ELSEVIER Contents lists available at ScienceDirect ## Leukemia Research journal homepage: www.elsevier.com/locate/leukres # High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2 M.E.D. Chamuleau*, G.J. Ossenkoppele, A. van Rhenen, L. van Dreunen, S.M.G. Jirka, A. Zevenbergen, G.J. Schuurhuis, A.A. van de Loosdrecht Department of Haematology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ### ARTICLE INFO Article history: Received 23 July 2010 Received in revised form 26 November 2010 Accepted 31 December 2010 Available online 1 February 2011 Keywords: Apoptosis TRAIL Acute myeloid leukemia Immunotherapy Human monoclonal antibodies ### ABSTRACT Activation of the TNF-related apoptosis-inducing ligand (TRAIL) pathway can induce apoptosis in a broad range of human cancer cells. Four membrane-bound receptors have been identified. TRAIL-R1 and TRAIL-R2 contain a functional death domain; TRAIL-R3 and TRAIL-R4 lack a functional death domain and function as decoy receptors. Flow-cytometric analysis revealed that acute myeloid leukemic (AML) blasts expressed significantly more pro-apoptotic receptors compared to normal blasts. However, about 20% of AML patients highly expressed decoy receptor TRAIL-R3, which was strongly correlated to a shortened overall survival. TRAIL-R3 expression was also high on CD34+/CD38- cells, the compartment that harbors the leukemia initiating stem cell. Expression levels of pro-apoptotic TRAIL receptors were not correlated to the susceptibility for soluble TRAIL, which was generally low (mean level of cell death induction 14%). Cell death could be enhanced by down-modulation of TRAIL-R3, confirming its decoy function on AML blasts. Bypassing of TRAIL-R3 by treatment with antibodies directly targeting TRAIL-R2 resulted in higher rates of induced cell death (max. 80%). In conclusion, AML blasts do express pro-apoptotic TRAIL receptors. However, co-expression of decoy receptor TRAIL-R3 results in significant shortened overall survival. AML blasts could be targeted by anti-TRAIL-R2 antibodies, yielding a new therapeutic option for AML patients. © 2011 Elsevier Ltd. Open access under the Elsevier OA license. ### 1. Introduction Since chemotherapy and stem cell transplantation can only cure approximately 30% of patients with acute myeloid leukemia (AML), there is urgent need for complementary and targeted treatment modalities. Use of recombinant TRAIL (TNF (tumor necrosis factor)-related apoptosis-inducing ligand) could be included in the treatment of AML patients. Lymphocytes, NK cells, dendritic cells and monocytes are able to upregulate membrane bound TRAIL (mTRAIL) and to secrete a soluble form of TRAIL (sTRAIL) after stimulation with interferons or IL-2 [1-4]. In human, four membrane bound receptors for mTRAIL and sTRAIL have been identified: two of them TRAIL-R1 (formerly known as DR4) and TRAIL-R2 (formerly known as DR5) contain a functional death domain and are capable of initiating the apoptotic cascade, while two others TRAIL-R3 (formerly known as DcR1) and TRAIL-R4 (formerly known as DcR2) lack a functional death domain and function as decoy (antagonistic) receptors. Binding of TRAIL to one of the functional receptors TRAIL-R1 (R1) or TRAIL-R2 (R2) results, after clustering, in the formation of a Death-Inducing Signalling Complex (DISC) consisting of TRAIL, its receptor, the FAS associated death domain adaptor protein (FADD) and caspase 8 [5,6]. Activated caspase 8 can directly activate caspase 3 leading to apoptosis and also, by cleaving Bid, activate the mitochondria-intrinsic pathway [7]. Binding of TRAIL to a decoy receptor will not induce apoptosis. TRAIL-R3 (R3) and TRAIL-R4 (R4) inhibit TRAIL induced apoptosis in distinct ways. R3 is a glycosyl-phosphatidy-linositol (GPI) linked protein and lacks an intracellular domain [8]. The death domain of R4 is truncated. R3 prevents TRAIL-R2-DISC assembly, while R4 impairs DISC processing to caspase activation [9]. Several important functions for TRAIL induced apoptosis have been reported. First, TRAIL mediated cytotoxicity plays an important role in innate and adaptive immune responses [10]. Second, TRAIL exerts a regulatory function on erythroid and myeloid maturation in normal hematopoiesis [11–14]. Moreover, senescent neutrophils are eliminated by TRAIL induced apoptosis upon their return to the bone marrow [15]. Finally, and most intensively studied, TRAIL has an important function in tumor immune surveillance. TRAIL deficient mice are more susceptible to tumor development and metastasis [16]. Inhibition of TRAIL induced apoptosis by administration of a neutralizing antibody leads to tumor progression in mice [17]. Recombinant soluble TRAIL (rsTRAIL) constructs are able to induce apoptosis in many cancer cell lines (reviewed in [18]). An explanation for the tumor selective activity of TRAIL has ^{*} Corresponding author. Tel.: +31 20 4442604; fax: +31 20 4442601. E-mail address: m.chamuleau@vumc.nl (M.E.D. Chamuleau). been the observation that normal cells mostly express the decoy receptors R3 and R4, while many tumor cells express the functional receptors R1 and R2 (reviewed in [19]). Studies on TRAIL receptor expression on myeloid leukemic cells and clinical outcome of AML patients did not reveal a correlation between receptor expression and prognosis [20]. Moreover, low sensitivity of leukemic blasts to rsTRAIL has been reported [21–23]. This could be either due to a relative high expression of the decoy receptors on the cell surface or to intracellular high levels of anti-apoptotic proteins or low expression of pro-apoptotic proteins. Indeed, pre-treatment of leukemic cells with sensitizing agents (kinase inhibitors, triptolide, chemotherapy) increases the susceptibility to rsTRAIL [24–28]. An alternative strategy to employ the TRAIL pathway could be to circumvent the decoy receptor expression by directly targeting the pro-apoptotic receptors R1 and R2 by selective antibodies [29–32]. These antibodies have entered phase I and phase II clinical trials (reviewed by Ashkenazi and Herbst [33]). In this study we explored the possible applications of employing the TRAIL pathway in therapy regimens for patients with AML. We analyzed the receptor expression on hematopoietic precursor cells of a large cohort of AML patients, compared them to expression levels of healthy donors, and correlated them to clinical outcome. We have found that a high expression of the decoy receptor R3 was correlated to a poor clinical outcome. Also, decoy function of R3 was confirmed in vitro by treating leukemic cells lines and fresh primary AML samples with rsTRAIL or with antibodies directly targeting R1 and R2. By confirming the decoy function of R3 in myeloid leukemic cells and by demonstrating highest levels of cell death after targeting R2, we have found new evidence for directly targeting the pro-apoptotic receptors as an option in the treatment of AML patients. ### 2. Materials and methods ### 2.1. Patients' samples After informed consent and according to the Helsinki declaration, blood and bone marrow samples were collected from 92 patients with de novo AML and from 11 healthy donors. Patients were classified according to the French-American-British (FAB)-classification [34]. Patients received therapy according to HOVON (Dutch-Belgian Hematology-Oncology Cooperative Group) protocols (available at www.hovon.nl). Patients received two cycles of chemotherapy (containing cytarabin, combined with idarubicin or amsacrine) followed by autologous stem cell transplantation or a third cycle of chemotherapy (mitoxantrone and etoposide). Patients with promyelocytic leukemia (FAB-M3) were treated differently and were excluded from this study. Cytogenetic risk group was determined as favorable (translocation (8;21), or inv (16)), standard (neither favorable nor adverse) or adverse(complex karyotype, -5 or -7, deletion(5q), abnormality(3q), t(6;9), t(9;22) or abnormality 11q23). Overall survival (OS) was defined as the time period between date of diagnosis and either date of death or last date of follow-up. Disease free survival (DFS) was defined as the time period between achievement of complete remission (CR) and either moment of relapse or last date of follow up in non-relapsed patients. Bone marrow mononuclear cells from patients and healthy donors were collected through density gradient centrifugation (Ficoll-Paque™PLUS, Amersham Biosciences). Samples were analyzed immediately or cryopreserved in liquid nitrogen until analysis. ### 2.2. Flow cytometry analysis The following mouse antibodies were used: unlabeled anti-TRAIL (clone 5D5), anti-TRAIL-R1 (clone HS101), anti-TRAIL-R2 (clone HS201), anti-TRAIL-R3 (clone HS301) and anti-TRAIL-R4 (clone HS402) all from Alexis (Lausen, Switzerland). Unlabeled IgG₁ isotype (Beckton Dickinson, (BD, New Jersey, USA)); FITC labeled CD34 and CD38 (BD); PercP labeled CD45 (Beckman Coulter, Fullerton, USA); APC labeled CD34 and CD38 (BD). Mononuclear cell fractions were preincubated with 10% human gammaglobuline (6 mg/ml, Sanquin, the Netherlands) followed by incubation with directly labeled antibodies. For TRAIL and TRAIL receptor detection, cells were incubated with the unlabeled antibodies and subsequently with PE-conjugated rabbit-antimouse immunoglobulin (Dako, Glostrup, Denmark). A mixture of non-relevant mouse antibodies of different isotypes was added to avoid aspecific binding of subsequently directly labeled antibodies. All incubations were performed at room temperature during 15 min. Cells were washed after every incubation step with PBS/0.1% BSA/0.05% sodiumazide and analyzed on a FACS Calibur (BD). 25,000 living cells on a forward scatter were analyzed using CellOuest software (BD). Cell viability was measured by combined AnnexinV (VPS diagnostics, Hoeven, The Netherlands) and 7AAD staining (Via-Probe, BD Pharmingen). Absolute cell numbers were counted by using beads (flow-countTM fluorospheres, Beckmann Coulter). # 2.3. Apoptosis induction of cell lines and fresh AML samples with sTRAIL/Apo2L and mapatumumab and lexatumumab The cell lines MM6 (ACC 124), Kasumi-1 (ACC 220) and ME1 (ACC 537) were purchased from DSMZ. Cell lines U937 (CRL-1593.2), HL60 (CCL-240), KG1-a (CCL-246.1) and THP1 (TIB-202) were purchased from ATCC. sTRAIL/Apo2L was kindly provided by Amgen/Genentech. Agonistic fully human monoclonal antibodies specific for TRAIL-R1 (mapatumumab, formerly HGS-ETR1) and TRAIL-R2 (lexatumumab, formerly HGS-ETR2) were kindly provided by Humane Genome Sciences, Inc (Rockville, MD. USA). $250,\!000$ cells from indicated cell lines and from patient samples were incubated in $500\,\mu l$ in 48 wells flat bottom plates with different concentrations sTRAIL/Apo2L (10, 100, 300 and $1000\,ng/ml)$ for different time periods (2, 4, 8, 18, 24 and 48 h) at $37\,^{\circ}C$ in a humidified incubator. Optimal conditions for apoptosis induction in cell lines with sTRAIL/Apo2L were found after 18 h at $37\,^{\circ}C$ at a concentration of $100\,ng/ml$ sTRAIL/Apo2L (data not shown). Fresh AML patient samples were incubated for 18 h at 37 °C, with different concentrations of sTRAIL/Apo2L, mapatumumab and lexatumumab. All cells were cultured in RPMI supplemented with 10% fetal calf serum (FCS), except for the MM6 cell line which was cultured in special medium [35]. In some experiments, cells were pretreated with the pancaspase inhibitor Z-Val-Ala-DL-Asp-fluoromethylketone (z-VAD) (Alexis, $10\,\mu$ mol final concentration) for 30 min. Absolute viable cells were defined by AnnexinV and 7AAD negativity and counted by using fixed amounts of beads in every sample. ### 2.4. Modulation of cell surface R3 expression To remove R3, which is a GPI linked protein, we used phosphatidyl-inositol phospholipase C (PI-PLC) (Molecular Probes (Eugene, USA)). To optimize R3 removal we tested various PI-PLC concentrations (0.5 and 3.0 μ g/ml) and various incubation times, temperatures (20 min at a rock plate at 4 °C, 1 and 4 h at 37 °C), and media (PBS, RPMI/10% FCS for HL60, for MM6 special medium (see above)). Moreover, we added different concentrations (0.5, 1 and 10 μ g/ml) of cycloheximide (CHX, (Sigma, St Louis, USA)) to prevent de novo synthesis of R3. Incubation with PI-PLC 0.5 μ g/ml, for 4 h at 37 °C in RPMI/10% FCS or MM6 medium yielded best results. Addition of CHX induced additional apoptosis in all cultures. Control experiments without CHX showed no re-synthesis of cell surface R3 after 24h, so CHX was withdrawn in subsequent experiments from cultures. After treatment with PI-PLC, cells were directly incubated for 18h with sTRAIL/Apo2L, mapatumumab or lexatumumab. ### 2.5. Statistical analyses Statistical analyses were conducted with SPSS software program (version 15.0). To analyze associations between variables Spearman's correlation coefficient was used. Differences between patient characteristics were analyzed with Mann–Whitney U test. Paired samples t-test was used to measure differences in induced apoptosis in cell lines. For survival data, Kaplan–Meier curves were constructed and compared by means of the log-rank test. To explore the simultaneous effect of several variables on survival the Cox regression model was used. ### 3. Results # 3.1. TRAIL receptor expression on myeloid leukemic blasts and correlation to clinical outcome Patient characteristics are shown in Table 1 and reflect a representative AML patient group. Mean follow-up of all patients was 32 months (range 0–158, median 11 months). 18 patients (20%) did not achieve CR during induction therapy. A significant difference between patients achieving CR or not was observed in white blood cell count (WBC) at diagnosis (p = 0.001). 6 of 7 (86%) patients with a favorable cytogenetic risk group achieved CR versus 5 of 16 (31%) patients with an unfavorable cytogenetic risk group (difference not significant due to small groups). Myeloid leukemic blasts were defined by CD45dim and CD34+ expression. A representative example of the gating strategy for TRAIL receptor expression levels on AML blasts and on bone mar- ### Normal bone marrow Fig. 1. Example of gating strategy for the analysis of TRAIL receptor expression levels on bone marrow of AML patients and healthy donors. Blasts were defined in a gate of living cells by CD45dim and CD34+ expression. TRAIL receptor expression levels were defined as compared to the isotype control. Fig. 2. TRAIL-receptor expression on myeloid leukemic blasts of 92 patients with de novo AML and of 11 healthy donors. Myeloid blasts were defined by CD45dim and CD34+ expression. Horizontal bars indicate mean expression levels. **Table 1**Characteristics of 92 patients with de novo AML. Patients were classified according to FAB (French-American-British) classification and to cytogenetic risk group. | | Total | |-----------------------------------------------|------------| | Number | 92 | | Male/female | 47/45 | | Age in years at diagnosis, median (range) | 48 (16-65) | | WBC at diagnosis, median (range) | 43 (1-300) | | Follow-up in months, mean (range) | 32 (1-160) | | Disease free survival in months, mean (range) | 35 (1-158) | | Complete remission rate, number (%)* | 74 (80) | | Fab classification, number (%) | | | AML MO | 6(6) | | AML M1 | 13 (14) | | AML M2 | 20 (22) | | AML M4 | 24 (26) | | AML M5 | 24 (26) | | AML M6 | 2(2) | | RAEB-t | 2(2) | | Not classified | 1(1) | | Cytogenetic risk group, number (%) | | | Favorable | 7 (7) | | Standard | 53 (60) | | Adverse | 16 (17) | | No metaphases | 13 (14) | | Not done | 2(2) | | | | ^{*} A significant difference between patients either or not achieving CR was observed in white blood cell count (WBC) at diagnosis (*p* = 0.001). row derived blasts of healthy donors is provided in Fig. 1. In contrast to earlier reports on TRAIL receptor expression levels [23], we have predominantly found (pro-apoptotic) R1 and R2 expression (mean percentage positive cells 16% and 34%, range 0–79% and 0–97% respectively) versus (anti-apoptotic) R3 and R4 expression (mean 9% and 10%, range 0–71% and 0–45%) on myeloid leukemic blasts (Fig. 2). When compared to normal blasts, AML blasts had significantly higher expression of R1 and R2 (p = 0.001 and p = 0.006 respectively) and significantly lower expression of R3 (p = 0.006). R4 expression did not differ between AML and normal blasts (Fig. 2). Although mean expression of R3 on AML blasts is lower than on healthy donors, Fig. 2 shows that 20% of patients have R3 expression above mean plus 1 standard deviation (SD) (19% = mean normal expression (13%) plus SD (6%)). 10% of patients have a higher R3 expression than mean + 2SD (=25%). We determined a pro- or anti-apoptotic profile of leukemic blasts by dividing the percentage of positive leukemic blasts for R1 and R2 by the percentage positive blasts for R3 and R4 (R1+R2)/(R3+R4). When comparing healthy donors and AML patients, blasts from AML patients revealed a significantly higher ratio and thus a higher pro-apoptotic receptor profile than healthy donors (p < 0.005, Fig. 3). In a univariate analysis, none of the expression levels of the TRAIL receptors was correlated to achievement of complete remission (CR). Furthermore, in univariate analysis, the percentage of R1, R2 and R4 positive blasts did not correlate to OS (p = 0.6, p = 0.2 and p = 0.2)) or DFS (p = 0.2, p = 0.5 and p = 0.3 respectively). On the other hand, the percentage of the anti-apoptotic R3 positive blasts significantly correlated to OS (p = 0.036) and to DFS (p = 0.04). Patients in which >25% (mean normal value +2SD) of leukemic blasts were positive for R3 had a significantly shortened OS (p = 0.002), as demonstrated in a Kaplan–Meier curve (Fig. 4). In a multiple regression model (Cox), high R3 expression was the most significant prognostic factor for OS next to age at diagnosis (p = 0.003 vs. p = 0.03, respectively). WBC was not a significant prognostic factor (p = 0.174). As the patient groups with a poor and favorable risk profile were small (n = 7 and n = 16 respectively), we could not include cytogenetic risk profile as a separate variable in a regression analysis. Therefore, we performed a regression analysis in the patient group with an intermediate risk profile (n = 53). WBC **Fig. 3.** Pro-apoptotic and anti-apoptotic profiles of leukemic blasts from 92 de novo AML patients and 11 healthy donors determined by dividing the percentage of positive leukemic blasts for R1 and R2 by the percentage positive blasts for R3 and R4 (R1+R2)/(R3+R4), the TRAIL index. Horizontal bars indicate mean levels. was also in the intermediate cytogenetic risk group not a significant predictor (p = 0.128). In patients with an intermediate cytogenetic risk profile, high R3 expression was a better predictive parameter for OS (p = 0.007) than age (p = 0.038). In conclusion, although leukemic blasts did express higher levels of pro-apoptotic R1 and R2 than normal blasts, these clinical data suggest that simultaneously expressed anti-apoptotic R3 strongly influences OS. We hypothesize that high expression of R3 prohibits effective apoptosis by naturally occurring native mTRAIL or sTRAIL. # 3.2. TRAIL receptor expression on the leukemic CD34+CD38-stem cells In CD34 positive (CD34+) AML, the leukemia-initiating event originates from the CD34+/CD38- stem cell compartment. Survival of these cells after chemotherapy may lead to minimal residual disease (MRD) and subsequently to relapse. In AML patients, a high percentage of CD34+CD38- stem cells at diagnosis significantly correlated with a high MRD frequency after chemotherapy and directly correlated with poor survival [36]. It is generally accepted that treatment of AML should aim to target the leukemic stem cell. We analyzed the TRAIL receptor expression directly on the CD34+/CD38- compartment of 14 AML patients and 4 healthy donors. The higher pro-apoptotic receptor profile of AML blasts when compared to normal blasts was confirmed in these groups (data not shown). When comparing the CD34+CD38- cells to the CD34+CD38+ cells, in AML patients the expression of TRAIL R3 was higher on the CD38- as compared to the CD38+ compartment, see Fig. 5A. When analyzing the ratio (of pro- and anti-apoptotic receptors), CD34+/CD38- cells expressed significantly more antiapoptotic receptors as compared to CD34+/CD38+ cells (p = 0.023, see Fig. 5B). This difference was also seen on blasts of healthy donors **Fig. 4.** Kaplan–Meier survival curve of 92 de novo AML patients. Patients in which >25% (mean normal value +2SD) of leukemic blasts were positive for R3 had a significantly shortened OS ($p = 0.002 \log \text{rank}$). **Fig. 5.** (A) Example of the TRAIL-R3 expression on CD34+/CD38- blasts of an AML patient. TRAIL-R3 expression is significantly higher on CD34+/CD38- (which harbors the leukemic stem cells) blasts as compared to CD34+/CD38+ blasts. (B) Pro-apoptotic and anti-apoptotic profiles of leukemic blasts of 14 de novo AML patients. Analysis were done on the CD34+/CD38- compartment and compared to the CD34+/CD38+ compartment. Profiles were determined by dividing the percentage of positive leukemic blasts for R1 and R2 by the percentage positive blasts for R3 and R4 (R1+R2)/(R3+R4), the TRAIL index. but was not statistically different on these blasts. Probably, normal but especially leukemic stem cells are assigned to prevent themselves to TRAIL induced apoptosis by higher decoy receptor expression. In conclusion, both the clinical correlation between high R3 expression and worse survival and the relative high expression of anti-apoptotic receptors on leukemic stem cells suggest a possible role for decoy receptor R3 in causing immune-escape of leukemic blasts. # 3.3. TRAIL receptor expression on leukemic cell lines and in vitro sTRAIL/Apo2L induction before and after modulation of R3 The function of R3 as a decoy receptor has been clearly addressed on Jurkat cells (T cells), HeLa (human adenocarcinoma), and 293 (human embryonic kidney) cell lines [37], but never on human myeloid cells. To confirm the anti-apoptotic function of R3 in myeloid leukemic cells we determined the expression of TRAIL receptors on different myeloid leukemic cell lines (Table 2). Subsequently, we induced 5 cell lines with distinct receptor profiles with sTRAIL/Apo2L. The amount of induced cell death was determined by counting the 7AAD-/AnnexinV-viable cells. As expected ME1 cells, that lack R1 and R2 expression, barely showed induced cell death. U937 cells that only expressed R2 showed highest levels of cell death. Cell death was reduced in MM6 cells and HL60 cells that express high levels of both R2 and R3. Although no significant correlations could be made between the expression levels of the TRAIL receptors and the amount of induced cell death by sTRAIL/Apo2L, these data might suggest that sTRAIL/Apo2L effects are inhibited by binding to R3 (Table 2). We then further explored the receptor expression on the cell lines with high R3 expression (HL60 and MM6). TRAIL receptor expression was determined for several days on HL60 and MM6 cells. Receptor expression on HL60 cells fluctuated over time and turned out to be cell cycle and differentiation status dependent [38], but was constantly expressed on the cell surface of MM6 cells. Induction of HL60 cells on different time instants with different receptor expression levels demonstrated a correlation (although not significant) between receptor expression defined as (R1 + R2)/(R3 + R4) and amount of induced cell death (p = 0.08, R = -0.6). To elucidate **Table 2**TRAIL receptor expression levels on 7 myeloid leukemic cell lines and sensitivity for sTRAIL of 5 of these cell lines. Results are the mean of at least 3 experiments. Induced cell death was determined by counting the 7AAD-/AnnexinV-viable cells. Nd (not done). | | TRAIL R1 | TRAIL R2 | TRAIL R3 | TRAIL R4 | % viable cells after incubation with sTRAIL/Apo2L | |--------------------|----------------|----------|----------|----------|---------------------------------------------------| | | Percentage pos | | | | | | ME1 (M4eo) | 6 | 11 | 2 | 2 | 82 | | U937 (histiocytic) | 10 | 88 | 6 | 2 | 45 | | THP1 (monocytic) | 76 | 53 | 8 | 4 | 66 | | MM6 (monocytic) | 74 | 93 | 74 | 2 | 68 | | HL60 (M3) | 23 | 97 | 86 | 4 | 72 | | Kasumi (M2) | 26 | 56 | 5 | 0 | nd | | KG1A (M0) | 50 | 10 | 5 | 1 | nd | the decoy receptor role of R3 the following experiments were performed with MM6 cells which showed stable receptor expression levels in time. To further elucidate the decoy receptor role of R3 we treated MM6 cells with PI-PLC. PI-PLC selectively removes GPI-linked proteins from the cell surface. Among the TRAIL receptors, R3 is the only GPI linked protein. Treatment with PI-PLC reduces R3 efficiently (>90%, Fig. 6A). Expression levels of the other receptors were not significantly influenced by this treatment (data not shown). Treatment with PI-PLC alone did not induce significant cell death. Induction with sTRAIL/Apo2L (for 18 h using the same protocol as above) induced cell death significantly (p = 0.004, Fig. 6B). However, directly after removing R3, cell death could be enhanced significantly when compared to induction with sTRAIL alone (p = 0.001, Fig. 6B). Addition of the pancaspase inhibitor Z-VAD-fmk 1 h prior to induction with sTRAIL/Apo2L fully abrogated sTRAIL/Apo2L induced apoptosis indicating caspase dependent killing (with or without pre-treatment with PI-PLC p = 0.001). In conclusion, these experiments strengthened our hypothesis that R3 has an anti-apoptotic role in myeloid cell lines. ### 3.4. Treatment of primary AML leukemic blasts We then treated 10 fresh primary AML samples (with different receptor expression profiles) with increasing levels of sTRAIL/Apo2L (20–1000 ng/ml) for 18 h. Spontaneous cell death after 18 h varied from 0 to 95%. We excluded from further analysis 3 samples that showed >80% spontaneous cell death. Mean percentage of viable cells from the remaining samples was 69.6% (median 62.7%). Results of the remaining 7 samples are shown in Fig. 7A. sTRAIL/Apo2L induced cell death > 20% in only 3 out of 7 samples (induced cell death ranged from 0 to 52% (mean 19.8%, median 12.9%)). As in myeloid leukemic cells lines, no clear correlation between the pro-apoptotic TRAIL receptor expression levels and the amount of induced cell death by sTRAIL/Apo2L could be demonstrated in freshly derived patient samples. However, in one patient with high R3 expression we could enhance cell death by removing R3 with PI-PLC. By adding Z-VAD we could also confirm that induced cell death was caspase dependent (Fig. 6C). In conclusion, despite high levels of pro-apoptotic TRAIL receptors, fresh AML patient samples were not very sensitive to sTRAIL/Apo2L induced cell death, which could in some patients be due to a high R3 expression level, as we demonstrated in one patient sample that induced death could be enhanced by removal of R3. ### 3.5. Directly targeting pro-apoptotic TRAIL receptors R1 and R2 As, in vivo, removal of R3 will also affect other GPI linked proteins, we explored other ways to bypass R3 expression. We treated AML samples with monoclonal antibodies that target specifically R1 and R2 (mapatumumab and lexatumumab, respectively) [32]. Twelve fresh AML samples were incubated with different concentrations of these antibodies (Fig. 7B and C). Mapatumumab induced cell death >20% in only one out of twelve patients (induced cell death ranging from 0 to 39.2% (mean 5.9%, median 2.7%)). No clear correlation with R1 expression on the cell surface could be demonstrated; the patients that showed 35% and 40% cell death had respectively 20% and 14% R1 expression. One patient that had high R1 expression was not sensitive to mapatumumab. Lexatumumab induced cell death >20% in seven out of twelve patients (induced cell death ranging from 0 to 79.6% (mean 24.1%, median 16.5%)). For lexatumumab there was some correlation between receptor expression of R2 and sensitivity to the antibody; all samples that were sensitive to lexatumumab were also positive for R2 expression (>20% positive cells). However, high R2 expression did not always **Fig. 6.** (A) MM6 cells were treated with PI-PLC to remove R3, which is a GPI linked protein. Treatment with PI-PLC reduces R3 >90%. Histogram is a representative example of 3 different experiments. (B) MM6 cells treated with PI-PLC, sTRAIL/Apo2L and Z-VAD. Results are mean of 7 different experiments. ns = not significant $^*p = 0.004, ^*p = 0.001, ^**p = 0.001$. (C) Fresh de novo AML sample treated with PI-PLC and sTRAIL/Apo2L. **Fig. 7.** (A) 7 fresh de novo AML samples were treated with increasing levels of sTRAIL/Apo2L (20–1000 ng/ml) for 18 h. (B and C) 12 fresh de novo AML samples were treated with increasing levels of monoclonal antibodies that target specifically R1 and R2 (mapatumumab and lexatumumab). result in sensitivity to lexatumumab. There is no cross-reactivity of lexatumumab or mapatumumab between the decoy receptors. Therefore the levels of decoy receptors will not affect binding or apoptosis of these antibodies. As expected, sensitivity to lexatumumab was independent of R3 expression (high level of R3 did not impede lexatumumab induced apoptosis). In conclusion, lexatumumab was more effective at killing primary AML cells than sTRAIL/Apo2L or mapatumumab. Sensitivity to lexatumumab was only observed in samples that were positive for expression of R2, but other correlations between the expression levels of the TRAIL receptors and the sensitivity for the monoclonal antibodies could not be made. #### 4. Discussion In this study we have evaluated TRAIL receptor expression levels on leukemic blasts of AML patients and compared them to receptor expression levels on myeloid blasts of healthy donors. AML blasts did express significantly more functional receptors (R1 and R2) and significantly lower levels of the decoy receptor R3 when compared to myeloid blasts of healthy donors (R4 expression did not differ). This difference results in a significantly higher pro-apoptotic receptor profile of myeloid leukemic blasts when compared to normal blasts of healthy donors. However, about 20% of patients have high expression levels of the anti-apoptotic receptor R3 on their blasts. These patients (with a relative more anti-apoptotic receptor profile) have a significant shortened OS when compared to the patients with low R3 levels and hence a more pro-apoptotic profile. As a result of the influence of TRAIL receptor expression on OS (independent of other risk factors like cytogenetics, age and WBC), we hypothesized that myeloid leukemic blasts are principally sensitive to TRAIL mediated killing by mTRAIL and/or sTRAIL expressed and secreted by naturally effector immune cells as a part of immune surveillance. Furthermore, we hypothesized that this physiological anti-tumor activity in vivo is counteracted by high R3 expression in a subset of patients. Upregulation of R3 could be regarded as an expression of immune subversion, ultimately leading to immune escape of leukemic cells. We propose that targeting the TRAIL pathway could be beneficial at 2 different phases in the treatment of AML patients. First, it could be combined with chemotherapy in the induction phase, thereby stimulating both the intrinsic and the extrinsic apoptosis pathway. Second, as we did not find a correlation between the TRAIL receptor expression and complete remission rate, it could be that, in the situation of minimal residual disease (when there is a low tumor burden) R3 positive blasts escape immune surveillance and could also in that phase be Both myeloid leukemic cell lines and fresh primary AML samples were incubated with different concentrations of sTRAIL/Apo2L but were not very sensitive to sTRAIL/Apo2L, that binds to all receptors. In both cell lines and patient samples, we could not demonstrate a significant correlation between the expression levels of the proapoptotic receptors and the amount of induced cell death. An explanation for this phenomenon could be that sTRAIL/Apo2L is only able to induce apoptosis if trimers of pro-apoptotic receptors are present. It is known that also pre-assembled trimers of proand anti-apoptotic receptors exist that after binding to the soluble ligand will not exert apoptosis [39]. Another explanation could be that high expression of down-stream modulators (like antiapoptotic molecules) prevent efficient induction of cell death. We did not study down-stream molecules. However, we could demonstrate that removal of the decoy receptor R3 enhanced induced cell death by soluble TRAIL both in cell lines as well as in one patient sample. In clinical treatment, it will be difficult to modulate R3 expression and we therefore decided to explore the possibility of directly targeting R1 and R2, thereby bypassing R3 expression. Myeloid blasts turned out to be most sensitive to lexatumumab, the antibody that selectively targets R2. Again, a correlation between pro-apoptotic receptor expression and induced cell death could not be demonstrated, although, R2 positivity was a requisite for lexatumumab induced cell death. As expected, cell death was not impeded by R3 expression. Finally, leukemic stem cells (defined by CD34+/CD38- expression) showed relative highest levels of R3. Targeting of the pro-apoptotic receptors will be necessary to kill these cancer stem cells although harbors the risk of targeting also the normal hematopoietic stem cell. However, no phase I or II study to date using antibodies targeting R1 or R2 has reported hematological toxicity [33]. In conclusion, our results clearly demonstrate that AML blasts can be sensitive to cell death induction via the TRAIL receptor pathway and that R3 can function as a negative regulator of this pathway. However, it is also clear that the majority of myeloid blasts does express pro-apoptotic receptors but fails to undergo apoptosis when only triggering these receptors. It is very likely that activation of only the extrinsic pathway is not effective enough to kill tumor cells that have already been shaped by the immune system. Many studies have now demonstrated synergistic activity of sTRAIL/Apo2L with conventional chemotherapy [33,40-42]. These effects are ascribed to the combined activation of the extrinsic and intrinsic apoptotic pathway. Also, synergistic effects of proteasome inhibitors like bortezomib [29], and kinase inhibitors [25] with sTRAIL/Apo2L or TRAIL receptor antibodies have been described. All these data clearly demonstrate that the TRAIL pathway is an important player in the complex field of apoptosis induction of cancer cells. We now provide evidence that the TRAIL pathway could be involved in immune surveillance of leukemia. Through bypassing the decoy receptors and targeting the pro-apoptotic TRAIL receptors, apoptosis could be induced in primary AML samples. Targeting the pro-apoptotic TRAIL receptors in the induction treatment and/or in the situation of minimal residual disease could add a valuable modality to the treatment of AML patients. ### **Conflict of interest** The authors declare no conflict of interest. ### Acknowledgements There are no acknowledgments to make. *Contributions*. M.E.D.C. performed research, collected, analyzed and interpreted data and wrote the article. S.J, L. van D. and A.Z. performed experiments. A.v. R. performed experiments and analyzed data. G.J.S., G.J.O, and A. v.d. L. designed research. ### References - [1] Kayagaki N, Yamaguchi N, Nakayama M, Eto H, Okumura K, Yagita H. Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 1999;189(May):1451–60. - [2] Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. I Exp Med 2001 Mar 19:193:661–70. - [3] Fanger NA, Maliszewski CR, Schooley K, Griffith TS. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 1999;190(October):1155–64. - [4] Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1999;189:1343–54. - [5] Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P, et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000;2:241-3. - [6] Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000;12:611–20. - [7] Younes A, Kadin ME. Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. J Clin Oncol 2003;21(September):3526–34. - [8] Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang CP, DuBose RF, et al. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186(October):1165–70. - [9] Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O. Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 2006;26:7046–55. - [10] Strater J, Moller P. TRAIL and viral infection. Vitam Horm 2004;67:257–74. - [11] Secchiero P, Melloni E, Heikinheimo M, Mannisto S, Di PR, Iacone A, et al. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood 2004;103(January):517–22. - [12] Secchiero P, Gonelli A, Mirandola P, Melloni E, Zamai L, Celeghini C, et al. Tumor necrosis factor-related apoptosis-inducing ligand induces monocytic matura- - tion of leukemic and normal myeloid precursors through a caspase-dependent pathway. Blood 2002;100(October):2421–9. - [13] Choi JW. Relationships between tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and hematopoietic activity in healthy adults. Ann Hematol 2005;84:728–33. - [14] Zamai L, Secchiero P, Pierpaoli S, Bassini A, Papa S, Alnemri ES, et al. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood 2000;95(June):3716–24. - [15] Lum JJ, Bren G, McClure R, Badley AD. Elimination of senescent neutrophils by TNF-related apoptosis-inducing ligand. J Immunol 2005;175(July):1232–8. - [16] Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosisinducing ligand-deficient mice. J Immunol 2002;168(February):1356–61. - [17] Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002;195(January):161-9. - [18] Ashkenazi A, Holland P, Eckhardt SG. Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol 2008:26:3621–30. - [19] Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002;2:420–30. - [20] Min YJ, Lee JH, Choi SJ, Chi HS, Lee JS, Kim WK, et al. Prognostic significance of Fas (CD95) and TRAIL receptors (DR4/DR5) expression in acute myelogenous leukemia. Leuk Res 2004;28:359–65. - [21] Snell V, Clodi K, Zhao S, Goodwin R, Thomas EK, Morris SW, et al. Activity of TNFrelated apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br J Haematol 1997;99:618–24. - [22] Cappellini A, Mantovani I, Tazzari PL, Grafone T, Martinelli G, Cocco L, et al. Application of flow cytometry to molecular medicine: detection of tumor necrosis factor-related apoptosis-inducing ligand receptors in acute myeloid leukaemia blasts. Int J Mol Med 2005;16:1041–8. - [23] Riccioni R, Pasquini L, Mariani G, Saulle E, Rossini A, Diverio D, et al. TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 2005;90:612–24. - [24] Carter BZ, Mak DH, Schober WD, Dietrich MF, Pinilla C, Vassilev LT, et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood 2008;111(April):3742–50. - [25] Rosato RR, Almenara JA, Coe S, Grant S. The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res 2007;67(October):9490–500. - [26] Secchiero P, Zerbinati C, di Iasio MG, Melloni E, Tiribelli M, Grill V, et al. Syner-gistic cytotoxic activity of recombinant TRAIL plus the non-genotoxic activator of the p53 pathway nutlin-3 in acute myeloid leukemia cells. Curr Drug Metab 2007:8:395–403. - [27] Wuchter C, Krappmann D, Cai Z, Ruppert V, Scheidereit C, Dorken B, et al. In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-kappa B activity. Leukemia 2001;15:921–8. - [28] Jones DT, Ganeshaguru K, Mitchell WA, Foroni L, Baker RJ, Prentice HG, et al. Cytotoxic drugs enhance the ex vivo sensitivity of malignant cells from a subset of acute myeloid leukaemia patients to apoptosis induction by tumour necrosis factor receptor-related apoptosis-inducing ligand. Br J Haematol 2003:121:713-20 - [29] Georgakis GV, Li Y, Humphreys R, Andreeff M, O'Brien S, Younes M, et al. Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicin- and bortezomib-induced cell death. Br | Haematol 2005;130:501-10. - [30] Takeda K, Yamaguchi N, Akiba H, Kojima Y, Hayakawa Y, Tanner JE, et al. Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 2004:199(February):437–48. - [31] Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M, Sung C, et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 2005;92(April):1430-41. - [32] Humphreys RC, Halpern W. Trail receptors: targets for cancer therapy. Adv Exp Med Biol 2008:615:127–58. - [33] Ashkenazi A, Herbst RS. To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 2008;118:1979–90. - [34] Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985;103:620–5. - [35] Ziegler-Heitbrock HW, Thiel E, Futterer A, Herzog V, Wirtz A, Riethmuller G. Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int J Cancer 1988;41(March):456-61. - [36] van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 2005;11(September):6520–7. - [37] Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277(August):818–21. - [38] Shiiki K, Yoshikawa H, Kinoshita H, Takeda M, Ueno A, Nakajima Y, et al. Potential mechanisms of resistance to TRAIL/Apo2L-induced apoptosis in human - promyelocytic leukemia HL-60 cells during granulocytic differentiation. Cell Death Differ 2000; 7:939–46. - [39] Chan FK. Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007;37:101–7. - [40] Mizutani Y, Nakanishi H, Yoshida O, Fukushima M, Bonavida B, Miki T. Potentiation of the sensitivity of renal cell carcinoma cells to TRAIL-mediated apoptosis by subtoxic concentrations of 5-fluorouracil. Eur J Cancer 2002;38:167–76. - [41] Wu XX, Kakehi Y, Mizutani Y, Nishiyama H, Kamoto T, Megumi Y, et al. Enhancement of TRAIL/Apo2L-mediated apoptosis by adriamycin through inducing DR4 and DR5 in renal cell carcinoma cells. Int J Cancer 2003 Apr 20;104: 409-17. - [42] Wu XX, Kakehi Y, Mizutani Y, Kamoto T, Kinoshita H, Isogawa Y, et al. Doxorubicin enhances TRAIL-induced apoptosis in prostate cancer. Int J Oncol 2002;20:949–54.