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1. Introduction

We consider a polynomial planar vector field X having a Darboux type first integral:

H = Hε = (x − ε)a P
k∏

j=1

P
a j

j , P , P j ∈ R[x, y], a,a j ∈ R+. (1.1)

The integrable polynomial vector field X has the form

X = 1

Mε
(H y∂x − Hx∂y), (1.2)
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M. Bobieński / J. Differential Equations 246 (2009) 1264–1273 1265
Fig. 1.1. The phase portrait of (1.2). The period annulus D bounded by polycycles γ0 and γ1.

where Mε = (x −ε)a−1 ∏k
j=1 P

a j−1
j is the integrating factor. The phase portrait of the vector field (1.2)

in the case we study in this paper is shown in Fig. 1.1. Let D be the open period annulus whose
closure intersects the zero level curve H−1(0). Let the polycycle γ0 ⊂ H−1(0) be a corresponding part
of boundary of D . This polycycle γ0 consists of edges γ 0

μ which meet at vertices pμν—see Fig. 1.1.
Now we consider a small polynomial deformation of X

X + εY , Y = R∂x + S∂y, R, S ∈ R[x, y]. (1.3)

In general, most of the periodic orbits are broken, so to investigate limit cycles bifurcating from the
annulus D , we consider the respective displacement function Δ(h)

Δ(h) = −ε

∫
γh

Mε(S dx − R dy) + o(ε)

and its linearization given by the pseudo-Abelian integral. By the implicit function theorem, the limit
cycles bifurcating in a compact domain K ⊂ D are given by zeroes of the pseudo-Abelian integral

I(ε,h) = Iε(h) = 1

h

∫
γh

Mε(S dx − R dy) =
∫
γh

S dx − R dy

(x − ε)P
∏k

j=1 P j

. (1.4)

The aim of this paper is to prove the existence of local upper bound for the number of zeroes
of pseudo-Abelian integral I(h). This is an analog of the Varchenko–Kchovanskii theorem for pseudo-
Abelian integrals. In the previous papers [1,7] the generic case was investigated. In this paper we
consider a 1-parameter unfolding of the singular (non-generic) codimension 1 case. Another non-
generic Darboux case was studied in [2].

Let us recall some definitions, notation and general results from [1]. They will be useful later.

Definition 1.1. The Darboux function H given by (1.1) is regular at infinity if any (complex) level curve
of the polynomial (x − ε)P P1 · · · Pk is regular at infinity, i.e. crosses the line at infinity transversally
in 1 + deg P + deg P1 + · · · + deg Pk distinct points.
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The condition for function to be regular at infinity is stable under a small perturbation of H (in-
side the Darboux type with fixed number of factors). This condition is satisfied by generic k-tuples
of polynomials. It was proved in [1] that under this hypothesis the pseudo-Abelian integrals I are
endlessly continuable [3–5]. That is, each path of length � � ∞ can meet only a finite set of singular
points. This means that on the Riemann surface of the integral I the ramification points are discrete,
even though their projection to the complex plane can have accumulation points. Moreover, all pos-
sible ramification points are located on finite number of circles centered at 0. The last statement is
a consequence of fact that all ramification points, except 0, correspond to the critical points of the
polynomial vector field X . Due to different determinations of the Darboux function H any critical
point can generate infinite sequence of ramification points. Since |H| is a uni-valued function, all of
these determinations are located on the circle.

We prove the existence of local bound for the number of zeroes of pseudo-Abelian integral. Below
we define an open subset in which this property holds. Let Xk(ε;n0,n1, . . . ,nk;n) be the following,
finite-dimensional space of polynomial system with Darboux type first integral:

Xk(ε;n0,n1, . . . ,nk;n) :=
{

1

Mε
(H y∂x − Hx∂y) + ε(R∂x + S∂y):

Hε = (x − ε)a P
k∏

j=1

P
a j

j , deg P � n0, deg P j � n j, deg(R, S) � n

}
,

where Mε = (x−ε)a−1 ∏k
j=1 P

a j−1
j . The parameters of the space Xk(ε;n0, . . . ,nk;n) are positive expo-

nents (a,a1, . . . ,ak), coefficients of polynomials P , P j and coefficients of the polynomial perturbation
(R, S). The equation P (0,0) = 0 distinguishes a codimension one subset Y1 ⊂ Xk(ε;n0, . . . ,nk;n). We
define an open subset X0

k (ε;n0, . . . ,nk;n) ⊂ Y1 by the condition that the unperturbed system admits
a period annulus D with boundary component γ 0

ε ⊂ H−1(0) and the following genericity assumptions
(in Y1) are satisfied:

(1) The Darboux function Hε is regular at infinity.
(2) For ε = 0, the polycycle γ 0

0 consists of edges γ 0
μ contained in a smooth part of the level curve

P−1
jμ

(0) for some jμ . Any vertex pμν , except p = (0,0), corresponds to the transversal intersection

of level curves P−1
jμ

(0) and P−1
jν

(0).

(3) The polynomial P has a critical point of Morse type p = (0,0), i.e. P (x, y) = y2 − x2 +h.o.t. Other
polynomials P j satisfy P j(0,0) �= 0, j = 1, . . . ,k.

Remark 1.2. It is worth to notice that the above genericity assumptions guarantee that for sufficiently
small, non-zero ε the genericity condition in the sense of [1] is satisfied. Indeed the intersection in all
vertices pμν except p = (0,0) remain transversal for sufficiently small ε . The zero vertex (0,0) either
becomes transversal or bifurcates into a pair of transversal vertices, depending on the sign of ε .

Theorem 1.3. Let the system X + εY ∈ X0
k (ε;n0, . . . ,nk;n). Assume that the pseudo-Abelian integral I(ε,h)

given by (1.4) is not identically zero. There exists an upper bound Z(X0;n0, . . . ,nk,n) for the number of iso-
lated zeros of pseudo-Abelian integrals generated by vector fields in X0

k (ε;n0, . . . ,nk;n) sufficiently close to X.

2. Proof of Theorem 1.3

The proof is based on Gabrielov’s theorem [6] and its continuous generalization recalled in the
following lemma.
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Lemma 2.1. Let U ⊂ C be an open subset and Iε : U → C be a continuous family of holomorphic functions
(in uniform convergence on compacts). Let l ⊂ U be a path in U . Assume that Iε does not vanish on l. Then the
increment of argument along 	Argl Iε is uniformly bounded for sufficiently small ε .

The polycycle D is mapped by H to a segment (0,h1). We split this segment into three pieces:
(0, r), [r,h1 − r] and (h1 − r,h1) for sufficiently small, ε-independent r. The number of zeroes of Iε on
[r,h1 − r] is locally bounded by Gabrielov’s theorem.

To prove the existence of estimate on (h1 − r,h1), we observe that the first integral function H
(each branch) is holomorphic function in a neighborhood of any point except the zero level curve
H−1(0). Thus, the investigation of monodromy and singularities of Iε is analogous to the Hamiltonian
case. So, the upper bound for the number of zeroes of pseudo-Abelian integral Iε is a consequence of
classical Varchenko–Kchovanskii theorem.

Below we prove the existence of ε-independent bound for the number of zeroes close to h = 0, i.e.
on (0, r).

First we investigate the case ε = 0. We make the blow-up transformation y = xη. Due to the
assumptions on H made in the definition of the space X0

k , the first integral H has the following local
form

H0(x, η) = xa+2 Ĥ(x, η) = xa+2(η2 − 1
)

ĝ∗(x, η),

where ĝ∗ is a germ of holomorphic function such that ĝ∗(0,0) �= 0. Thus, the intersections of respec-
tive complex curves in vertices (0,±1) are transversal. The intersections in all other vertices are also
transversal by the assumption on H . So, the system satisfies the genericity condition in the sense
of [1]. Thus, the number of isolated zeroes of pseudo-Abelian integrals is locally bounded on the
hyperplane {ε = 0} ∩ X0

k (. . .). The main idea of the proof of this fact was the following (see [1] for
details). In a disk D(0, r) of positive, uniform with respect to parameters radius r the origin is the
only singularity (ramification point) of the pseudo-Abelian integral I . Moreover, certain iterated vari-
ation of I around h = 0 vanishes identically. Using these two properties we are able to control the
singularity of I at h = 0 uniformly with respect to parameters.

Now, for non-zero ε , the integrable Darboux system Xε has an additional singular point pε
c which

tends to (0,0) as ε → 0. This singular point pε
c corresponds to a small center bounded by curves

P = 0 and x = ε—see Fig. 1.1. It generates a possible ramification points of Iε located on a circle
whose radius is of order |ε|a+2—see Lemma 2.2 below. Thus, we cannot directly repeat the argument
from [1] to get an ε-independent estimation. To overcome this problem we investigate the asymptotic
behavior of integral Iε at h = 0, using coordinate u = h/εa+2—see Proposition 2.3.

We fix some useful notation for the rescaled variation, iterated of variations and variation with
bounded radius.

V arα I(h) = I
(
e2π i/αh

) − I(h),

V arr0
α I(h) = I

(
e2π i/αh

) − I(h), |h| > r0,

V arα1,...,αk := V arα1 ◦ V arα2 ◦ · · · ◦ V arαk . (2.1)

The following lemma describes the set of ramification points of the pseudo-Abelian integral Iε .

Lemma 2.2. The pseudo-Abelian integral Iε(h) is an endlessly continuable, multi-valued function on C
∗ . All

ramification points are localized on finite number of circles centered at 0 of radius r0(ε), r1(ε), . . . , rN (ε). The
radius functions r j(ε) for j = 1, . . . , N are germs of analytic functions of ε and r j(0) �= 0. Ramification points
located on circle of radius r0 (bifurcating from 0) has the form

hμ(ε)(ε) = εa+2uμ(ε), uμ(0) �= 0,

where uμ(ε) are analytic functions of ε .
Moreover, the first branch of integral Iε is holomorphic in a neighborhood of the real segment (0, r).
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The following proposition describes the asymptotic analytic behavior of pseudo-Abelian integral Iε
in a sufficiently small disc centered at 0 (the radius of disc is of order Rεa+2).

Proposition 2.3. Let u = h/εa+2 . Then the variation admits the following decomposition V ar1 Iε = I1(ε,h)+
I1(ε, u), where the functions f0 and f1 depend in an analytic way on ε and they have the following analytic
properties.

(1) The function I1(ε,h) is holomorphic multi-valued in a disc D(0, R1); the origin h = 0 is the only ram-
ification point in the disc. The growth of I1 at h = 0 is at most polynomial (i.e. |I1| � C |h|−N for some
constants C, N). Moreover, the integral I1 satisfies the following variation equation around zero

V ar1/a1,...,1/ak I1 ≡ 0. (2.2)

(2) The function I0(ε, u) is holomorphic, multi-valued in u ∈ D(0, R0). The function I0 is ramified at the
origin and in singularities located close to the circle of radius ρ0 < R0 . The function I0 in a punctured disc
D(0,

ρ0
2 ) is given by a convergent power series∑

n�n0

an(ε)un/a.

Outside the ramification circle, e.g. in a ring R(2ρ0, R0), it is given by∑
n∈Z

bn(ε)un/(a+2) =
∑

bn(ε)ε−nhn/(a+2).

Moreover, if the integral I(ε,h) is not identically zero, there exists a pair (A,α), A ∈ R, α = 0,1, . . . ,k,

such that ε−A(logε)−α I(ε, u)
ε→0−→ F (u) �≡ 0. The limit function F (u) is a multi-valued, holomorphic function

satisfying the following variation relation

V ar1,1/a,1/a1,...,1/ak F (u) ≡ 0. (2.3)

Proof of Theorem 1.3. The main idea of proof is to reduce problem to the one which was previously
considered in [1]. In that paper we have shown that the iterated variation equation of type (2.2)
implies local bound for the number of zeroes. In our case, by two additional steps we reduce the
problem of estimating the number of zeroes of Iε to the analogous problem for the variation of I1.
The latter function satisfies the iterated variation equation so one can use previously proved results.

In the first step we use the argument principle for the function Iε and the contour Γ1 shown in
Fig. 2.1.

(1) The increment of argument of Iε along big circle Cr is bounded by Gabrielov’s theorem.
(2) By Proposition 2.3 the function ε−A log−l ε Iε(ε, εa+2u) (for certain real A and integer l) is non-

zero, holomorphic in a neighborhood of Cεa+2 and depends in continuous way on ε . Thus, the
increment of argument along the circle Cεa+2 is bounded by Lemma 2.1. The same argument
works for these parts of segments s± which are “far” from u = 0 (i.e. for |u| > ρ0).

(3) The limit function F (u) = limε→0 ε−A log−l ε Iε(ε, εa+2u) has a non-zero principal part at u = 0
of the form uα0 log j u, where α0 ∈ R, j ∈ Z, 0 � j � k + 1 (see [1]). Thus, for sufficiently small ε ,
the leading term of Iε(ε, εa+2u) at u = 0 has the form uα log j u, where α � α0, 0 � j � k + 1.
Since there is only finite number of such terms, there exists an upper bound for the increment of
argument along small circle around zero.

(4) To estimate the increment of argument along these pieces of s± which are close to u = 0 we
use Schwartz’s principle Im(Iε)|s± = C±V aruβ Iε , for some constants C±, β . Thus, the increment
of argument is bounded by the number of zeroes of variation. By commutativity of different
variations around zero and by Proposition 2.3, the iterated variation V ar1,1/a,1/a1,...,1/ak of the
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Fig. 2.1. The contour Γ1.

Fig. 2.2. The contour Γ2.

function V aruβ Iε vanishes identically. Thus, using argument principle k+2 number of times along
series of sector shape contours we prove the existence of the upper bound for the increment of
argument. For more details see [1, Proposition 4.2].

(5) Finally, by Schwartz’s principle

Im(Iε)|C± = ∓ 1

2i
V ar2ρ0ε

a+2

1 Iε,

the increments of argument along segments C± are bounded by the zeroes of the variation

V ar2ρ0ε
a+2

1 Iε on segment (−r,−2ρ0).

In the second step we use the contour Γ2 presented in Fig. 2.2. By the same arguments as in
step one, the increment of argument along arcs Cr and Cεa+2 are locally bounded and so the problem
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reduces to bound the number of zeroes of the iterated variation V ar2ρ0ε
a+2

1,1/(a+2) Iε on segments C± . This
variation of the function I0 vanishes identically by Proposition 2.3 and so

V ar2ρ0ε
a+2

1,1/(a+2)
Iε = V ar1,1/(a+2) I1.

The function I1(h) is a multi-valued holomorphic function in a disc D(0, r) with 0 as the only rami-
fication point. Moreover, it satisfies the variation relation (2.2). Thus, by Proposition 4.2 from [1], the
number of zeroes is locally bounded on the parameter space. �
3. Analytical properties of integrals near h = 0

In this section we prove Lemma 2.2 and Proposition 2.3.

Proof of Lemma 2.2. The fact that the pseudo-Abelian integral is an endlessly continuable multi-
valued holomorphic function was proved in [1]. Let us shortly recall the main idea. We define a
continuation of the function Iε as the integral along transport of the real oval γ along a path l in the
h-plane. We define the transport of γ by mean of the gradient flow of H , modified in a neighborhood
of the line at infinity. The only obstructions in this continuation is H−1(0) and singular points (zeroes)
p1, . . . , pN of the polynomial vector field Xε . Since the first integral H is a multi-valued function, any
of these critical points can generate infinite sequence of critical values (potential ramification points).
Only finite number of these ramification are realized as we restrict to paths of bounded length.

The only thing which remain to prove concerns localization of these singularities h j(ε) tending
to zero as ε → 0. By assumption on the first integral H , provided in the definition of the X0

k space,
the only singular point of Xε located in a neighborhood of γ 0

ε is the center pε
c —see Fig. 1.1. Its

coordinates have the form pε
c = ( 2ε

a+2 ,0) + O (ε2). Thus, the respective critical values has the form
given in Lemma 2.2. �
Proof of Proposition 2.3. The idea of the proof is the following. We split the loop γ into four pieces:
The part γ1 which is in finite distance from the origin, γ0 which is close to the origin and two
segments l± which join these two components—see Fig. 3.1. We fix the cutting lines x = εξ0 and
x = x0 more precisely later. The segments l± passes close to the zero level curve of P .

We investigate the analytic properties of the respective integrals along these (relative) cycles.
We have Iε = Ĩ0 + Ĩ1 + Ĩl , where

Ĩ0 =
∫
γ0

ω, Ĩ1 =
∫
γ1

ω,

Ĩl =
∫
l+

ω +
∫
l−

ω.

We prove the following properties:

(a) The function Ĩ1(ε,h) is analytic in ε . It is holomorphic, multi-valued in h and in a disk of suf-
ficiently small (ε-independent) radius it does not have any other singularities except h = 0. It
satisfies the variation relation V ar1,1/a1,...,1/ak Ĩ1 ≡ 0, i.e. variation V ar1 followed by variation as
in (2.2).

(b) Let u = h/εa+2. The function Ĩ0(ε, u) is analytic in ε . It is holomorphic, multi-valued in u with
ramification at u = 0 and a sequence of ramifications uμ(ε): |uμ| = ρ0 + O (ε) (ramification cir-
cle). The integral Ĩ0 satisfies the following variation relation around zero V ar1,1/a Ĩ0 ≡ 0 and the

relation V ar2ρ0
1,1/(a+2) Ĩ0 ≡ 0 outside the ramification circle.
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Fig. 3.1. The splitting of loop γ into pieces.

(c) The integral along the segment l± reads Ĩl = f1(ε,h)+ f0(ε, u)+ F , where f0, f1 are analytic in ε
with at most polar singularity of order 3. The functions f1 and f0 are meromorphic with at most
polar singularity in h and u respectively. The function F is given by the following convergent
power series

F =
∑

k�−1, l�−3

c jk

(
h

εa+2

)k

εl
{

α−1
kl (εαkl − 1) for αkl �= 1,

logε for αkl = 0,
(3.1)

where the real exponents αkl satisfy |αkl| < 1/10.

The above properties prove Proposition 2.3. Indeed, since V ar1 Ĩl ≡ 0, we have V ar1 I = V ar1 Ĩ1 +
V ar1 Ĩ0. Denote I0 = V ar1 Ĩ0 and I1 = V ar1 Ĩ1. Properties listed in point (1) of Proposition 2.3 follows
the point (a) listed above. On the other hand, variation relations satisfied by the function Ĩ0 imply
that I0 is a meromorphic function of u1/a inside the ramification circle and a uni-valued holomorphic
function of u1/(a+2) outside the ramification circle. Thus the power series expansions given in the
point (2) of Proposition 2.3 follow.

To prove the existence of leading term of I as ε → 0, we observe the following identity V ar1,1/a I =
V ar1/a I1(ε,h); the latter function is analytic in ε . Consider the case V ar1,1/a I �≡ 0. Then, there exists
a non-zero leading term (in ε) of the form εB(logε)l G̃(u). By analytic properties of functions Ĩ0, Ĩ1,
Ĩl , there is only finitely many terms of order (in ε) � B + 1. We take the lowest order (leading term)
in the decomposition I = Ĩ0 + Ĩ1 + Ĩl .

Consider now the case V ar1,1/a I ≡ 0 but V ar1 I = I1(ε,h) + I0(ε, u) �≡ 0. Due to the first identity,
the function V ar1 I is an holomorphic in u1/a and so V ar1 I = ∑

n�n0, j�0(anjε
jε(a+2)n +bnjε

j)un/a . We

order these terms according to the power of ε and choose the lowest order (leading) term of order εB .
Then we follow the previous idea and we consider all terms of order � B + 1 in the decomposition
of I .

Finally if V ar1 I ≡ 0, then I = Î1(ε,h) + Î0(ε, u) + F , where Î0, Î1 are analytic functions and F is
given by (3.1). We take the lowest order term in u variable: uk(g0(ε) + ∑N0

n=0 an(ε)εαn + b0ε
β logε),

where g0,a0, . . . ,aN0 are analytic functions of ε . We take the ε-leading term of the coefficient, say of
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order εκ0 , and then we consider all terms of the I expansion of order � κ0 (in ε-variable). We choose
a non-zero leading term.

Now we prove properties (a)–(c) listed above.
In point (a) we have the situation very similar to that considered in [1]. The only difference relies

in the fact that now we deal with relative cycle instead of true cycle. The proof of variation rela-
tion (2.2) is exactly the same as previously. Actually, after the first variation V arh I1 with respect to h
we deal with a real (closed) cycle. Indeed, the exponent of term P in the expression of Hε is 1 and so
the parts of path γ1 passing close to the edge γ 0

1 (Fig. 1.1) have parametrization of the form ϕ−(t,h),
for an analytic function ϕ− . So, the respective terms in V arh I1 cancel out. The equivalent argument
works for the second branch of P−1(0) passing through (0,0) (i.e. edge γ 0

μ in Fig. 1.1). Thus, the

cycle V arh I1 is localized in the neighborhood of the polycycle γ 0, except edges γ 0
1 and γ 0

μ . This part

of polycycle γ 0 satisfies the genericity assumptions from [1] and so one can apply results from that
paper about vanishing of iterated variation of the pseudo-Abelian integral.

The analytic dependence of the integral I1 on parameter ε is a consequence of the Implicit Func-
tion Theorem. The only critical points of the system appearing in a neighborhood of γ1 are normal
crossing vertices pμν . This configuration is stable under small deformation.

To prove the point (b) we make a blow up transformation

x = εξ, y = εη, h = εa+2u.

The equation for γ0 reads (ξ −1)a(η2 − ξ2 +ε(. . .))F (εξ, εη) = u, where F (0,0) �= 0 and (. . .) denotes
polynomial of higher order in ε, ξ,η. Thus, for sufficiently small ε we deal with the situation just
considered in point (a). We have a relative cycle contained in the level curve of the Darboux function
with exponents (1,a). Thus, the function Ĩ0 satisfies the following variation relation around zero:
V ar1,1/a Ĩ0 ≡ 0. The localization of singular (ramification) points u j(ε) is a consequence of Lemma 2.2.
Now it remains to prove the variation relation outside the ramification circle. We make another blow-
up transformation η = ξζ . The level curve equation reads ξ2(ξ − 1)a(ζ 2 − 1 + εξ(. . .))F (εξ, εξζ ) = u.
The relative cycle γ0, as a part of the real oval γ , satisfies |ξ | � |ξ0| (by definition of γ0) and |ζ | �
1 + |εξ0C0| � C̃0 (by the form of polynomial P ). For sufficiently large |u| (geometrically for u outside
the ramification circle) one has for (ξ, ζ ) ∈ γ0:∣∣ξ2(ξ − 1)a

∣∣ > 2a = sup
ξ∈D(0,1)

∣∣ξ2(ξ − 1)a
∣∣,

so |ξ | > 1 on γ0. The formula ξ(1 − ξ−1)a/(a+2) defines a uni-valued holomorphic function for |ξ | > 1
and so in considered region we have the situation of Darboux function with exponents (1,a+2). Thus
the function Ĩ0 satisfies the variation relation V ar2ρ0

1,1/(a+2) Ĩ0 ≡ 0 outside the ramification circle.
Finally, the proof of point (c) is a result of direct calculations. We parametrize l± , take a power

series expansion and integrate explicitly.
The equation for level curve reads (x − ε)a(y2 − x2)G∗(x, y) = h, where G(0,0) �= 0. In the region

of l± i.e. for x ∈ [εξo, x0], h and ε small, by the implicit function theorem, the solution has the form

y = xg±
(

x,
h

x2(x − ε)a

)
,

where g± are (germs of) holomorphic functions. We put this expression into the Il± integral, make a
substitution v = ε/x and we get

Il± =
ξ−1

0∫
ε/x

(
h

εa+2

)−1

ε−3 v2(1 − v)−2G

(
ε/v,

h

εa+2
va+2(1 − v)−a

)
dv,
0
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where G is a germ of holomorphic function. One can assume that the cutting points x0, εξ0 (Fig. 3.1)
were chosen in such a way that |ε/x0| < |ξ−1

0 | < 1. Thus, the integrated function forms a convergent
power series of powers of v

Il± =
∑

j�−1,m�−3,n�0

b jmn

(
h

εa+2

) j

εm

ξ−1
0∫

ε/x0

v j(a+2)−m+n dv

=
∑

| j(a+2)−m+n+1|�1/10

(
b̃ jn(u) jεn − b̂ jnh jεn) +

∑
|α jn|<1/10

c jn

(
h

εa+2

) j

εm
∫

vα jn−1 dv.

We split the sum into terms which power of v is in finite distance (say � 1/10) from −1 and the
others; first terms generate functions f0, f1 and the others form the function F . �
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