with parameters�1 and�2, and then for the more
difficult situation when these increments have an absolutely continuous distribution. These results are used to design
asymptotic level� tests for testing�1=�2 against�1 �= �2 in the first case, and for testing for equal scale parameters
in the second.
© 2005 Elsevier B.V. All rights reserved.

MSC:60G50; 60K15; 60J10; 62F05

Keywords:Run test; Discrimination; Superposition; Poisson process; Renewal process; Markov renewal process; Harris chain

∗ Corresponding author. Fax: +49 251 833 2712.
E-mail address:gerolda@math.uni-muenster.de(G. Alsmeyer).

0377-0427/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.02.017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82443962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:gerolda@math.uni-muenster.de


284 G. Alsmeyer, A. Irle / Journal of Computational and Applied Mathematics 186 (2006) 283–299

1. Introduction

Wald and Wolfowitz[11] introduced therun testfor testing whether two samples follow the same
distribution: LetX1, X2, . . . andY1, Y2, . . . be two independent samples of i.i.d. real-valued random
variables having continuous distribution functionsF andG, respectively. LetRn1,n2 denote the number
of runs in the pooled sampleX1, . . . , Xn1, Y1, . . . , Yn2 arranged in ascending order of magnitude, where
a run is a subsequence of maximal length taken only from theX or theYsample.

The run test rejects the hypothesisF =G if Rn1,n2 is less than some critical value. The distribution of
Rn1,n2 under the hypothesis is of course independent of the particular continuous distribution, and Wald
and Wolfowitz[11] compute this distribution, derive asymptotic normality and show consistency of the
test, asn1, n2 → ∞ such thatn1/(n1 + n2)→ � ∈ (0,1). The distribution theory of runs is also treated
in [12,9].

Let us now consider the case that only the joint sample sizen = n1 + n2 is fixed andn1 is a random
variable having a binomial distribution with parametersn, p. Denoting byR′

n the resulting number of
runs, we obtain from the explicit results forRn1,n2 that

P(R′
n = k)=

n∑
m=0

P(Rm,n−m = k)
(
n

m

)
pm(1 − p)n−m

=
n∑
m=0

2

(
m− 1
l − 1

)(
n−m− 1
l − 1

)
pm(1 − p)n−m

if k = 2l, and

P(R′
n = k)=

n∑
m=0

[(
m− 1
l − 1

)(
n−m− 1

l

)
+
(
n−m− 1
l − 1

)(
m− 1
l

)]
pm(1 − p)n−m

if k = 2l + 1. Under the hypothesisF =G, we have

ER′
n 
 2np(1 − p) and VarR′

n 
 4np(1 − p)(1 − 3p(1 − p))
and

R̂′
n

def= R′
n − 2np(1 − p)

2
√
np(1 − p)(1 − 3p(1 − p))

d→N(0,1), (1.1)

asn→ ∞, see[9].
If F �= G the distributions ofRn1,n2 andR′

n both depend of course onF andG. Given thatF andG
have continuous Lebesgue densitiesf andg, respectively, Henze and Voigt[5] showed that

lim
n→∞

Rn1,n2

n1 + n2
= 1 −

∫
�2f 2(x)+ (1 − �)2g2(x)

�f (x)+ (1 − �)g(x)
dx a.s.

asn1, n2 → ∞ such thatn1/(n1 + n2)→ � ∈ (0,1). This easily implies

R′
n

n

P→ 1 −
∫
p2f 2(x)+ (1 − p)2g2(x)

pf (x)+ (1 − p)g(x) dx,

where
P→ means convergence in probability.
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In this paper we want to contribute to the problem of runs and resulting test procedures for superpositions
of renewal processes which may be interpreted as arrival processes of customers from two different input
channels at the same service station. So let us assume thatX1, X2, . . . andY1, Y2, . . . are independent
samples of i.i.d. positive interarrival times, again with continuous distributionsF andG, respectively.
Denote the corresponding renewal processes by(Sn)n�1 (channel 1) and(Tn)n�1 (channel 2), i.e.

Sn =X1 + · · · +Xn and Tn = Y1 + · · · + Yn for n= 1,2, . . . .

We now consider runs in the superposition,(Wn)n�1 say, of(Sn)n�1 and(Tn)n�1, defined as subsequences
of maximal length from the first or second of the these processes. We put

R∗
n

def= number of runs inW1, . . . ,Wn

for n= 1,2, . . . and

Rt
def= number of runs inW1, . . . ,WN(t) = R∗

N(t)

for t >0, whereN(t)=∑
n�11(0,t](Wn).

If the interarrival times in both channels are exponentially distributed, the same holds true for the
superposed arrival process. We will discuss this case in Section 2 and show that we may use the methods
from the i.i.d. situation.

Section 3 deals with the more complicated situation of general interarrival distributions. We will derive
the limiting behavior ofR∗

n andRt by drawing on the fact shown in[1] (see also[7]) that the superposition
of absolutely continuous renewal processes constitutes a Markov renewal process.

2. Exponential interarrival times

We consider exponentially distributed interarrival timesX1, X2, . . . andY1, Y2, . . . with means 1/�1
and 1/�2, respectively. Then the following holds:

Theorem 1. Put� def= �1 + �2, p
def= �1/�, and letR′

n be as in Section1.Then

(i) R∗
n has the same distribution asR

′
n for eachn= 1,2, . . . .

(ii) P(Rt = k)=∑
m�1 P(R∗

m = k)e�t�mtm/m! for eacht >0.

(iii) R̂∗
n

def= R∗
n−2p(1−p)n

2
√
p(1−p)(1−3p(1−p))n

d→N(0,1), asn→ ∞.

(iv) R̂t
def= Rt−2p(1−p)N(t)

2
√
p(1−p)(1−3p(1−p))N(t)

d→N(0,1),ast → ∞.

Proof. We will pass from renewal processes to their corresponding renewal counting processes and use
some well-known facts for Poisson processes; see e.g.[10].

(i) Let (N1(t))t�0 and(N2(t))t�0 denote the resulting counting processes forS1, S2, . . .andT1, T2, . . . ,
which are Poisson processes with intensities�1 and�2, respectively. Then the counting process(N(t))t�0
of the superpositionW1,W2, . . . satisfies

N(t) = N1(t)+N2(t), t�0
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and is also Poisson with intensity�. Put the markVn = 0 or 1 to eachWn according to whetherWn is an
arrival epoch from channels 1 or 2. Hence

N1(t)=
∑
n�1

1{Wn� t,Vn=0} and N2(t)=
∑
n�1

1{Wn� t,Vn=1}.

It is well known thatV1, V2, . . . are i.i.d. Bernoulli variables with parameterp, i.e.P(Vn = 1)= p= 1−
P(Vn = 0), and they are independent of(Wn)n�1. With this notation

R∗
n = number of runs inV1, . . . , Vn = 1 +

n∑
i=2

1{Vi−1 �=Vi}.

We may thus resort to the combinatorial arguments of Wald and Wolfowitz[11] for the i.i.d. situation and

obtain, withUn
def= V1 + · · · + Vn for n�1,

P(R∗
n = k)=

n∑
m=0

P(Rm,n−m = k)P(Un =m)= P(R′
n = k)

for eachn�1 andk�0.
(ii) It suffices to note that

P(Rt = k)=
∑
m�0

P(R∗
m = k)P(N(t)=m)

for all t >0 andm�0.
(iii) This follows immediately from the asymptotic normality result (1.1) of Mood together with (i).

(iv) Put �(p)
def= 2p(1 − p), �2(p)

def= 4p(1 − p)(1 − 3p(1 − p)), and letm(t) be the largest integer
less than or equal to�t . Note thatm(t)−1N(t)→ 1 a.s. and write

R̂t =
√
m(t)

N(t)

(
R∗
m(t) −m(t)�(p)
�(p)

√
m(t)

+ R
∗
N(t) − R∗

m(t) − (N(t)−m(t))�(p)
�(p)

√
m(t)

)
.

By (i), the first term in parentheses is equally distributed asR̂′
m(t) and hence, by (1.1), asymptotically

standard normal ast → ∞. Therefore it suffices to show that the second one converges to 0 in probability.
To that end pick arbitrary�, �>0. Then

P

(∣∣∣∣∣
R∗
N(t) − R∗

m(t) − (N(t)−m(t))�(p)
�(p)

√
m(t)

∣∣∣∣∣> �

)

�P(|N(t)−m(t)|> �t)

+ P(|R∗
N(t) − R∗

m(t) − (N(t)−m(t))�(p)|> ��(p)
√
m(t), |N(t)−m(t)|��t).

The first probability on the right-hand side of this inequality converges to 0 becauset−1(N(t)−m(t))→ 0
a.s. ast → ∞. The second one is bounded by

P

(
max

k:|k−m(t)|��t
|R∗
k − R∗

m(t) − (k −m(t))�(p)|> ��(p)
√
m(t)

)
.
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Form(t)< k�m(t)+ �t , we have

R∗
k − Rm(t) − (k −m(t))�(p)=

k∑
i=m(t)+1

(1{Vi−1 �=Vi} − �(p)),

which is a sum of 1-dependent stationary random variables with mean zero. By summing over odd and
eveni separately, it can be decomposed into two sums of i.i.d. zero mean random variables. With an
obvious modification the same can be said aboutR∗

k −Rm(t)− (k−m(t))�(p) form(t)− �t�k <m(t).
By combining these observations with an application of Kolmogorov’s inequality (applied to the resulting
i.i.d. sums) the conclusion

P

(
max

k:|k−m(t)|��t
|R∗
k − Rm(t) − (k −m(t))�(p)|> ��(p)

√
m(t)

)
< �

for �=�(�) sufficiently small andt sufficiently large yields as in the proof of Theorem I.3.1 in[4]. Further
details are omitted. �

A testing procedure: Using Mood’s result (1.1) and the previous theorem we obtain tests for the
hypothesis of equal intensities�1 = �2 against the alternative�1 �= �2. For� ∈ (0,1) define the critical
value as

c(n, �) = n/2 − v�√n/2,

wherev� is the�-fractile of the standard normal distribution. Let�n be the test based upon a sample of
n observed arrivals which rejects the hypothesis forR∗

n < c(n, �), i.e.

�n
def= 1{R∗

n<c(n,�)}.

Let 	t be the corresponding test when sampling from the fixed time interval(0, t], defined as

	t
def= 1{Rt<c(N(t),�)}.

Then the following corollary shows that�n and	t are asymptotically consistent level� tests.

Corollary 1. In the situation of exponential interarrival times we have asn→ ∞, respectivelyt → ∞:

(i) P(
,
)(R
∗
n < c(n, �))→ � andP(
,
)(Rt < c(N(t), �))→ � for any
>0,

(ii) P(�1,�2)(R
∗
n < c(n, �))→ 1 andP(�1,�2)(Rt < c(N(t), �))→ 1 for any�1 �= �2.

Proof. From Theorem 1 we have for any�1, �2 with p = �1/(�1 + �2)

P(�1,�2)(R
∗
n = ·)= Pp(R

′
n = ·)

now explicitly showing the parameters, in particular

P(
,
)(R
∗
n = ·)= P1/2(R

′
n = ·)

for each
>0. Hence (i) follows from Theorem 1(iii) and (iv).



288 G. Alsmeyer, A. Irle / Journal of Computational and Applied Mathematics 186 (2006) 283–299

For (ii) it is enough to note that 2p(1 − p)< 1
2 for all p �= 1

2, again using the asymptotic normality
results. �

Corollary 1 shows that the run statistic provides asymptotically consistent level� tests for the problem
of testing equal intensities, i.e. equal scale parameters of the interarrival times.

For homogeneous Poisson processes (exponential interarrival times) as treated in this section one may
want to use the uniformly most powerful unbiased level� test for the i.i.d. Bernoulli sampleV1, . . . , Vn.
It is given by

�∗
n = 1{|Un−n/2|>v�/2√n/2}

when using that(Un − n/2)/√n/2 is asymptotically standard normal under eachP(�,�) and therefore
normal approximation for the critical value.

On the other hand, leaving homogeneous Poisson processes simple tests as�∗
n are no longer available.

But the run statistic still makes sense in more general situations, and it is our opinion that useful discrim-
ination tests can be built upon this statistic. The results in the following section will demonstrate this in
the problem of testing for equal scale parameters for general renewal processes.

3. Superpositions of renewal processes

In this section we will consider the number of runsR∗
n, resp.Rt for the superposition of two absolutely

continuous renewal processes which no longer forms a renewal process unless the interarrival times in
both channels are exponentially distributed. However, it is shown in[1] and briefly summarized below
that it forms a Markov renewal process and can thus be analyzed within the framework of Markov renewal
theory.

Given the interarrival timesX1, X2, . . . andY1, Y2, . . . for the two channels with generic copiesX, Y ,

finite means�
def= EX, �

def= EY and associated renewal processes(Sn)n�0 and(Tn)n�0, respectively, let
X∗, Y ∗ denote two generic random variables having the stationary renewal distributions for the respective
channels, defined as

P(X∗ ∈ dx)= �−1P(X>x)dx and P(Y ∗ ∈ dy)= �−1P(Y >y)dy.

Let furtherB = (Bn)n�0 denote the sequence of backward recurrence times associated with the super-
position(Wn)n�0. This means thatBn = (BXn ,BYn ) gives the elapsed times since the last renewal from
channel 1, respectively channel 2 atWn, in particularB0 = (0,0). It is well known thatB forms a Markov

chain with state spaceS
def={0} × [0,∞)∪ [0,∞)× {0}. The absolute continuity ofX andY implies that

B is further positive Harris recurrent with unique stationary distribution



def= �

� + �
P(X∗ ∈ ·)⊗ �0 + �

� + �
�0 ⊗ P(Y ∗ ∈ ·), (3.1)

where�0 is Dirac measure at 0 and⊗ denotes product measure, see[1]. As one can readily verify, the
increments of(Wn)n�0 are conditionally independent givenB and

P(Wn −Wn−1 ∈ ·|B)=Q(Bn−1,Bn, ·)
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for all n�1 and a suitable kernelQ, see[1]. Therefore,(Bn,Wn)n�0 constitutes a Markov renewal process
with Harris recurrent driving chainB.

We next observe that forn�2

{Vn−1 �= Vn} = {BXn−1 = BYn = 0} ∪ {BYn−1 = BXn = 0} a.s. (3.2)

The two sets on the right-hand side are a.s. disjoint because the absolute continuity ofX andY in combi-
nation with the independence of(Sn)n�0 and(Tn)n�0 guarantees that the event{Wk =Wk+1 for some
k�1} of multiple renewals in the superposition has probability 0. Eq. (3.2) shows that, conditioned upon
B, the indicators1{Vn−1 �=Vn} are deterministic and thus independent and that

P(Vn−1 �= Vn|B)= 1{(0,0)}(BXn−1,B
Y
n )+ 1{(0,0)}(BYn−1,B

X
n ) a.s. (3.3)

Since these indicators are the increments of(R∗
n)n�1 we have proved

Lemma 1. Under the given assumptions(Bn, R∗
n)n�1 forms a Markov renewal process.

Theorem 2. Under the given assumptions,

lim
n→∞

R∗
n

n
= 2

� + �

∫ ∞

0
P(X> t)P(Y > t)dt a.s. (3.4)

and

lim
t→∞

Rt

t
= 2

��

∫ ∞

0
P(X> t)P(Y > t)dt a.s. (3.5)

Proof. By the strong law of large numbers for Markov renewal processes,R∗
n/n converges a.s. toE
(R

∗
2−

R∗
1)= P
(V1 �= V2), whereP
 denotes the probability measure under whichB has initial distribution


and is hence stationary. Now use (3.1) and (3.3) to infer

P
(V1 �= V2)= P
(B
X
1 = 0,BY2 = 0)+ P
(B

Y
1 = 0,BX2 = 0)

= �

� + �
P(X>Y ∗)+ �

� + �
P(Y >X∗)

= 2

� + �

∫ ∞

0
P(X> t)P(Y > t)dt .

Of course, the occurring generic variablesX,X∗, Y andY ∗ are here assumed to be mutually independent.
We have thus proved (3.4). Next, by the elementary renewal theorem (see e.g.[10])

lim
t→∞

N(t)

t
= lim
t→∞

N1(t)

t
+ lim
t→∞

N2(t)

t
= 1

�
+ 1

�
= � + �

��
a.s.,

which combined with (3.4) yields

Rt

t
= R

∗
N(t)

t
= N(t)

t

RN(t)

N(t)
→ 2

��

∫ ∞

0
P(X> t)P(Y > t)dt ,

i.e. (3.5). �
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Our next result shows that suitable normalizations ofR∗
n andRt converge to a standard normal distri-

bution. This will subsequently be used to derive asymptotically consistent level� tests for the problem of
testing for equal scale parameters.

Theorem 3. Given the previous assumptions, EX2<∞ andEY 2<∞,

R̂∗
n

def= R∗
n − �n

�
√
n

d→N(0,1), asn→ ∞ (3.6)

and

R̂t
def= Rt − �N(t)

�
√
N(t)

d→N(0,1), as t → ∞, (3.7)

where�
def= 2

�+�

∫∞
0 P(X> t)P(Y > t)dt and

�2 def= �(1 − �)+ 2
∑
n�2

(P
(V1 �= V2, Vn �= Vn+1)− �2)>0.

The proof of this result is not only more difficult than the one of its counterpart Theorem 1 in the
Poisson case but also rather long. It is therefore provided in the next section.

Testing for equal scale parameters: Consider an absolutely continuous positive random variableZwith
meanEZ = 1. Let us assume that, for�, �>0, theXi are distributed as�Z and theYi are distributed as
�Z. We want to consider the problem of testing for equal scale parameters� = � based on the run statistic
R∗
n. Clearly,R∗

n does not change if we multiply theXi ’s andYi ’s by the same positive constant. Hence
the limiting constant of (3.4)

�(�, �)
def= 2

� + �

∫ ∞

0
P(�Z> t)P(�Z> t)dt (3.8)

depends on� and� only through their ratio�
def= �/� or, equivalently,p

def= �/(� + �)= 1/(� + 1) and may
be written as

�(p)
def= �

(
1 − p
p
,1

)
= 2p

∫ ∞

0
P(Z > t)P

(
1 − p
p
Z> t

)
dt , (3.9)

which is also immediate by a change of variables in the integral in (3.8). The obvious inequality

�(p)�2pmin

{
1,

1 − p
p

}

shows that�(p) becomes small wheneverp is close to its boundary values 0 or 1. In fact,�(p) attains
its absolute maximum atp = 1

2 which provides the basis for using the run statistic for discrimination
purposes.
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Lemma 2. Let Z be a positive random variable with finite mean and�(p) be as defined in(3.9) for
p ∈ (0,1). Then

�(p)< �(1/2)=
∫ ∞

0
P(Z > t)2 dt

for all p �= 1/2.

Proof. Using the Cauchy–Schwarz inequality, we obtain

�(p)�2p

(∫ ∞

0
P(Z > t)2 dt

)1/2
(∫ ∞

0
P

(
1 − p
p
Z> t

)2

dt

)1/2

= 2p

(∫ ∞

0
P(Z > t)2 dt

)1/2
(

1 − p
p

∫ ∞

0

p

1 − pP

(
Z>

pt

1 − p
)2

dt

)1/2

= 2p1/2(1 − p)1/2
∫ ∞

0
P(Z > t)2 dt

= 2p1/2(1 − p)1/2�(1/2).
Since 2p1/2(1 − p)1/2 has its unique maximum 1 atp = 1

2 the lemma is proved. �

Level� run tests forp= �/(�+ �)= 1
2 againstp �= 1

2, either based upon a sample ofnarrivals or upon
theN(t) arrivals within a time interval(0, t], can now be defined along the same lines as in Section 2
for the Poisson case. We writePp for the situation thatp is the underlying parameter. For� ∈ (0,1) the
critical value here takes the form

c(n, �)= �(1/2)n− v��(1/2)√n,
where as beforev� is the�-fractile of the standard normal distribution. The following corollary shows

that�n
def= 1{R∗

n<c(n,�)} and	t
def= 1{Rt<c(N(t),�)} are again asymptotically consistent level� tests.

Corollary 2. In the described situation of testing for equal scale parameters we have asn → ∞,
respectivelyt → ∞:

(i) P1/2(R
∗
n < c(n, �))→ � andP1/2(Rt < c(N(t), �))→ �,

(ii) Pp(R
∗
n < c(n, �))→ 1 andPp(Rt < c(N(t), �))→ 1 for anyp �= 1/2.

The proof is essentially a copy of the proof of Corollary 1 when substituting Theorem 1 with Theorem
3 there. It is therefore omitted.

4. Proof of Theorem 3

We begin with some further notation and putPx,y
def= P(·|BX0 = x,BY0 = y) (so P = P0,0) with ex-

pectation operatorEx,y . The transition kernel of(Bn)n�0 is denoted byP and we writePg(x, y) for
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∫
g(u, v)P ((x, y),d(u, v)). For a measurableA ⊂ S, the first hitting and first return time of(Bn)n�0

toA are denoted as�0(A) and�(A), respectively, i.e.

�0(A)
def= inf {n�0 : Bn ∈ A} and �(A)

def= inf {n�1 : Bn ∈ A}.
Proof of Theorem 3. Note that

R̂∗
n = �n(h)

�
√
n

def=
∑n
k=1h(Bk, R

∗
k − R∗

k−1)

�
√
n

with h(x, y, e)
def= e − �, whence (3.6) and (3.7) are central limit theorems for an additive functional

of the temporally homogeneous Markov chain(Bn, R∗
n − R∗

n−1)n�0 with state spaceS × {0,1}. Its

transition kernelP̃ ((x, y, e), ·), say, is independent ofe ∈ {0,1} because, by Lemma 1,(Bn, R∗
n)n�0 is

a Markov renewal process. This property implies that(Bn, R
∗
n −R∗

n−1)n�0 inherits the Harris ergodicity
from (Bn)n�0 and thatA× {0,1} is a small set (see[8, p. 106]) wheneverA is a small set for(Bn)n�0.
Let 
̃ be the stationary distribution of(Bn, R∗

n − R∗
n−1)n�0.

We will conclude (3.6) and the asserted form of�2 from Theorem 17.5.3 in[8] after the verification of
the drift condition

P G̃(x, y, e)− G̃(x, y, e) � − 1 + b1
C̃
(x, y, e), (x, y, e) ∈ S × {0,1} (4.1)

for (Bn, R∗
n−R∗

n−1)n�0, where the functioñG�1 satisfies
∫

G̃
2

d
̃<∞, C̃ is a small set andb ∈ (0,∞)
a constant. For the proof of (3.7) we will first show that�N(t)(h) has the same limiting behavior as another
additive functional possessing stationary, 1-dependent increments. Asymptotic normality of this second
functional is then rather easily obtained by an application of Anscombe’s theorem. The positivity of�2

will be proved in Lemma 6 in Section 4.

Proof of (3.6): Lemmas 3 and 4 below show that the setCa
def={0} × (0, a] is small for(Bn)n�0 and

satisfies sup(x,y)∈SEx,y�(Ca)<∞ for eacha >0 with P(Y >a)>0. These two facts imply thatCa is
(1-)regular (see[8, p. 333 and Theorem 14.2.4 on p. 339]). Consequently, by Theorem 14.2.3 in[8], the
drift condition

PGa(x, y)− Ga(x, y)� − 1 + b1Ca (x, y), (x, y) ∈ S (4.2)

holds true for someb ∈ (0,∞), whereGa(x, y)
def= Ex,y�0(Ca) for (x, y) ∈ S. Note that�0(Ca)��(Ca)

and Lemma 4 ensure thatGa is a bounded function with supremum‖Ga‖∞. PuttingVa
def= 1+ Ga, (4.2)

even implies the stronger geometric drift condition

PVa − Va� − 1 + b1Ca � − �Va + b1Ca (4.3)

with �
def= (1 + ‖Ga‖∞)−1 ∈ (0,1) and therefore the geometric ergodicity of(Bn)n�0, see[8, Theorem

15.0.1].

Next putG̃a(x, y, e)
def= Ga(x, y) for (x, y, e) ∈ S×{0,1} and observe that̃P G̃a=PGa. Combining

this fact with (4.2) we infer validity of (4.1) with̃G=G̃a andC̃=Ca×{0,1} for anyawith P(Y >a)>0.

Furthermore
∫

G̃
2
a d
̃ = ∫

G2
a d
<∞ trivially holds by the boundedness ofGa. Since(R∗

n)n�0 has
increments bounded by 1, we conclude (3.6) and the asserted form of�2 from Theorem 17.5.3 in[8].
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Proof of(3.7): Using Nummelin’s split chain (see[8, p. 101f]), each small set induces a renewal process
(
n)n�1 of regeneration epochs for(Bn, R∗

n − R∗
n−1)n�0 such that, under every initial distribution, the

cycles(Bj , R∗
j − R∗

j−1)
n−1 �j<
n , n�1 are 1-dependent and forn�2 also stationary(
0
def= 0) with the

same distribution as the first cycle underP	, 	
def= P(B
1 ∈ ·). Consequently,�∗

n(h)
def= �
n(h), n�0,

forms a random walk with 1-dependent increments which are further stationary forn�2. Its stationary
drift E(�∗

2(h)− �∗
1(h)) equalsE	
1E
h(B1, R

∗
1)= 0. The geometric ergodicity of(Bn)n�0 ensures that

E	
2
1<∞ (see[8, Theorem 15.0.1]) and thusE(�∗

2(h)−�∗
1(h))

2<∞because|h|�1. Put�∗(n) def= inf {k :

k�n}. Then

|�∗
�∗(n)(h)− �n(h)|√

n
�


�∗(n) − n√
n

P→ 0, asn→ ∞, (4.4)

where
P→ means convergence in probability (under every initial distribution). Combining this result with

(3.6) we infer

�∗
�∗(n)(h)

�
√
n

d→N(0,1), asn→ ∞.

With (�∗
n (h))n�1 having stationary, 1-dependent increments it is not difficult to verify that Anscombe’s

theorem applies to�∗
�(N(t)) (h) and gives

�∗
�∗(N(t))(h)

�
√
N(t)

d→N(0,1), as t → ∞.

The details are omitted. Since (4.4) remains true whenn is replaced withN(t) giving∣∣∣∣∣
�∗

�∗(N(t))(h)

�
√
N(t)

− R̂t
∣∣∣∣∣ P→ 0 ast → ∞,

we finally infer (3.7). �

Lemma 3. The setCa = {0} × (0, a] is small for eacha >0withP(Y >a)>0.

Proof. If P(Y >a)>0 thenP(Y ∗�a)>0 and thus
(Ca) = (�/(� + �))P(Y ∗�a)>0. ForCa to be
small it hence remains to verify that

inf
u∈(0,a] P0,u(Bk ∈ ·) � ��

for somek�1, � ∈ (0,1] and a probability measure� concentrated onCa.
Since, for allm, n�1 andu ∈ (0,∞), Sm andTn are independent and absolutely continuous with

respect to Lebesgue measure�� underP0,u, a technical but straightforward argument shows that for some
a >0 there existm, n�1 and� ∈ (0,1) such that

inf
u∈(0,a] P0,u(Sm − Tn ∈ dv ∩ (0, a))��1(0,a)(v)��(dv).



294 G. Alsmeyer, A. Irle / Journal of Computational and Applied Mathematics 186 (2006) 283–299

Consequently,

P0,u(B
X
m+n = 0,BYm+n ∈ B)�P0,u(Sm − Tn ∈ B ∩ (0,∞), Yn+1>Sm − Tn)

=
∫ ∞

0
P0,u(Sm − Tn ∈ B ∩ (0, y))P(Y ∈ dy)

�
∫ ∞

a

P0,u(Sm − Tn ∈ B ∩ (0, a))P(Y ∈ dy)

��P(Y >a)��(B ∩ (0, a))
for all u ∈ (0, a], i.e.

inf
u∈(0,a] P0,u(Bm+n ∈ ·)��P(Y >a)�0 ⊗ ��(· ∩ (0, a)).

This shows thatCa is a small set whenevera satisfiesP(Y >a)>0. �

Lemma4. The setCa={0}×(0, a] satisfiessup(x,y)∈SEx,y�(Ca)<∞ for eacha >0withP(Y >a)>0.

Proof. We first note that, having proved sup(x,y)∈S Ex,y�(Ca)<∞, regularity is a direct consequence of
Theorem 14.2.4 in[8] becauseCa is also small.

Let ‖ · ‖ denote total variation distance. Fix anya with P(Y >a)>0. By absolute continuity of
X andY,

lim
t→∞ ‖P(SN1(t)+1 − t ∈ ·)− P(X∗ ∈ ·)‖ = 0,

lim
t→∞ ‖P(TN2(t)+1 − t ∈ ·)− P(Y ∗ ∈ ·)‖ = 0,

which implies that

inf
t� t0

P(SN1(t)+1 − t�a)�P(X∗�a)/2�2�>0,

inf
t� t0

P(TN2(t)+1 − t�a)�P(Y ∗�a)/2�2�>0

for somet0>0, where�
def= min{P(X∗�a),P(Y ∗�a)}/4. Choosemlarge enough so that min{P(Sm� t0),

P(Tm� t0)}�1/2. DefineW−1
def= T0, Ŵ0

def= S
N1(Ŵ−1)+1 and

Ŵ1
def= S

N1(Ŵ−1)+m+1, Ŵ2
def= T

N2(Ŵ1)+1, Ŵ3
def= T

N2(Ŵ1)+m+1,

Ŵ4
def= S

N1(Ŵ3)+1, Ŵ5
def= S

N1(Ŵ3)+m+1, Ŵ6
def= T

N2(Ŵ5)+1, . . . ,

Ŵ0:n
def= (Ŵ0, . . . , Ŵn)

and

Dn
def= Ŵn − Ŵn−1
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for n�1. Then the conditional distribution underPx,y of D2n givenŴ0:2n−1 depends only on(D2n−2,

D2n−1)andPx,y(D2n ∈ ·|D2n−2=u,D2n−1=v)either equalsP(SN1(u+v)+1−u−v ∈ ·)orP(TN2(u+v)+1−
u − v ∈ ·) for u, v >0, (x, y) ∈ S andn�1. Furthermore,D2n−1 is independent ofŴ0:2n−2 for n�1,
and its distribution (under eachPx,y) equals either that ofSm or of Tm (underP = P0,0). Noting that
EX2<∞ andEY 2<∞ ensures∫ ∞

0
sup
t�0

P(SN1(t)+1 − t > s)ds <∞

and a similar result for supt�0 P(TN2(t)+1−t > s), see e.g.[13, Theorem 2.4], we hence infer the existence
of an integrable distributionG on [0,∞) such that

Px,y(Dn > t |Ŵ0:n−1)�1 −G(t) a.s. (4.5)

for all t >0, (x, y) ∈ S andn�1. By choice oft0 andm, we further obtain

Px,y

(
min

1�k�n
D4k > a

)
=
∫
(a,∞)

∫
(0,∞)

Px,y(D4n > a|D4n−2 = u,D4n−1 = v)

× Px,y(D4n−1 ∈ dv)Px,y

(
D4n−2 ∈ du, min

1�k�n−1
D4k > a

)
�((1 − 2�)Px,y(D4n−1> t0)+ Px,y(D4n−1� t0))

× Px,y

(
min

1�k�n−1
D4k > a

)

= (1 − 2�Px,y(D4n−1> t0))Px,y

(
min

1�k�n−1
D4k > a

)

�(1 − �)Px,y

(
min

1�k�n−1
D4k > a

)
· · · �(1 − �)n

for all n�1 and(x, y) ∈ S. We thus see that̂�
def= inf {n : D4n�a} has geometrically decreasing tails of

order less than 1− � under eachPx,y , (x, y) ∈ S. In particular,

sup
(x,y)∈S

Ex,y �̂<∞. (4.6)

Now �(Ca)
def= inf {n�1 : Bn ∈ Ca} is clearly bounded byN1(Ŵ4�̂) which may be rewritten as

�(Ca)�
4�̂∑
k=1

N1(Ŵk−1, Ŵk], (4.7)

whereN1(s, t] def= N1(t) − N1(s) for s� t . We claim that there exists an integrable distributionH such
that

Px,y(N1(Ŵk−1, Ŵk]>n|Ŵ0:k−1)�1 −H(n) a.s. (4.8)
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for all k, n�1. For the proof we will use (4.5) and the inequality

Px,y(N1(s, s + t]>n)�P(N1(t)> n− 1) (4.9)

for all (x, y) ∈ S, s, t�0 andn�1, see e.g.[3, p. 810]. Now it is readily seen thatN1(Ŵk−1, Ŵk] either
equalsmor 1, or satisfies

Px,y(N1(Ŵk−1, Ŵk]>n|Ŵ0:k−1)

=
∫

[0,∞)

∫
[0,∞)

Px,y(N1(Ŵk−1, Ŵk−1 + t]>n)Px,y(Dk ∈ dt |Ŵ0:k−1)

�
∫

[0,∞)
P(N1(t)> n− 1)Px,y(Dk ∈ dt |Ŵ0:k−1) a.s.,

where (4.9) was used for the last inequality. Now use (4.5) and the fact thatP(N1(t)> n−1) is increasing
in t to conclude that eitherN1(Ŵk−1, Ŵk] ∈ {1,m}, or

Px,y(N1(Ŵk−1, Ŵk]>n)�
∫

[0,∞)
P(N1(t)> n− 1)G(dt).

This proves (4.8) for some distributionH, and since

∑
n�0

P(N1(t)> n)�EN1(t)�c(t + 1)

for a suitable constantc ∈ (0,∞), we further see thatH can be chosen as an integrable distribution with
mean�H , say.

Finally, by combining (4.6), (4.8) and Lemma 5 below, we obtain

sup
(x,y)∈S

Ex,y�(Ca)�2�H sup
(x,y)∈S

Ex,y �̂<∞,

which is the asserted result.�

Lemma 5. Let 0 = Z0�Z1�Z2� · · · be an increasing sequence of nonnegative random variables
whose incrementsZn − Zn−1 are stochastically bounded by an integrable distribution, i.e., there exists

a distribution function H such thatH(0)= 0, �H
def= ∫∞

0 (1 −H(t))dt <∞ and

P(Zn − Zn−1> t |Z0, . . . , Zn−1)�1 −H(t) a.s. (4.10)

for all t�0 andn�1.Then

EZ���HE�

for each stopping time� for (Sn)n�0.
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Proof. Integration of (4.10) with respect tot givesE(Zn − Zn−1|Z1, . . . , Zn−1)��H a.s. for alln�1.
Hence the assertion follows from

EZ� = E

∑
n�1

E(Zn − Zn−1|Z1, . . . , Zn−1)1{��n}




�E


∑
n�1

�H1{��n}




= �HE�. �

Lemma 6. The asymptotic variance�2 in Theorem3 is positive.

Proof. For eachawith P(Y >a)>0, the setCa ={0}× 0, a] is small for(Bn)n�0 (Lemma 3). It is also
small for the chain(Bn, R∗

n−R∗
n−1)n�1 because(Bn, R∗

n−R∗
n−1) depends on(Bj , R∗

j −R∗
j−1)1�j �n−1

only throughBn−1. Fora fixed andk�1, letck ∈ [0,1] be the maximal value so that

inf u∈(0,a] P(0,u)(Bk ∈ ·)�ck�0 ⊗ ��(· ∩ (0, a]).
Choosek�1 ande ∈ {0,1} such thatck >0 and

Da
def=
{
y ∈ (0, a] :

∫
(0,a]

P0,x(R
∗
k − R∗

k−1 = e|Bk = (0, y))��(dx)�a/2
}

is ��-positive. It follows

P0,u(B
X
2k = 0,BY2k ∈ A,R∗

2k − R∗
2k−1 = e)

�c2k
∫
A∩(0,a]

∫
(0,a]

P0,u(R
∗
2k − R∗

2k−1 = e|Bk = (0, x),B2k = (0, y))��(dx)��(dy)

= c2k
∫
A∩(0,a]

∫
(0,a]

P0,x(R
∗
k − R∗

k−1 = e|Bk = (0, y))��(dx)��(dy)

�
ac2k

2
��(A ∩Da)

for all u ∈ (0, a] and all measurableA ⊂ R and thus with�
def= 1Da(y)��(dy)/��(Da).

inf
u∈(0,a] P0,u(B

X
2k = 0,BY2k ∈ dy,R∗

2k − R∗
2k−1 = e)�c∗2k�(dy) (4.11)

for somec∗2k >0.
Now let N be the set of alll ∈ N for which (4.11) holds true if 2k is replaced withl andc∗2k with

somec∗l >0 (keepinge andDa fixed). We claim thatN containsl0 + N for somel0�1. In fact, since
(Bn, R

∗
n−R∗

n−1)n�1 is aperiodic, we have that{l�1 : P�(Bl ∈ Ca)>0} containsl1+N for somel1�1.
Consequently, for alll�2k + l1 and allu ∈ (0, a]

P0,u(Bl ∈ Ca)�P0,u(B2k ∈ Ca,Bl ∈ Ca)�c∗2kP�(Bl−2k ∈ Ca)>0
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and then, for alll� l0
def= 4k + l1, u ∈ (0, a] and all measurableA ⊂ R,

P0,u(B
X
l = 0,BYl ∈ A,R∗

l − R∗
l−1 = e)

�
∫
(0,u]

P0,x(B
X
2k = 0,BY2k ∈ A,R∗

2k − R∗
2k−1 = e)P0,u(Bl−2k ∈ {0} × dy)

�(c∗2k)2P�(Bl−4k ∈ Ca)�(A)
which proves our claim.

Let 
̃ be the stationary distribution of(Bn, R∗
n − R∗

n−1)n�1. SinceCa is a small set for(Bn)n�0 with
minorizing measure�0 ⊗ �, it is well known that


̃ = 1

E�0⊗��
E�0⊗�

(
�−1∑
k=0

1{(Bk,R∗
k−R∗

k−1)∈·}

)

for some regeneration epoch� (see e.g.[2] for the construction) and thus̃
�c(�0 ⊗ � ⊗ �e) for

c
def= (E�0⊗��)−1>0. A combination with (4.11), withl ∈ N instead of 2k, then implies

P
̃((B1, R
∗
1,Bl+1, R

∗
l+1 − R∗

l ) ∈ ·)� c̃l(�0 ⊗ � ⊗ �e)
2 (4.12)

for all l ∈ N and suitablẽcl >0.
Now assume�2 = 0 and observe that� ∈ (0,1). Since(Bn, R∗

n − R∗
n−1)n�1 is Harris ergodic and

satisfying the drift condition (4.1) with bounded̃G, Proposition 2.4 in[6] implies the existence of a
measurable function� : S × N0 → R such that

�n(h)= �(Bn, R
∗
n − R∗

n−1)− �(B1, R
∗
1) P
̃-a.s. (4.13)

for all n�1. Note that�n(h) takes values in{j − n�; 0�j�n}. Choosem�1 such thatm− 1 andmare
both elements ofN. Combining (4.12) and (4.13), we see that there exists a valuessuch that

P
̃(�i(h)= s)� c̃i
∫
1{s}(�(b2, r2)− �(b1, r1))(�0 ⊗ � ⊗ �e)

2(db1,dr1,db2,dr2)>0

for bothi=m andi=m+1. Hence there must bem1,m2 ∈ N0 such thats=m1 −m�=m2 − (m+1)�,
i.e. � =m2 −m1 ∈ Z. Since� ∈ (0,1), we have produced a contradiction.�
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