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ABSTRACT 

The development of the Lanczos algorithm for finding eigenvalues of large sparse 
symmetric matrices was followed by that of block forms of the algorithm. In this 
paper, similar extensions are carried out for a relative of the Lanczos method, the 
conjugate gradient algorithm. The resulting block algorithms are useful for simulta- 
neously solving multiple linear systems or for solving a single linear system in which 
the matrix has several separated eigenvalues or is not easily accessed on a computer. 
We develop a block biconjugate gradient algorithm for general matrices, and develop 
block conjugate gradient, minimum residual, and minimum error algorithms for 
symmetric semidefinite matrices. Bounds on the rate of convergence of the block 
conjugate gradient algorithm are presented, and issues related to computational 
implementation are discussed. Variants of the block conjugate gradient algorithm 
applicable to symmetric indefinite matrices are also developed. 

1. INTRODUCTION 

Conjugate direction algorithms are important tools in computational 
linear algebra. The basic idea behind these methods is to accumulate 
information about the behavior of a symmetric matrix A of dimension n 
along A-conjugate directions pi, j = 1,2,. . . , n. The unique features of con- 
jugate direction algorithms make them the ideal and, in some cases, the only 
useful methods available for solving certain systems of linear equations and 
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eigenvalue problems involving large sparse matrices. Storage requirements 
are a modest multiple of n, and operations counts for each iteration are 
linearly related to n plus the number of nonzero elements in the matrix A. 
The methods are useful iterative algorithms but also have a finite termination 
property. Because of these desirable features, generalizations of these algo- 
rithms have also been extensively studied as solution techniques for nonlin- 
ear problems. 

Conjugate direction algorithms were proposed by Fox, Huskey, and 
Wilkinson [8] for the solution of systems of linear equations on computers. 
Hestenes and Stiefel [14] developed a family of algorithms for positive 
definite matrices A in which the direction pi is related to the residual of the 
system of linear equations after i - 1 steps. These are termed conjugate 
gradient algorithms, and they are by far the most widely used of the 
conjugate direction algorithms. Karush [17], Kaniel [16], Daniel [6], and 
others studied the convergence rate of conjugate gradient algorithms consid- 
ered as iterative methods, and further contributions were made by Stewart 
[33] and Axelsson [2]. Rutishauser [31] and Reid [28] discussed alternate 
computational forms of conjugate gradient algorithms, and much attention 
has been devoted to acceleration techniques, for example in [l, 2,3,4, 6, 13, 
221. Paige and Saunders [27], Fletcher [7l, and Chandra [3] considered the 
stable extension of conjugate gradient techniques to symmetric indefinite 
matrices. 

There has been a parallel development of conjugate direction algorithms 
for the solution of linear eigenvalue problems. Lanczos [18] proposed an 
algorithm in 1950. Paige [24] and Kaniel [16] established bounds on the 
convergence rate, and Paige [24-261 and Kahan and Parlett [15] discussed 
stable and efficient implementation of the algorithm to determine a few of 
the extreme eigenvalues of a matrix. Cullum and Donath [5] and Golub and 
Underwood [lo, 341 extended the method to block form, in which several 
directions are used at once as blocks I’, of dimension n X s. Computational 
modifications of this algorithm were investigated by Lewis [20]. 

For matrices which have certain eigenvalue distributions, the block 
Lanczos algorithm is often a dramatic improvement over the standard 
Lanczos algorithm. The idea of developing a block conjugate gradient 
algorithm which would share this virtue has undoubtably occurred to many 
researchers, and the statement of a block conjugate direction algorithm 
appears in a paper by Stewart [32]. 

The purpose of the present work is to present various forms of block 
biconjugate and conjugate gradient algorithms, investigate the convergence 
rate of some of them, and provide numerical experience with these methods. 
These algorithms can be useful in three classes of problems: 

(1) If there are s systems to be solved, the block conjugate gradient 
algorithm will solve them in at most [ n/s1 iterations and may involve less 
work than applying the conjugate gradient algorithm s times. 



CONJUGATE GRADIENT ALGORITHM 295 

(2) If the matrix has several extreme eigenvalues widely separated from 
the others, the block conjugate gradient algorithm may converge signifi- 
cantly faster than the conjugate gradient algorithm. 

(3) If the matrix A is stored on a secondary storage device or needs to be 
regenerated at every use, the block algorithm can be significantly more 
efficient, since it forms the product of A with several vectors at once. 

These statements will be made more precise in Sets. 3 and 4. 
In Sec. 2 we present the block biconjugate gradient algorithm with a 

preconditioning operator. This algorithm is defined for a general n X n matrix 
A without the assumption of symmetry. We discuss the properties of the 
algorithm and the role of scaling and orthogonalization in a computationally 
practical algorithm. All of the algorithms in this paper can be derived from 
this one. In Sec. 3 we specialize this algorithm in several forms for a 
symmetric matrix A, obtaining various block conjugate gradient algorithms. 
We discuss properties and variants of the algorithms. In Sec. 4 we give 
bounds on the convergence rate of the block conjugate gradient algorithm. 
The relation of these algorithms to the block Lanczos method and some 
extensions to symmetric indefinite systems are discussed in Sec. 5, and some 
implementation issues are mentioned in Sec. 6. 

For simplicity, we state our results for matrices with real elements, 
although the generalization to complex matrices, and in many cases to 
general linear operators over Hilbert spaces, will be clear. 

Throughout the paper, uppercase letters denote matrices. A superscript 
on a matrix, vector, or scalar denotes an iteration number. Columns of a 
matrix are indexed by subscript; elements of a matrix have row and column 
indices as subscripts. Thus, for example x$,i (k) is the element of the matrix X@) 
in the ith row and jth column, and xr) is the jth column. The letters (Y, fi, y, 
E, q, Y, p, and o denote s X s matrices, and iteration numbers for these are 
indicated by subscript. The letter CT denotes singular values, while A denotes 
eigenvalues, and a subscript “max” or “min” denotes largest or smallest 
respectively. 

We use the Euclidean vector and matrix norms: ]]x~~~=x?z and [IX]] = 

e,(X) = [&x(XrX)I 
{X0),X@) 

Ii2 The span of the columns of a set of matrices * 
, . . . ,X0} will be denoted by sp{X(‘),X@), . . .,X(k)}, and the trace 

of an n X n matrix A by tr[A] = 21_ ru,,. 

2. THE BLOCK BICONJUGATE GRADIENT ALGOBITHM 

In this section we present a basic algorithm and its properties. The 
computationally practical algorithms in the following sections all arise from 
special cases of this one. An alternate approach to these algorithms, proceed- 
ing from the block Lanczos algorithm, is discussed in Sec. 5. 
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We consider the following algorithm, which is a direct generalization of 
the biconjugate gradient algorithm given, for example, in Lanczos [19] and 
Fletcher [7]. We call it the block biconjugate gradient algorithm, 
abbreviated by B-BCG. 

ALGORITHM B-BCG. Given matrices M and A, both of dimension n X n, 
full rank matrices yk and vk of dimension s X s, k = 0, 1, . . . , and matrices R (‘) 
and I?(‘) of dimension n X s and rank s, we define I’(‘) = MR (‘)yo and 
p(O) = M TK(“)To, and iterate for k = 0, 1, . . . : 

p(k+‘)- -(MR( k+l)+P(k),&)y,+,, (24 

where 

Tbe matrices R, E, P, and p have dimension n X s, while the parameters (Y, 
E, fl, and p are s x s matrices. 

The algorithm is terminated when one of the matrices (Ye, (Yk, &, or & 
fails to exist or is stngular. This algorithm reduces to the standard bicon- 
jugate gradient algorithm when s ‘1, M-I, and yk=Tk=l for k=O,l,.... 
To use the block algorithm to solve a linear system of equations 

AX* = B, 

where B is a given n x s matrix and X* is to be determined, we choose an 
initial guess X co) for tbe solution matrix, set R co) = B - AX (O), and update the 

X iterates as 

x(k+l) = x(k)+ pck)ak. 
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Then the matrices R w are the successive residuals of the equations; i.e., 

j-j(k) = B _ Ax(k), k=O,l,.... 

In a similar way, the algorithm can be used to simultaneously solve a system 
ATp=g 

The iterates R (k), Rck), Xck), and XCk) are invariant with respect to the 
choice of nonsingular matrices yk and yk, and these parameter matrices are 
used to decrease roundoff in computational implementations of the algo- 
rithm. On the other hand, various choices of the matrix M yield different 
algorithms, and can change the rate of convergence of the sequence {Xck)} 
to x*. 

Some algebraic properties of the algorithm are established in the follow- 
ing two lemmas. This development parallels that of Fletcher [7] for the 
standard biconjugate gradient algorithm. 

LEMMA 1. For j <k, the iterates satisfy the biconjugacy conditions 

(5) 

and 

(6) 

Proof, We use induction to establish the results. The trivial case is 
obvious, so we assume the properties hold for k and prove them for k + 1. 

Using Eq. (lb) and Eq. (2a) with i substituted for k+ 1, we have 

For i <k, the right hand side is zero by the induction hypotheses. For i = k, it 
is zero by the induction hypothesis and the definition of $. An exactly 
analogous argument, using Eqs. (la) and (2b) and the definition of ‘Yk, 
establishes the second part of Eq. (5). 

The first part of Eq. (6) is established using Eq. (2b) and Eq. (la) with i 
substituted for k: 

-- 
E- ~kT+lR(k+l)T~(~(f+l)_ ~(i)),~-l+ ~l+~ ~~Tp(k)T~p(i). 
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For j < k, we have already established that the first term is zero, and the 
second term is zero by the induction hypothesis. For j = k, we have, using 
the definitions of ffk and &, 

= _ ~kT+lR(k+l)TMR(k+l)cu-l 
k 

+ %T+dR (k+l)Tjpf@(k+l) ‘r ) (R(k)TMT~(k))-T~~T~(k)TAp(k) 

= y;+lR(k+‘)T~~(k+l)( _ q’+ ql) so, 

The second part of Eq. (6) is established by an analogous argument, using 
Eqs. (2a) and (lb), and the definitions of & and pk. n 

LEMMA 2. Some further properties of the algorithm are as follows: 

RW’p(i) 50, i4 @b) 

Proof. We will establish (7a), (8a), and (9a). The other results follow 
similarly. 

From Eq. (Za), with k substituted for k+ 1, and from Eq. (6), 

R(k)T~TAT~(k),(Yk-Tp(k)T_PkT_Ip(k--l)T)AT~(k) 

= yk- TpW TA Tp (4, 

and thus (7a) is established. 
Equation J8a) is established by observing that repeated use of the 

definition of P yields 

P(1)3MT(R(1)~i+R(~-l)YI_1Pil~~+ *. * +E’o’~opo~. . j&&y1), 

(10) 
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and. so by Eq. (5), R @)?(i) = 0 for i <k. 
Using Eq. (2b) with k substituted for k+ 1, and Eq. (8a), we have 

. 

which is Eq. (9a). n 

These algebraic properties can now give us some insight into the use of 
the algorithm to solve the equation AX* = B. 

THEOREM 1. The columns of the matrix R ck) are orthogonal to 

a$_) thus, if the algorithm does not terminaEctxfwe k= [n/s] steps, 
= 0. Similarly, the columns of R are orthogonal to 

sp{ it4R (‘) (MTA)MR (‘) , ,..., (A4A)k-1MR(o)}, and R@=O. 

Proof. From Eq. (lo), under the assumption that all of the parameter 
matrices are nonsingular, it is clear that 

sp{P,*... p(k)}=Sp{MT~(O),...,M=~(k)}. (II) 

By the definition of filk), 

R%sp{R (k-i),Ar$k-1)). 

Using these two facts, a simple induction argument shows that 

and this, plus the biconjugacy condition (5), establishes the first conclusion. 
If the parameter matrices exist, then the dimension of the kth of these 
subspaces is ks, and thus at k steps, R tk) must be orthogonal to every nonzero 
n-vector, and therefore must be zero. The result for $4 is established in a 
similar way. W 

The bl%k (or standard1 biconjugate gradient algorithm breaks do? in 
theory if R(%4R (4 or P(k)rAP(k) is singular (zero) for some k<k. In 
practice, failure also occurs if any of these matrices is ill conditioned. In that 
case, any roundoff errors in the computation may be magnified greatly, and 
the parameter matrices will be calculated inaccurately. In hopes of postpon- 
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ing this catastrophe, precautions can be take_n; for example, B and g can be 
normalized so that all columns of R to) and R (‘) have the same size. 

Failure is inevitable if at any stage one of the matrices P@) or p@) fails to 
have full rank. This can be monitored by choosing matrices yk and & which 
orthonormalize the columns of Pck) and pck). A QR algorithm or a modified 
Gram-Schmidt algorithm might be performed on the matrices MR ck) + 
P(k-1),8&._l an,-j MT$k) + P(k - “pk _ 1 , and the resulting orthonormal matrices 
used as Pck) and Pck) respectively. When this orthogonalization procedure 
produces a matrix of less than full rank, we must restart the block bicon- 
jugate gradient algorithm. 

3. SOME BLOCK CONJUGATE GRADIENT ALGORITHMS 
FOR SYMMETRIC POSITIVE DEFINITE MATRICES 

As mentioned in the previous section, the block biconjugate gradient 
algorithm breaks down if one of the parameter matrices becomes singular or 
undefined before the matrix R (k) = 0. For matrices A and M which are 
symmetric and positive definite, however, there are block algorithms which 
cannot fail. With special choices of the matrix R(O) and reduction of the 
blocksize if linear dependence arises, we can develop algorithms which 
always terminate successfully with a zero residual matrix. Two choices of the 
initial matrix R(O) give particularly useful algorithms. 

If R(O) = R co), the B-BCG algorithm reduces to a block conjugate gradient 
(B-CG) algorithm. 

ALGORITHM B-CG VERSION 1 (Hestenes and Stiefel form). Given X(O), 
let R co) = B-AX(‘), define PC’) = it4R(“)yo, and for k = 0, 1, . . . , update the 
iterates, residuals, and directions: 

x(k+l) = x(k) + pWak, 

p&+1) =: (MR( k+l)+ P(k)&)y,+,, 

where 

ak = (pWAp(k)) - 1 ,ekTR(k)TMR(k), 

A version of the B-CG algorithm similar to this one has been developed 
independently by Richard R. Underwood, working from the block Lanczos 
algorithm rather than block biconjugate gradients. 
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Notice that as long as the matrices I’@) and R @) retain full rank, the 
algorithm is well defined. By Eq. (11) of the previous section, for each value 
of k, the ranks of these two matrices are equal. Thus we can monitor the 
stability of the algorithm by calculating the matrices yk through an ortho- 
gonalization procedure. If the columns of I’(‘) lose their independence, we 
delete the zero or redundant column i of P@) and the corresponding columns 
of X@) and R @), and continue the algorithm with s - 1 vectors. The vectors 
XT) and rr) can be updated separately, and the resulting sequences retain all 
of the properties necessary to guarantee convergence. 

Properties of the B-CC algorithm are derived as special cases of the 
results in the previous section, and are summarized in the following theorem, 
which also presents a minimization property which is a simple consequence 
of these results. 

THEOREM 2. For the block conjugate gradient algorithm, 

p(k)Q@i) = 0 j+k, 

Rck) is orthogonal to sp{MR (‘),(MA)MR(‘), . . . , (MA)k-lMR(o)}, and thus XCk) 

minimizes tr[(X - X*)rA(X - X*)] over all X such that X - X(O) E 

s~{MR(~),...,(MA)~-‘MR(~)}. 

A second algorithm is obtained if we make the choice R(O) = AMR co). We 
call this the block minimum residual (B-MR) algorithm. 

ALGORITHM B-MB Given X(O), let R co) = B-AX(‘) and P(O) = MR(‘)y,, 

andfork- , ,*-*, update the iterates, residuals, and directions: 

x(k+ 1) = x(k) + pWak, 

R (k+ 1) = R(k) - APck)ak, 

p&+1)- MR’ -( k+l)+ P(k),8k)yk+l, 
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The properties of this algorithm are summarized below. 

THEOREM 3. For the block minimum residual algorithm, 

R(k)=MAMR(i)=() , j +k, 

R (k)T~~p(i) = 0 
3 jzk, 

and XCk) minimizes tr[(X - X*)rAMA(X- X*)J over all X such that X-X”) 
Esp{ MR(‘) ,...,(MA)‘-‘MR(‘)}. 

Since [(X ck) - X*)rAMA(Xck) - X*)] = R (k)TMR (k), the name block mini- 
mum residual algorithm is appropriate. 

Other algorithms in this family can be derived for M = I by setting R(O) 
equal to a polynomial in SA times R (O), where S is a symmetric matrix which 
commutes with A. Numerically, such algorithms often do not perform as well 
as the standard conjugate gradient algorithm because the use of powers of 
the matrix in inner products can introduce instability if SA is poorly 
conditioned. Thus the conjugate gradient algorithm is more popular, and in 
the rest of this section we consider alternate forms of the block conjugate 
gradient algorithm only. Alternate forms of the other algorithms would in 
many cases be derived analogously. 

Rutishauser [31] developed a three term recurrence relation form of the 
conjugate gradient algorithm. This form is not as efficient computationally, 
because it takes more storage and more operations per iteration, but it is 
interesting theoretically because it clarifies the relation between the con- 
jugate gradient algorithm and other second order algorithms such as the 
Chebyshev semiiterative or the Richardson second order method. All of 
these second order algorithms can be written in the form 
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where Q_ r and ti&+ r are scalar parameters which vary from method to 
method, and q._ r -0. The R-matrices in the block conjugate gradient algo- 
rithm satisfy a similar relation. To see this, without loss of generality, take 
yk = Z and, following Reid [28], notice that the definition of Pck) implies 

Using this and the definition of R (&+l), we get 

Substituting for AP(k-‘) in this expression, using the definition of R (&), and 
simplifying yields 

Rck+r)=Rtk)+ [ -AMR’k’+(R(k)-R’k-l))~k_l]Ok+l, 

q&-l =y -l(B(k-l)rMR(k-l))-lR(k)rMR(k). 

We eliminate the matrices P ck) from the definition of wk through some 
algebraic manipulation. From the definition of PC&), 

Thus 

(R(k)rMR(k))-lR(k)rMAMR(k)=akl+(R (k-l)~MR(k-l))-‘p(k-l)~Ap(k-l)~k_l 

= @&-..I + a&?1 & - 1 = w&-:1 +?&-1. 

This gives us an alternate form of the block conjugate gradient algorithm. 

ALISORITHM B-CG VERSION 2 (Rutishauser form). Given X(O), define 
R co) = B - AX('), 17 _ 1 = 0, and for k = 0, 1, . . . , update the iterates and residu- 
als 
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where 

qk = Q,-,l, (R (k)TMR(k))-lR(k+l)TMR(k+l), k >O. 

The form of this algorithm suggests investigating alternate choices of the 
parameters nk and ‘+ in order to obtain block forms of other second order 
methods, but this idea will not be pursued here. 

Using this three term recurrence form of the B-CG algorithm, a special 
form of the algorithm could be derived, as in Reid 1291, which is useful for 
problems of the form 

where A, and A, are square nonsingular matrices. This algorithm uses a 
special initial guess in order to reduce the computational work to less than 
half that for the other versions of the algorithms. The algorithms of Char&a 
[3] and Hageman, Luk, and Young [12] for this problem can be extended 
similarly. 

In some problems, computational savings can be achieved by a change of 
variables. If, for example, it is expensive to form A times a vector, but there 
is a matrix M such that forming M and AM times a vector is efficient, an 
appropriate change of variables is Y = M -IX. In terms of these variables, the 
conjugate gradient algorithm is given as follows: 

AWORITHM B-CG VERSION 3 (Change of variables form). Given Y(O), let 
R(‘)=B-AMY(‘) and P (‘) = R (‘)yo, and for k = 0, 1, . . . , update the trans- 
formed variables, the residual, and the directions: 

y(k+i) = y(k) + pWak, 

R(k+ 1) = R (4 _ AMp(k)ak, 

where 

ak = (p(k)T~Mp(k)) - 1 $&k)Q,fR(k), 

Upon termination, compute Xckt ‘)= MYck+‘). 
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In the case of a single vector, this algorithm and applications are 
discussed, for example, in [l] and [23]. 

Other versions of the block conjugate gradient algorithms are discussed 
in Sec. 5. 

4. CONVERGENCE ANALYSIS OF THE BLOCK CONJUGATE 
GRADIENT ALGORITHM 

In this section we establish results on the rate of convergence of the 
block conjugate gradient algorithm for positive definite matrices. The tools 
used are certain properties of Chebyshev polynomials and the fact that, of all 
algorithms which form 

xi’) = xj”) + i: Thi( MA)MAejO), f=l,2 ,...) s, 
i=l 

(12) 

where S,(A) is a polynomial of degree less than or equal to k - 1 and 
(0) 

e, = xy) - ~7, the B-CG algorithm is optimal in the sense of minimizing a 
certain measure of the error. 

For simplicity in the presentation, we work with the unscaled algorithm 
(M = I) first, and then generalize the results. First we summarize the facts 
we need concerning Chebyshev polynomials. 

LEMMA 3. tit 

where O<d,<d, and ‘Tk,(x)=cos(karccosx) for -l< X <l is the kth 
Chebyshev polyrwmial of the first kind. Then 

(a) FmO<X<d,, we have O<&(A)<l. 
(b) For d, < A <d,, we have 

where K = A/d,. 

Proof. (a): It is well known that the polynomials ‘?lk( x) and 9;(x) have 
all of their roots within the interval -I‘<%< 1, and obviously, Tk(l)= 1. 
Also, ?&(x) is a positive monotone increasing function for 1 < x < co. Now 
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so &k(X) is monotone decreasing for x > 1. The range 0 < h <d, corresponds 
to (d, + d,)/( d, - d,) > x > 1, and &k(O) = 1. Thus the first conclusion follows. 

(b) : It is also well known that 1 Tk (x)1 < 1 for - 1 < x < 1. The calculation 
below is standard. We define t such that cosht= (dz + di)/(ds - d,). Then 

= cos( k arccos cash t) 

= cos( k arccos cos it) 

= cos kit = cash kt = 
(eyk+ (e-yk 

2 ’ 

where e’=(l+ p)/(l- p). Therefore 

and the result follows. 

LEMMAS. Forx>landk>l, 

Proof. This follows directly from the well-known recurrences 

T&x) = 1, Tr(x) =x, 

~k+l(x)=2x~k(x)-~kk_1(x), k > 1. n 

Let us establish some notation. We denote the eigensystem of A by the 
n X n matrices U and A, where 

AU= VA, U=U= I, A=~g(W,,...A,), 

and O<X,<&<.*. <a. The columns of U are the eigenvectors. We 
partition the matrix A into 

A= 
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where A, = diag(X,, . . . , &_ J and A, = diag(h,, . . . , A,,). Recall from Theorem 2 
that the block conjugate gradient algorithm minimizes ~$+l)~Ae$+‘) over all 
choices of polynomials qp, in Eq. (12). We denote by E (‘) the n X (s - 1) 

matrix formed by deleting the last column of the matrix E, where E = 

[ep),eiO), . , . ,e(O)]. 

The vect&s &, m = 12 , , . . . ,s - 1, defined in the following lemma will 
play a central role in our derivation of a convergence bound for the block 
conjugate gradient algorithm. They are the same vectors as those used by 
Underwood [34] to obtain a bound for the convergence rate for the block 
Lanczos algorithm for finding the eigenvalues of a matrix. 

LEMMA 5. Let F be a matrix defined so that the columns of 

UF= U 

are an urthononnuf basis fm sp{ AE (*)}, and suppose that urnin >O. 

Define 

IT= u 
I ( 1 F F-’ =(;I ,.*., F&), 

2 1 

6= FIFE-! 

Then: 

(a) II@JJe=tan28, where ~=arccosu~(F1). 

@) For each m=1,2,..., s-l there isavectorg,E~p{AE(~),...,A~E(*)) 
such that 

where 

Proof. (a): By definition, 

F =U =UF = F,TF, + F,TF, = 1. 

Therefore, we have 

Fl- =FeTF,F,- ’ = Fl- =Fl- ’ - Z 
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(pp;‘((2= --L- 
aLn(FI) 

-l=tanse. 

(b): Notice that the columns of R” are also in sp{AE(“)}, and let 

where C?,,, is the polynomial of degree k - 1 defined by 

Notice that the numbers uirFm are elements in the matrix 3;. 
In the following theorem we let K denote the spread of the eigenvalues h, 

through A,,: 

We now state and prove a special case of the main result of this section. 

THEOREM 5. After k steps of the unscaled block conjugate gradient 
algorithm, the error in component s is bounded as 

NOTE. This result requires the hypothesis of Lemma 5 that ati >O. 
The result is valid for any component m using the definition EC”‘) = 
[ejO),...,e(O),,e$+, m , . , , , ei’)]. The precise definition of the constant ci is given 
in the course of proving the theorem. If s= 1, the theorem reduces to a 
well-known result [S]. 

Proof. We define the errors at the kth step by 

eW = #) _ .y+ = S S s ei”) + 5 q,‘(A)Aef’), 
f-1 

where each 9; is a polynomial of degree k - 1. The strategy is to show that 
the bound holds for a particular choice of polynomials qr_., in the definition 
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of eLk), and thus, since the block conjugate gradient algorithm chooses the 
optimal set of polynomials, the bound must hold for S$, too. 

We choose the polynomial ‘?b to satisfy 

The other polynomials are chosen to obtain a certain linear combination of 
the columns of G: 

s-l s-l 

x qPri(A)Aer) = - x [ 1+ 9,&J+]&. 
i-1 f=l 

Then 

s-l 

ejk)= [l+C?P,(A)A]eio)+ x Tp,(A)AefO) 
j-1 

Using Eq. (13), we conclude that 

and thus 
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We now bound each term in this final expression individually. The first term 
is bounded as 

where we define 

We have, for the second term, 
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Finally, the third term is bounded in absolute value by 

Adding these three bounds and using Lemma 3(b), the result follows. n 

We now discuss the generalization of this result to the scaled version of the 
algorithm. 

THEOREM 5. Let 

where UTU=IandO<Al<A2<--- <&Let 

Form=1 2 , ,*-., s lf?t 

E(m)=[ei”) ,..., egL,,eg?, ,..., ei’)p’l. 

Suppose that a,,JF,(“)) >0, where UF(“‘) is an orhmmmal basis fm the 
sp{AE(“)} and 

F(“, = 
(n-s+l)X(s-1) 
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where ci is a constant depending on m but independent of k, given by 

+16 

where em = arccoso 
Ill,” 

(F,(“)). 

Proof. This result is most easily established by noting that the scaled 
conjugate gradient algorithm can be derived by writing the unscaled algo- 
rithm for the equation 

M ‘/SAM 9’ =5 M i/33 

and then transforming back to the original variables, replacing Y, R, and P 
by M-'j2X, Mli2R, and M -'12P respectively. Making the same sub- 
stitutions in the previous theorem yields the desired conclusion. n 

The same kind of result holds for distinguished sets of eigenvalues other 
than A, through a. Suppose X, and X,, are chosen so that the interval 
0 < A < X,, +hmin contains all of the eigenvalues and there are n - s + 1 
eigenvalues in the interval hmin < A < A,. Then, defining 

we note that as X ranges between 0 and A,,,,+ X&, x=(X_+ A,,- 

W/(&ll, - %I,) ranges between (X, + X&)/(A, - Ati) and - (h, + 

hmi*)/(Amax-Amin)~ so l+&‘t)l< 1. Thus a similar result holds with this parti- 
tioning of eigenvalues. 

The convergence rate for the block conjugate gradient algorithm depends 
on the distribution of eigenvalues of MA and the choice of the initial matrix 
X(O). The first factor is of primary importance; for fast convergence, M and s 
can be chosen so that the matrix MA has a narrow cluster of n-s+ 1 
eigenvalues. In addition, it is helpful if X(O) is chosen so that the space 
s~{MR(~),...,(MA)~MR(~)} is rich in the solution vectors for small k. In any 
case, the block method cannot be slower than the standard conjugate 
gradient method, which obeys the bound 

with K=?t,,/x,. 
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5. THE BLOCK LANCZOS ALGORITHM AND METHODS FOR 
SYMMETRIC INDEFINITE MATRICES 

In this section we discuss an interpretation of the B-CG algorithm in 
terms of a similarity transformation of the matrix A. This approach yields 
further insight and alternate computational algorithms. For simplicity, we 
work with the unscaled version of the algorithm, generalizing to precondi- 
tioning at the end of the section. Our starting point is the following 
algorithm, applicable to any symmetric matrix. 

ALGORITHM BLOCK LANCZOS (Golub and Underwood [lo, 341, Cullum 
and Donath [S]). Choose an arbitrary n X s matrix B, choose ri so that 
2 (i) = BYE satisfies 2 (‘)rZ (I) = I, and let 2 (O)= 0. Iterate for k = 1,2, . . . : 

where pk = Z(k)TAZ(k) and vk+ 1 is chosen so that Z(k+‘)TZ(k+ l) = 1. 

It is easy to show that the matrices Zlk) produced by the algorithm are 
mutually orthogonal: i.e., 

zWzW=o for i#i. 

and, if the algorithm does not break down, after k <c= [n/s 1 steps we have 
a decomposition of the matrix A as 

#- 
Pl 

-1 
v2 

=(z(1),Z(2),...,Z(k)) 

\ 

-T 
v2 

Pz 
-T 

v3 

-1 
'k 

-T 
"k 

pk 

+(o,o ,..., O,Z(k+‘b~+ll), 
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where 2 (‘+ ‘) = 0. We abbreviate this equation as 

A z(k) = z(k) y-(k) + g(k), 

This algorithm uses a three term recurrence relation, as does Version 2 of 
B-CG, and both algorithms yield a tridiagonal decomposition. The major 
difference is that the Z’s are orthonormalized while the R’s are not. 

Ruhe [30] has observed that the block Lanczos vectors can be generated 
in such a way that T is not only a block tridiagonal matrix but also a band 
matrix with 2s+ 1 nonzero diagonals. This is done by using the natural 
choice of vk+l, a right triangular matrix generated by either the QR 
algorithm or a modified Gram-Schmidt procedure. He also proposes generat- 
ing the Z-columns one by one and reorthogonalizing against several previous 
Z-blocks to slow the growth of roundoff error. With this implementation, the 
stability of the process can be monitored quite easily. 

The columns of ‘Z(q are an orthonormal basis for the space of n-vectors, 
so we can express the solution to our linear system as 

x* = ~WjG), 

where 4 is an n-vector, and the system itself becomes 

or, multiplying by gqT, 

-1 
Vl 

T(“),$(” ‘)TB= O . * 

.b , 

In this form we cannot conveniently accumulate iterates Xlk) as the Lanczos 
matrices are generated, but by a further change of variables we can. Let us 
define a QR decomposition of Ttk), 

TW‘J@)T= L(k) > 
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where ?@jT vk) = I and 

(L 1,l 

L 2.1 
L 

L(k) = 
3,1 

L 2.2 
L 3.2 I 3.3 

Lk--l,k-3 Lk--l,k-2 

Lk,k-2 &k, 

Here L,, is a matrix of size s x s. Introducing new variables 

our linear system becomes 

-1 
Yl 

L(qp) = 0 . ’ 

,o, 

On examining the details of these formulas, we discover that the factors of ?r 
and the blocks of columns of W can be formed and discarded one by one. 
This development is entirely parallel to that of Paige and Saunders for the 
single-vector case, and a detailed derivation of the algorithm for s= 1 is 
given in [27j. Note that for j <k, 

IT- B) = ~(i)T(~~:(k),/?k) _B) 

= ( T(k)j(k) - z(k)TB)itb ,,,ock =O, 

and since the span of the columns of gk) is the same as that of the Krylov 
sequence {B,AB ,..., Ak-‘B}, Xck) must be the same as the iterate from the 
B-CG algorithm. Thus we have a new alternate form of this algorithm. 

ALGORITHM B-CG VERSION 4 (Paige and Saunders form). Given B and 
x (01, let i (‘3 = B _ AX (a), _$ (0) = X (‘3, 2 (0) = 0, 2 (1) = 2 K’)yr, where 2 (i)rz (1) = 
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I, @(‘)=Z(‘), p,,=O, p,=Z?AZ(‘), E1 l=plr and VI=ISsxeS. For k= 
1,2,..., update the Lanczos vectors 

z(k+‘)- Az(k)-z(k’pk-Z(k-l)yk-T)yk 4 + 3 
1 

where vk+ 1 is chosen so that Z (k+ ‘) rZ (k+ I) = I. Update the factorization; set 

Pk+l= Z(k+WAZ(k+l), 

COmpUte vk+ 1 and Lk,k so that Vlkf ‘) %‘lk + ‘) = 12S x 2S and 

and let 

Update the iterates; compute $$ to satisfy 

or, if k=l, 

Ll, 1+h= v; l> 

and set 

z(k) = _fi(k-1) + wVQk. 

Upon termination, determine I$~+, and Xck+‘) from 

One major advantage of Version 4 over the forms previously discussed is 
its behavior on indefinite matrices. All of the versions produce least squares 
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solutions if the matrix A is semidefinite, but the first three may be unstable if 
A is indefinite, since they rely implicitly on an LU decomposition of the 
matrix T. Because the QR factorization is stable for indefinite matrices, 
Version 4 can be used for any symmetric matrix as long as the 2 matrices 
retain rull rank. 

As one final variation on the theme, we extend to block form an 
algorithm due to Fridman [9] and discovered independently by Fletcher [T7]. 
Starting from X co) = 0, instead of minimizing tr[(X- X*)rA(X - X*)] over all 
matrices in the kth Krylov space as the B-CC algorithm does, we minimize 
the norm of the error tr[(X - X*)‘(X - X’)] over the space {AR(‘), . . . , 
A% co)}. Using the 2 columns as a convenient basis, we can express our 
iterates as 

k+l 
$k+‘), x Z(i)Ei, 

i=l 

where sp{ Z(l)} = sp{ AR co)} and 

In this form, the E’S are not computable, but notice that 

x* _ x(k)= 2 z(i),, 

j=k+l 
1 

and thus the columns of this error matrix are orthogonal to all 2 @) for i < k. 
Using this, the fact that 2 (k+l)rX(k) =O, the definition of the Lanczos 
vectors, and the orthogonality of the columns of Z, we see that 

&k+l- 
_Z(k+l)TX*=Z(k+l)T(X*-X(k)) 

= V;+lZ(k)TA(X* - Xck)) 

= ,,k=+ g(k) =R W 

and this gives us a minimum error (ME) algorithm. 
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ALGORITHM B-ME. Given B and X (a), let R (0) = B - AX (0) and Z (1) = 
AR (‘)~r, where Z (‘) rZ @) = 1. Define Z (‘) = 0. For k = 0, 1, . . . 

where ’ 

and let 

where P~+~= Z (k+l)TAZ(k+l) and ,, k+2 is chosen so that Z(k+2)TZ(k+2)= I. 

This algorithm also is suitable for symmetric indefinite systems, but Paige 
and Saunders have reported that Version 4 of the CG algorithm is less 
sensitive to roundoff than the single vector form of the B-ME algorithm. A 
version of the B-ME algorithm analogous to the single vector implementation 
suggested by Hestenes [13] could be derived from the B-BCG algorithm. 

To derive the scaled versions for the algorithms in this section, we use 
the variable transformation employed in the proof of Theorem 6. Each 
algorithm is applied to the problem 

The resulting formulas are then rewritten in terms of the original residuals 
and variables, replacing Z, R, W, and Y in the formulas by M’12Z, M’/2R, 
M - ‘/‘W, and M -‘12X respectively. The final algorithms require the matrix 
M but not M’12 or M-‘12. 

6. REMARKS AND CONCLUSIONS 

We have presented several block iterative algorithms for solving systems 
of linear equations. Storage and operations counts for some typical im- 
plementations of these algorithms and some single vector algorithms are 
given in Table 1. The leading terms are of order M plus s2 for storage, and 
order m2 plus s3 plus the multiplication times for A and M with a vector for 
operations per iteration. The amount of storage can be reduced at the cost of 
increasing the operations counts somewhat. 

Many questions relating to the rate of convergence of the B-CG algo- 
rithms remain open. It should be possible, for example, to obtain results 
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TABLE 1 
STORAGE, MATRIX OPERATIONS, AND OPERATIONS COUNTS 

FOR VARIOUS ALGORITHMS 

Storage 

Mati operations 
per iteration: 

n-vector muItipIicati0n.s 

Algorithm n-vectors Total By A BYM 

BCG x, r, 6 Wp (A ‘9 p, 6n 2 - 

(8x1, M=Z) 
CG Version 1 x, r,p,Ap 4n 1 - 

(s=l, M=Z) 
Precondi- 
tioned 
CG Version 1 x,r,p,Ap (ME) 4fl 1 1 
(5’1) 

B-BCG X,R,~,P,~,AP(MR,A=P,M=R) 6ns 2s 2s 
B-CG 
Version 1 X, R, P,AP (MR) 4tl.v IS IS 
B-CC 
Version 2 X,AX,R,AR,MR,AMR 671.9 1s 1s 
B-CG 
Version 3 Y, R, P,AMP, MR (and MP) 5n.s 1s 2s 
B-MR X,R, P,AP (MR),MAP(AMR) 5n.s 2s 2s 
B-ME X, R,AZ, Z, Z, MZ 6ns 1s 1s 

Overhead per Iteration 

n-vector Multiply Factor Maximum 
inner nX s and SXS n-vector SXS Orthogonabe number of 

AIgorithm products matrices additions matrix s n-vectors iterations 

BCG 
(s=l,M=Z) 2 4 4 - - n 
CG Version 1 2 3 3 - - n 
(s=l, M-Z) 
Precondi- 
tioned 
CG Version 1 2 3 3 - - n 

(s=l) 
B-BCG 2s2 4 4s 2 (2) r n/s1 
B-CG 

Version 1 s2+s 3 3s 2 (1) Tn/sl 
B-CG 

Version 2 s2+s 4 4s 2 - Tn/sl 
B-CG 

Version 3 s2+s 3 3s 2 (1) 
B-MR sa+s 3 3s 2 (1) 17 n s 
B-ME 1.5sa + 0.5s 4 4s - 1 1 n/s1 
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analogous to those of Axelsson [l] and Greenbaum [ll] for particular 
eigenvalue distributions. 

Many computational questions also remain open. Only extensive com- 
putational experience and roundoff error analysis will determine how the 
algorithms should be implemented in order to balance reliability and 
efficiency. Limited computational experience thus far indicates that the 
linear independence of the direction vectors should be monitored, and 
orthonormalization of them seems essential in order to avoid underflow and 
overflow. 

As expected, using the block conjugate gradient algorithm can result in 
savings for solving multiple systems, for solving systems in which several 
eigenvalues (large or small) are widely separated from the others, and for 
problems in which the matrix is stored on a secondary storage device and 
thus is expensive to access. For example, on a matrix of dimension n = 100 
with eigenvalues 1, 1.5, 2,. . . , 49.5, 50, and 409, the block CG algorithm 
with two random B-vectors took 19 iterations to reduce the residual norms 
by a factor of 10S4, whereas the conjugate gradient algorithm took a total of 
45 iterations for the two problems, and the partial (s-step) conjugate gradient 
method described by Luenberger [21, p. 1871, designed for such eigenvalue 
distributions, took 207. Matrices with separated low eigenvalues show the 
same trends: a similar experiment with three vectors and a matrix of 
dimension 200 with eigenvalues 1,2 and 400,401,. . . ,596,597 required 5 
iterations of the block conjugate gradient algorithm, 25 iterations of the 
conjugate gradient algorithm, and 39 iterations of the partial conjugate 
gradient algorithm. Thus, in both cases the block algorithm took the smallest 
number of matrix multiplications and also the smallest number of accesses to 
the matrix. 

Richard R. Underwood will present further results on computation and 
implementation of the block conjugate gradient algorithm in a later report. 

I am grateful to Richard Underwood for providing notes from a talk he 
presented on the block conjugate gradient algorithm and for his very helpful 
comments on a draft of the manuscript. I am also grateful to Olaf Widlund 
and G. W. Stewart for suggesting that it should be possible to strengthen an 
earlier version of the result given in Theorem 5. 
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