
Computational Geometry 22 (2002) 143–166
www.elsevier.com/locate/comgeo

Enumerating a subset of the integer points
inside a Minkowski sum

Ioannis Z. Emiris
INRIA, B.P. 93, Sophia-Antipolis 06902, France

Communicated by S. Fortune; received 1 July 2000; accepted 30 November 2000

Abstract

Sparse elimination exploits the structure of algebraic equations in order to obtain tighter bounds on the number of
roots and better complexity in numerically approximating them. The model of sparsity is of combinatorial nature,
thus leading to certain problems in general-dimensional convex geometry. This work addresses one such problem,
namely the computation of a certain subset of integer points in the interior of integer convex polytopes. These
polytopes are Minkowski sums, but avoiding their explicit construction is precisely one of the main features of
the algorithm. Complexity bounds for our algorithm are derived under certain hypotheses, in terms of output-size
and the sparsity parameters. A public domain implementation is described and its performance studied. Linear
optimization lies at the inner loop of the algorithm, hence we analyze the structure of the linear programs and
compare different implementations. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Minkowski sum; Integral polytope; Integer point; Linear programming; Newton polytope

1. Introduction

A major computational problem in algebraic geometry concerns the numerical approximation of all
common roots of a system of polynomial equations. Methods based onresultant matricescan exploit
the sparse structure of the input polynomials, are robust to input perturbations, and have lower worst-
case complexity than Gröbner bases, which is the best-established and most general method today [15].
Exploiting structure is achieved in a strong and predictable way by the theory ofsparse elimination;
see, e.g., [15,17,19] and the next two sections. This theory has generalized several results of classical
variable elimination theory. The model of sparsity is a combinatorial one, and raises several problems in
general-dimensional convex geometry. One bottleneck is due to the computational question examined in
this paper:

E-mail address:Ioannis.Emiris@inria.fr (I.Z. Emiris).
URL address:http://www-sop.inria.fr/galaad/emiris (I.Z. Emiris).

0925-7721/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(01)00049-9



144 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

Problem 1. Consider the Minkowski sum ofn convex polytopes lying inRn with integer coordinate
vertices, and suppose a direction is specified. One problem is to compute the set ofinteger pointsin this
Minkowski sum, having positive distance from the polytope boundary along the given direction. Usually,
a positive lower bound on the distance or an upper bound on the set’s cardinality may be supplied. In this
case, we seek the subset of points satisfying all bounds provided.

We have implemented a simple and efficient algorithm, which avoids constructing the Minkowski
sum and implements certain branch-and-bound heuristics for searching the integer lattice by exploiting
properties of the distance function. Asymptotic complexity bounds are derived both in terms of the
sparsity parameters of the problem and as a function of output size, provided certain conditions are met, as
specified below. Roughly, these conditions prohibit long and thin polytopes whose volume is significantly
lower than the number of interior integer points. Our algorithm improves significantly upon an early
version [19], mainly by using properties of convexity and projection to lower dimensions. A public
domain implementation is presented and applied to different input instances.

The next section mentions related work. Section 3 outlines sparse elimination theory and defines
the problem at hand. Section 4 presents our algorithm, whose building block is a linear programming
subroutine, and the various heuristics used to prune the search space. Special attention to the structure
of the optimization problems is paid in Section 5. The asymptotic complexity analysis is found in
Section 6. Section 7 describes the implementation and illustrates its performance. Experimental results
serve to confirm the asymptotic bounds. Moreover, we compare the simplex code in our program with the
linear programming functionalities of packagescdd+ andlrs. We conclude with directions of further
research.

A preliminary account of this work has appeared as [18].

2. Related work

Most existing work on Minkowski sums of convex polytopes limits itself to low dimensions [32,34,
46], or to special cases like zonotopes [21]. Among the former, we note the result in [32] that settles the
3-dimensional case by showing that Minkowski addition has complexity bounded by the sum of input
and output sizes. As for zonotopes, they are the hardest inputs on which Minkowski addition may be
applied, hence their interest.

A general treatment is given by Gritzmann and Sturmfels [28], who consider both arithmetic and
bit computational models, and measure input size in terms of two independent parameters, namely
space dimension and number of summand polytopes. It is then shown that neither a facet nor a vertex
representation of the Minkowski sum can be computed in polynomial time, regardless of the model used.
However, if the summand and sum polytopes are all represented by their vertices and, in addition, one of
the two input parameters is fixed, then Minkowski addition has polynomial complexity in at least one of
the two models. Interestingly, the basis of the corresponding algorithms is linear programming.

In our case, constructing explicitly the Minkowski sum is to be avoided; we shall opt for a method
that directly enumerates the points sought, thus reminiscent of [9]. The algorithm achieves complexity
proportional to the number of output points under certain assumptions; for each point, the cost is
polynomial in the number of vertices of the input polytopes and the dimension. On the other hand,



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 145

computing explicitly the Minkowski sum would require a convex hull operation on a number of points
exponential in the dimension, irrespective of the output size.

The principal branch-and-bound heuristic enumerates integer points inprojectionsof the Minkowski
sum, then lifts the interesting subset to higher dimensions. Again, no explicit computation of the projected
polytope is required. Our heuristics reject a small fraction of interior integer points in polyhedral
projections to small dimensions; in fact, the smaller the dimension, the fewer candidates are eliminated.
In this case, it may be interesting to transform interior point enumeration to the computation of 0/1-
vertices of a polytope in some high dimension [23]. If the interior point coordinates are expressed by
integer unknowns, sayx, these can be written asx =∑k

i=0xi2
i , where thexi are binary variables; any

available information may be used to bound the binary sizek. The vertex enumeration problem could
be efficiently solved by available software, preferably after expressing the projected polytope as the
intersection of half-spaces rather than as a point convex hull.

Let us assume for a moment that the Minkowski sum had been computed by some arbitrary-dimension
convex hull software. Then we may concentrate on the point enumeration problem per se. An efficient
implementation which we have tested to enumerateall integer points isporta [13]. The practical
complexity of the method is discussed in Section 7. Counting the number of integer points in an integer
polytope, irrespective of its representation, is #P-complete when the dimension is not fixed; the same
holds even for zonotopes. Otherwise, there are polynomial-time algorithms for vertex-represented as
well as hyperplane-represented polytopes. Volume computation in general dimension is also #P-complete
[27,29]. Applications of point enumeration are related to the probabilistic estimation of volume as well
as several problems in optimization, most notably integer programming, and polyhedral combinatorics.
See [27,29] and the references therein.

In bounding complexity, we are concerned with the asymptotic behaviour of the number of integer
points in the interior of a convex polytope with integer vertices. Ehrart [16] established an asymptotic
bound by the volume of the polytope. Alternatively, for any full-dimensional polytopeQ(n) ⊂ R

n,
vol(Q(n)) can be approximated by #(Q(n) ∩ Z

n) by an adequate sampling with known error estimates;
see [27, Section 3] and its references. We may also use simple inequalities, such as #(Q(n) ∩ Z

n) �
vol(Q(n)+C), whereC is the Dirichlet cell of 0, i.e.,C contains all points inRn closer to the origin than
to any other lattice point [29]. For polytopes that are not too “thin”, the second part of this inequality is
very close to, and asymptotically dominated by, the polytope’s volume. Another line of work, particularly
useful with Minkowski sums, concerns formulas of inclusion-exclusion type or those that reduce the
problem to counting points in lower-dimensional faces; see [4,7].

Point enumeration is of course important in sparse elimination theory because of the bijection
between integer points and monomials, where we assume that all variables are nonzero. The principal
computational object of interest isthe sparse resultantand its matrix, whose determinant is a nontrivial
multiple of the resultant and which reduces system solving to an eigenproblem or univariate factorization.
The next section details combinatorial methods for exploiting the monomial structure of the input
polynomials; see also [15,19,33,45]. In general, the resultant (or eliminant) provides an efficient approach
in terms of asymptotic complexity for solving 0-dimensional polynomial systems and has complexity
simply exponential in the dimension and polynomial in the number of roots. Similar bounds can
be achieved bystraight-line programs, which use an algebraic model of sparseness; see, e.g., [26].
Fewnomials[36] provide an alternative model of sparseness, but have yet to lead to a comprehensive
theory. Gröbner (or standard)basesmay exploit sparseness only implicitly and have worst-case
complexity doubly exponential in the number of variables, even when the input polynomials have



146 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

bounded degree [40]. Of course, they provide a complete arsenal for studying and performing arithmetic
between polynomial ideals.

Linear programming shall provide the main building block and will be crucial in all respects, including
algorithm design, asymptotic complexity analysis as well as practical efficiency of the program. For a
general introduction and a comprehensive list of references see [8,30]. Complexity bounds will rely on
polynomial-time interior-point methods, namely the one in [47]. This is best suited to our problems.
The worst-case bit complexity per linear program is in O((V 2 + CV + C1/2)V L2 logL), whereL
represents the bit size of the input coefficients andV,C stand for the number of variables and constraints,
respectively, whereC includes the constraints on the variables.

Different public domain software is available for linear programming, see, e.g., [41]. Our requirement
for freely available software has excluded powerful packages, such as the state-of-the-art solver from
CPLEX Optimization Inc. Another characteristic is that we are not interested in exact solutions because
the inputs are integers and the output can be approximate. We have implemented the simplex method
based on code from [42], but have also experimented with the reverse search and double description
implementations inlrs andcdd+ respectively [2,22] to solve linear programs.

Important work has been done for linear programmingqueries in fixed dimension, where the
constraints do not change between successive optimizations of different objective functions [12,39,44].
This is very relevant here, except that dimension is an input parameter. Possibly relevant work concerns
incremental approaches, such as those that could be derived from [1,14,25]. In the latter work, the idea
is to randomly choose a subset (ε-net) of constraints so that, with high probability, the solution to the
subproblem satisfies a large number of constraints.

3. Sparse elimination theory

This section sketches the theory of sparse variable elimination and the main combinatorial concepts
required. Further information can be found in [15,17,19]. Sparse elimination allows us to consider
Laurentpolynomialsf ∈K[x1, x

−1
1 , . . . , xn, x

−1
n ], whereK is an arbitrary field of coefficients.

Definition 2. The supportof polynomialf ∈ K[x1, x
−1
1 , . . . , xn, x

−1
n ] is the set of exponent vectors in

Z
n, corresponding to terms inf whose coefficient is nonzero. TheNewton polytopeof f is the convex

hull of its support inRn.

The Newton polytope refines the notion of total degree in classical elimination theory (see Fig. 1). For
point setsA,B in R

n, the Minkowski sumA + B = {a + b | a ∈ A,b ∈ B} is convex ifA andB are
convex. Minkowski addition is associative and commutative.

Definition 3. Given convex polytopesA1, . . . ,An ⊂ R
n, their mixed volume MV(A1, . . . , An) ∈ R�0 is

the unique symmetric function, multilinear with respect to Minkowski addition and scalar multiplication,
such thatMV(A1, . . . ,A1) = n!vol(A1), where vol(·) denotes euclidean volume. Equivalently, it is the
coefficient ofλ1 · · ·λn in vol(λ1A1+ · · · + λnAn).

This definition differs from the one in [31] by the factorn!. The following theorem provides the
stepping stone in applying this notion to computational algebra and effective algebraic geometry.



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 147

Fig. 1. Newton polytopes of the given polynomials and of the dense polynomials of the same total degree.

Theorem 4. Consider n polynomialsfi ∈ K[x1, x
−1
1 , . . . , xn, x

−1
n ] with Newton polytopesQi . The

number of common isolated roots in(K ∗)n does not exceed MV(Q1, . . . ,Qn), whereK is the algebraic
closure ofK andK ∗ =K \ {0}.

This was first stated by Bernstein [6], but relies critically on work by Khovanskii and Kushnirenko [35,
37], hence its naming as the BKK bound. It provides a sharper bound than the classical Bézout bound
which is the product of total degrees. Several extensions have been established, including a study of the
cases where equality holds [45], as well as the case ofK n, covered by a generalization of the mixed
volume to thestablemixed volume [33].

Mixed volume computation provides important information for numerically approximating the
common zeros of the given system, either by a sparse homotopy, or by resultant-based methods, for
we obtain a monomial basis of the quotient ring [15]. The solution of well-constrained algebraic
systems can be reduced either to an eigenproblem or to univariate polynomial factorization, both
reductions relying on the resultant. The resultant is a new polynomial in the coefficients of the input
equations, which characterizes the existence of common roots in the input system. Resultants are most
conveniently expressed as (divisors of ) matrix determinants. There are several types of such matrices
whose study was initiated by such luminaries as Euler, Bézout and Cayley; today, this is a very active
field both of algorithmic research as well as software development. This paper focuses on sparse
elimination theory, which has introducedsparse resultant matricesin order to express the sparse, or toric,
resultant. Since they depend on the corresponding Newton polytopes, they are also known as Newton
matrices.

To solve a well-constrained system ofn polynomials inn variables, it turns out that we must consider
an overconstrained systemf0, . . . , fn in K[x1, x

−1
1 , . . . , xn, x

−1
n ], obtained either by adding a polynomial

of our choice to the given system, or by “hiding” a variable in the coefficient field (and incrementingn).
For instance, well-known sparse resultant matrices include the matrix of coefficients, when alln + 1
polynomials are linear, and the Sylvester matrix, whenn= 1.

Let MV−i = MV(f0, . . . , fi−1, fi+1, . . . , fn), which stands for the mixed volume of the respective
Newton polytopes. It is assumed that the affine lattice generated by the input supports isn-dimensional;
otherwise a smaller system may be considered [15,33]. This lattice can be identified withZ

n, modulo a
change of variables, implemented by means of Smith’s normal form. Then the sparse resultant’s degree
in the coefficients offi is MV−i , for i = 0, . . . , n, and the total degree is

∑n
i=0 MV−i , which gives the

optimaldimension of any sparse resultant matrix.



148 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

A sparse resultant matrix has rows indexed by setsB0, . . . ,Bn ⊂ Z
n, with cardinality #Bi � MV−i . Let

Q=Q0+ · · · +Qn ⊂R
n be the Minkowski sum of all Newton polytopes. Let

Q−i =
∑
j �=i
Qj , Ti ⊂Q−i ∩Z

n, i = 0, . . . , n,

where theTi are defined to be the computed point sets. We shall useQ(n) to denote some arbitraryQ−i .
In all sparse resultant algorithmsBi ⊂ Ti , but the precise way of selecting theTi and theBi makes these
algorithms differ. The smaller theTi the better, and this depends on the prior knowledge available in
order to bound the point search. The smallest matrices are, in general, constructed by theincremental
algorithm of [19], which tries out successively larger matrices, specified by successively larger point
setsBi .

Definition 5 [19]. Given a convex polytopeA ⊂ R
n and a nonzero vectorv ∈ (R∗)n, we define the

v-distanceδv(p) of any pointp ∈A∩Z
n to be the maximum nonnegative real such thatp+ δv(p)v ∈A.

If |v|2 = 1, then δv(p) is the euclidean distance ofp from the boundary ofA in the directionv.
Furthermore,δv̄(p̄) will stand for thev̄-distance of pointp̄ ∈ Z

k inside some polytope inRk, where
v̄ is the projection ofv to (R∗)k.

One can think of each setBi including successively larger subsets ofTi upon demand, so that the
minimumv-distance inBi is maximized. SetBi is initialized withMV−i points, then incremented until a
valid matrix is obtained with an additional goal, that min{δv(p): p ∈ Bi} be the same for alli. It has been
proven that this process always terminates. In the current implementation, theTi are computed once,
under the hypothesis that they contain enough points for the matrix to be constructed. The algorithm may
try different vectorsv to reduce the matrix dimension, unless an optimalv is given deterministically.

Another merit of the incremental algorithm is that it produces optimal matrices for all cases where
this is provably possible. Partition then variables intor disjoint subsets, wherenk is the group’s number
of variables and

∑r
i=1nk = n. Polynomials which can be separately homogenized in every one of ther

groups are calledmultihomogeneous. We focus on polynomials with identical supports, therefore with
the same partition of variables and the same degreedk in thekth variable subset; such a system is said to
be oftype(n1, . . . , nr;d1, . . . , dr). All multihomogeneous systems which havenk = 1 ordk = 1 for every
k = 1, . . . , r admit an optimal sparse resultant matrix, readily constructed by the incremental algorithm;
see below for examples. In this case, a deterministic choice forv is possible [19]. For systems resembling
this structure we usev obtained by randomly perturbing the vector specified as above. In all of these
cases, we either know cardinalities #Bi or a good bound on each.

Example 6. A completely dense multihomogeneous polynomial of type(2,1;2,1) with variable sets
{x1, x2}, {y1} is the following:

x2
0y0+ x2

0y1+ x2
1y0+ x2

1y1+ x2
2y0+ x2

2y1+ x0x1y0+ x0x1y1

+ x1x2y0+ x1x2y1+ x2x0y0+ x2x0y1,

wherex0 andy0 are the respective homogenization variables for the two subsets. A dense polynomial of
type(2,1;1,1) with the same variable sets is:

x0y0+ x0y1+ x1y0+ x1y1+ x2y0+ x2y1.



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 149

Example 7. Consider a 3-polynomial system with 2 variables and Newton polytopes as shown in Fig. 1:

f0 = c01+ c02x1x2+ c03x
2
1x2+ c04x1,

f1 = c11x2+ c12x
2
1x

2
2 + c13x

2
1x2+ c14x1,

f2 = c21+ c22x2+ c23x1x2+ c24x1.

For each subsystem of two polynomials we computeMV−0 = 4, MV−1 = 3, MV−2 = 4 thus the total
degree of the sparse resultant is 11. On the other hand, the classical resultant has total degree given
by the sum of three twofold Bézout bounds, each being the product of two total degrees, namely
8+6+12= 26. The sparse resultant matrices constructed by the algorithms in [10,11] have respectively
dimension 15 and 14, whereas the incremental algorithm of [19], withv = (2,11/10), yields a matrix of
dimension 12.

The corresponding twofold Minkowski sums have the following interior point sets, including the re-
spectivev-distances:

(
Q−0 ∩Z

2) = {
(0,1;0.150), (1,0;0.100), (1,1;0.100), (1,2;0.091), (2,1;0.050), (2,2;0.050),

(0,2;0), (0,3;0), (2,0;0), (2,3;0), (3,1;0), (3,2;0), (3,3;0)},
(
Q−1 ∩Z

2) = {
(0,0;0.150), (1,0;0.100), (0,1;0.091), (1,1;0.091), (2,1;0.050),

(1,2;0), (2,2;0), (2,0;0), (3,2;0), (3,1;0)},
(
Q−2 ∩Z

2) = {
(0,1;0.182), (1,1;0.150), (1,0;0.111), (2,1;0.100), (2,2;0.091),

(3,2;0.050), (1,2;0), (2,0;0), (3,1;0), (3,3;0), (4,2;0), (4,3;0)}.
The incremental algorithm starts with point set (here are included the respectivev-distances)B1 =
{(0,0;0.150), (1,0;0.100), (0,1;0.091)}. The algorithm has to increment the matrix so updatesB1

toB1∪ {(1,1;0.091)}. The exact setsTi ⊂Q−i ∩Z
2 depend on the particular algorithm and the amount

of prior knowledge that can supplied in order to bound the point search; below are shown theTi obtained
when the sole requirement is a positivev-distance.

T0 = {
(0,1;0.150), (1,0;0.100), (1,1;0.100), (1,2;0.091), (2,1;0.050), (2,2;0.050)

}
,

T1 = {
(0,0;0.150), (1,0;0.100), (0,1;0.091), (1,1;0.091), (2,1;0.050)

}
,

T2 = {
(0,1;0.182), (1,1;0.150), (1,0;0.111), (2,1;0.100), (2,2;0.091), (3,2;0.050)

}
.

Fig. 2. To the left is the 1-dimensional projection ofQ−1 and projection̄v of v = (2,11/10). Points withδv̄ = 0
are crossed out; the algorithm recurses on the other 3 points. In two dimensions (on the right), thev-ray to the
boundary is shown for points withδv(p) > 0.



150 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

Fig. 2 anticipates our algorithm and shows how points are enumerated by lifting their projection each
time to one dimension higher.

The incremental algorithm yields the following 13× 12 matrix, from which it returns any maximal
nonsingular minor as sparse resultant matrix. Columns are indexed, in this order, by points(0,1), (0,2),
(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3) ∈Q∩Z

2. For each row is shown the
monomial multiple of an input polynomial that fills in that row.




c01 0 0 c04 c02 0 0 c03 0 0 0 0
0 0 c01 0 0 c04 c02 0 0 c03 0 0
0 0 0 c01 0 0 c04 c02 0 0 c03 0
0 0 0 0 c01 0 0 c04 c02 0 0 c03

c11 0 c14 0 0 0 c13 c12 0 0 0 0
0 0 0 c11 0 c14 0 0 0 c13 c12 0
0 c11 0 c14 0 0 0 c13 c12 0 0 0
0 0 0 0 c11 0 c14 0 0 0 c13 c12

c21 c22 0 c24 c23 0 0 0 0 0 0 0
0 0 0 c21 c22 0 c24 c23 0 0 0 0
0 0 c21 c22 0 c24 c23 0 0 0 0 0
0 0 0 0 0 0 c21 c22 0 c24 c23 0
0 0 0 0 0 0 0 c21 c22 0 c24 c23




x2f0

x1f0

x1x2f0

x1x
2
2f0

f1

x1f1

x2f1

x1x2f1

x2f2

x1x2f2

x1f2

x2
1x2f2

x2
1x

2
2f2

A stand-aloneC implementation of the incremental algorithm, together with a general polynomial
system solver is publicly available; see Section 7. To illustrate the importance, from a complexity point
of view, of computing theTi we refer to a robot calibration problem, revisited in Section 7, withn= 6. In
this problem,Q0 �=Q1=Q2= · · · =Q6 so only two Newton polytopes and 6-fold mixed volumes need
be computed; this takes 23 seconds.Q−1 =Q−2 = · · · =Q−6 implies that onlyT0, T1 are needed, and
their computation takes 46 seconds with Algorithm 2 before the very last improvement is applied; refer to
Table 2. Constructing the matrix takes another 62 seconds, whereas solving by linear algebra operations
takes between 11 and 39 seconds, depending on matrix compression and arithmetic precision. Another
example from computer vision concerns a camera motion computation, given 5 point correspondences
in 2 images. This problem has been accurately solved with the incremental matrix, with about half the
running time spent in computing the point sets; see [19] and the references therein.

4. Point computation

In this section we concentrate on a single Minkowski sum ofn polytopes, sayQ(n) =Q1+ · · · +Qn.
The straightforward approach of [19] shall enumerate integer lattice pointsT ⊂Q(n) ∩ Z

n and compute
their respectivev-distances. Then, we present our branch-and-bound methods designed to yield an
efficient algorithm in practice.

The plain version of theMayan pyramidalgorithm in [19] solved the plain version of Problem 1, i.e.,
without any bound on the output set’s cardinality and only restricting thev-distance to be positive. It
computes, at itskth step, the range of values of thekth coordinate for any point inT whose firstk − 1
coordinates are fixed, hence its name after the Mayan pyramids.



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 151

Algorithm 1 (Mayan Pyramid).
Input: Vertex sets of polytopesQ1, . . . ,Qn ∈R

n andv ∈ (R∗)n.
Output: PointsT ⊂Q(n) ∩ Z

n together with theirv-distances, such that thev-distances are all positive.
Steps:
(1) T ←∅, k← 1 and initializep̄ to the empty vector.
(2) Computemn,mx∈ Z which are, respectively, the minimum and maximumkth coordinates of any

integer point in the projection ofQ(n) to R
k whose firstk− 1 coordinates are specified byp̄.

(3) If k < n, for eachs ∈ [mn,mx] do: letp̄← (p̄, s), k← k+1. If mn< s <mxthen recurse at step (2).
Otherwise, ifδv̄(p̄) > 0 then recurse at step (2).

(4) If k = n, then for eachs ∈ [mn,mx] do: setp← (p̄, s) and computeδv(p). If δv(p) > 0, then store
p along withδv(p) into T .

(5) Sort allp ∈ T according toδv(p).

It is possible to remove the recursion. Linear programming is used to computemn,mx at step (1)
above:

(p̄, s)=
n∑
i=1

mi∑
j=1

λij v̄ij , (1)

with
∑mi
j=1λij = 1, for i = 1, . . . , n, ∀λij � 0, wheremi is the cardinality of the vertex set ofQi , thevij

are its vertices,̄vij is the projection ofvij to its first k coordinates, and̄p ∈ Z
k−1. The linear program’s

variables are theλij ands. For the same constraints,mn is the ceiling of the minimum value ofs, while
mx is the floor of the maximums. Notice thatno integer programming is required. Of course, variable
s can be avoided since it appears only in one constraint; this can be solved fors and can be used as the
objective function to be minimized or maximized.

In R
k , computingv̄-distances is accomplished bymaximizingσ ∈R � 0 subject to:

p̄+ σ v̄ =
n∑
i=1

mi∑
j=1

λij v̄ij , (2)

and
∑mi
j=1λij = 1, λij � 0, for i = 1, . . . , n, wherep̄, v̄ andv̄ij are, respectively, projections ofp,v, and

vij to Z
k, (R∗)k , andZ

k, for k = 1, . . . , n.
Algorithm 1 uses a restricted version of Proposition 10 in step (3) to avoid recursing at coordinate

valuesmn,mxwhenδv̄(p̄)= 0. In the rest of the section we derive certain properties ofδv( ) and describe
the current version of the Mayan pyramid algorithm. The principal advantages of our approach, to be used
in improving the algorithm, are:
• There is no need to construct explicitly the Minkowski sumQ(n).
• The algorithm starts by considering projections of the polytope, which allows for bounding the search

space.
• It considers each point in some projection ofQ(n) a constant number of times and for most points only

once.
• It allows us to limit the number of extra points that shall not be output, when a cardinality bound is

provided.
• It offers control over the direction of search in order to prune the search space.

Typically, a setT contains many more points than eventually needed in the matrix construction. To
take advantage of a bound on the output cardinality and/or a bound on thev-distance, we wish to exploit



152 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

any properties of the latter. Observe thatv-distance is not monotone, unlike inner product. However, it is
piecewise linear,with “pieces” defined by the boundary facets. Let us consider the projection ofQ(n) and
v to lower-dimensional subspaces in order to restrict the search; the points and vector are respectively
denoted byp̄ ∈ Z

k and v̄. The basic property is that, for anyk � n, δv̄(p̄)= 0 if and only if p̄ lies on a
face of the projected polytope whose exterior normal has non-negative inner product withv̄.

Proposition 8 (Concavity).In one dimension,δv̄(·) is monotone, wherev̄ ∈R. In dimensionk > 1, δv̄(·)
is concavewithin every one-dimensional subset with the firstk − 1 coordinates fixed, i.e.,δv̄(p̄, s) is a
concave function ofs with fixedp̄ ∈ Z

k−1 and v̄ ∈ (R∗)k.

Proof. For k = 1, the first claim is obvious. Consider any two points in the 1-dimensional subset
pi = (p̄, si) with respectivev̄-distances denoted byσi . This implies thatqi = pi + σiv̄ are points
in the (boundary of ) projected polytope. For any twoλi ∈ [0,1], such thatλ1 + λ2 = 1, we have
(λ1p1+ λ2p2)+ (λ1σ1+ λ2σ2)v̄ = λ1q1+ λ2q2. Since the latter is a polytope point,δv̄(λ1p1+ λ2p2)�
λ1σ1+ λ2σ2, which is tantamount to concavity.✷

The proposition is illustrated in Fig. 2. It is applied in steps (3), (4) and (5) in Algorithm 2.

Corollary 9 (Zeros).Let s be in the range of all possible(k + 1)-st coordinates for points(p̄, s) with
p̄ ∈ Z

k fixed; let (v̄, vk+1) be the projection ofv in (R∗)k+1. Suppose there exist at least two distinct
values ofs. If δ(v̄,vk+1)(p̄, s)= 0 for all s thenδv̄(p̄)= 0. Otherwise,δ(v̄,vk+1)(p̄, s)= 0 is possible only at
the two extremal values ofs.

Proof. The set of all points(p̄, s) in the projection ofQ(n) forms a segment inRk+1. Under the fist
hypothesis, all(p̄, s) lie on the same polytope face inRk+1. The exterior normal to this face is(N,0),
whereN ∈R

k, and has non-negative inner product〈(N,0), (v̄, vk+1)〉. Hence, the projection of this face
to R

k is a face of the projected polytope with normalN , and containsp̄. Since〈N, v̄〉 � 0 the first
statement is proven. Otherwise, let[s1, s2] be the shortest segment such thatδ(v̄,vk+1)(p̄, s) vanishes only
at its boundaries, and supposes1 is not extremal among the values ofs for which(p̄, s) is in the projection
of Q(n). By concavity,δ(p̄, s)= 0 for all s between an extremal point ands1. Since we are in a convex
polytope, all points(p̄, s) must lie on the boundary in the direction of(v̄, vk+1), thus contradicting the
hypothesis, thats1 bounds the shortest segment. Hences1 must be extremal, and similarly fors2. ✷

This indicates to test positivity of̄v-distance only at extremal points of 1-dimensional subsets. So
when the bound onv- andv̄-distances is trivial (very close or equal to zero) steps (4), (5) below can be
improved.

Proposition 10 (Monotonicity).Letp ∈ Q(n) ∩ Z
n and v̄, p̄ be thek-dimensional projections of vector

v and pointp, respectively. Thenδv(p)� δv̄(p̄).

Proof. Sinceδv(p) is maximum such thatp + δv(p)v =∑
i,j λij vij ∈Q(n), it follows (by taking only

k of then constraints) that̄p + δv(p)v̄ =∑
i,j λij v̄ij in the projection ofQ(n) to the space of the firstk

coordinates. This describes a feasible solution to the linear program of maximizingδv̄(p̄) in R
k and the

claim follows. ✷



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 153

Now the improved algorithm can be stated. Just as before, linear optimization is used withk < n

coordinates to computēv-distances. By Proposition 10, recursion is applied only for point projections
whosev̄-distance is strictly positive and larger than any given bound onv-distance, denotedβ. Variable
pr stores the last̄v-distance of points when the last coordinate is varying andk coordinates are fixed. By
exploiting concavity, established in Proposition 8, thev̄-distance cannot increase once it becomes smaller
than the previous value of̄v-distancepr, supposing the latter is defined.

Algorithm 2 (Improved Mayan Pyramid).
Input: The vertices ofQi , v ∈ (R∗)n, and boundβ > 0 onv-distance; possibly, also a boundc on #T .
Output: T ⊂Q(n) ∩ Z

n andδv(p) for all p ∈ T , under the condition thatδv(p)� β.
Steps:
(1) T ←∅, k← 1 and initializep̄ to the empty vector.
(2) Computemn,mxas the minimum and maximumkth coordinates of any integer point in the projection

of Q(n) in R
k whose firstk − 1 coordinates are specified byp̄.

(3) If k = 1 andv̄ = v1> 0 (resp.v1< 0) then fors =mn, . . . ,mx(s =mx, . . . ,mn) and whileδv̄(s)� β
do: p̄← (s), k← 2, then recurse at step (2).

(4) If 2 � k < n, for s =mn, . . . ,mx, p̄← (p̄, s). If δv̄(p̄)� β thenk← k + 1 and recurse at step (2).
Otherwise: ifs >mnandpr is defined andδv̄(p̄) < pr, then terminate the iteration ons; if s =mn
or δv̄(p̄)� pr, then setpr← δv̄(p̄) and continue the iteration ons.

(5) If k = n, for s =mn, . . . ,mx, setp← (p̄, s). The iteration ons is terminated whenδv(p) < β and at
least one of the following two conditions is satisfied:s >mnandpr is defined andδv(p) < pr, or c
is given and #T > λc for some constantλ determined by fine-tuning. While the iteration continues,
setT ← T ∪ {p} andpr← δv(p).

(6) Sort allp ∈ T according toδv(p) (keep only thec first points ifc is given).

In the previous section, it was explained that in reality we need to computen+ 1 setsT0, . . . , Tn. The
minimumv-distance in everyTi will be roughly the same, so this yields a boundβ on v-distance once
T0 has been computed. After computing eachTi , the program updatesβ. We derive successively better
bounds even during the computation ofT0, by updatingβ whenever there are at least as many points with
larger v-distance as a constant multipleλ of the upper cardinality boundc for T0. To avoid an overly
restrictiveβ, λ can be lowered if many points are found with smallerv-distance. Precisely how many, is
a question of fine tuning discussed in Section 7. Similarly in step (5), points are not eliminated unless a
certain number is already obtained.

By the discussion above,̄v-distances, for anyk < n, are needed only for comparison against the
maximum available bound. Linear program (2) can then be simplified to afeasibilityquestion of whether
it is possible to findσ at least as large as the bound. The practical implications of this are discussed
in Section 7. The linear optimization problems to find one ofmn,mx for k = n can be replaced by the
computation ofδv(·). In the case of cyclic-7 (defined in Section 7) this eliminates about 1/8 of the total
number of optimization problems. This shortcut has not been fully implemented yet.

Step (5) of the improved algorithm can avoid all tests withs =mx(or mn, depending on the direction
of v) whenk = n, which makes for about one third of all range computations. In that case, step (2) needs
to calculate only one ofmn,mx. Let us elaborate on this idea: for “box-like” polytopes close to hyper-
rectangles, using the smallestenclosing rectangleaccelerates the computation at those slices where all
v̄-distance checks are performed, i.e., for largek. On the other hand, the method fails on the cyclicn-roots



154 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

systems. Having optimized formn, we add integer values and check every point until one has unbounded
v̄-distance. This will save computingmx, and is counter-efficient only for thin polytopes, close to the
diagonal. This heuristic has significantly accelerated special classes of polytopes. More work is to be
carried out before integrating this technique in the code, in order to automatically decide the polytopes
for which this trick is acceptable.

Lastly, a related technique is described, which has not been tested experimentally. It relies on
generalizing the definition ofv to allow its projectionv̄ to be parallel to one of the axes, say the positive
direction of thex1-axis. This can be achieved by a (relatively cheap) rotation of the frame of reference.

Lemma 11. Assume thatq belongs to thek-dimensional projection of the polytope withx1= a, where
1 � k < n anda ∈ Z. Thenδv̄(a + 1, q) < δv̄(a, q), if (a, q) lies in the appropriate(k + 1)-dimensional
projection.

Proof. The claim considers two points on the same line parallel to thex1-axis and relies on the hypothesis
that v̄ is parallel to thex1-axis. ✷

A useful consequence is thatδv̄(a + 1, q) < max{δv̄(a,p)} over all p ∈ Z
k in the k-dimensional

projection withx1 = a. This lets us comparēv-distances during a sweep of the polytope’s projection
in the direction ofv̄ and terminate this sweep when the above maximum falls below boundβ.

5. Linear programming

This section studies the special structure of our linear programs in order to derive properties that
lead to improvements in both asymptotic and practical complexity; see [8] for details and proofs of the
transformations. Some of these observations have not been tested experimentally because their efficiency
is strongly contingent upon the use of specially adapted code.

Observe that the equationsλi1+ · · · + λimi = 1 can be solved forλi1, thus eliminating one variable
per summand polytope. This implies that the constraint becomesλi21+· · ·+λimi � 1, hence the feasible
polytope is (close to) the simple polytope defined as a product of simplices. More specifically, let us
denote the product of convex polytopesA1,A2 by A1 × A2 = {(a1, a2): ai ∈ Ai}. First note that the
product of two simple polytopes is itself simple.

Proposition 12 [3, Lemma 1].The number of vertices and the total number of faces of any dimension
in A1 × A2 equals theproductof the respective cardinalities inA1 andA2. The dimension and facet
cardinality ofA1 × A2 equals thesum of the respective quantities ofA1,A2. The same additive rule
holds for the dimension of products of faces fromA1 andA2. Moreover, all faces of the product polytope
are obtained like this.

The main goal in what follows is to exploit relationships between the various optimization problems in
order to avoid some steps of the simplex algorithm. For instance, use an available basic feasible solution
to avoid the first phase of the algorithm. One straightforward case is the linear program defined by (1). It
is essentially used two times, with different objective functions. Hence, any (basic) feasible solution of
the minimization problem is a (basic) feasible solution of the maximization problem.



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 155

When the solution of the minimization or maximization problem happens to be an integer, it defines a
point (p̄, s) whose last coordinate equals the optimal value ofs in (1). Therefore, the optimal values of
theλij provide a basic feasible solution for the maximization question of type (2) for computing thev̄-
distance of(p̄, s). Namely, theseλij correspond to the solution withσ = 0, provided that no boundβ > 0
is imposed onσ . To see this, just observe that withσ = 0 the constraints of (1) and (2) are identical, with
point p̄ increasing in dimension by 1 between the two formulations.

To fully exploit the closely-knit interdependence of the successive linear programs of type (2), it is
useful to consider their dual formulation. The primal problem, after solving forλi1, i = 1, . . . , n, as
proposed above, gives the following; recall thatp̄, v̄ij ∈ Z

k , v̄ ∈ (R∗)k, for k � n.
n∑
i=1

mi∑
j=2

λij (v̄ij t − v̄ij1)− σ v̄t = p̄t −
n∑
i=1

v̄ij1, t = 1, . . . , k,

mi∑
j=2

λij � 1, i = 1, . . . , n,

λij � 0, i = 1, . . . , n, j = 2, . . . ,mi,

σ � 0,

min−σ.

(2′)

The equivalent dual problem is derived line by line from the primal; they1, . . . , yn andz1, . . . , zk are the
new variables.

yt free, t = 1, . . . , k,

zi � 0, i = 1, . . . , n,

zi +
k∑
t=1

yt (v̄ij t − v̄ij1)� 0, i = 1, . . . , n, j = 2, . . . ,mi,

−
k∑
t=1

yt v̄t �−1,

max
n∑
i=1

zi +
k∑
t=1

yt

(
p̄t −

n∑
i=1

v̄ij1

)
.

Computingv̄-distances for different points̄p ∈ Z
k implies changing the right-hand side of the equality

constraints in the primal. In the dual, though, this changes only the maximization function. Hence, any
(basic) feasible solution for one dual program remains (basic) feasible in subsequentv̄-distance computa-
tions with the dual. This implies that, for givenk, we have to execute the first phase of the (dual) simplex
algorithm, namely the computation of a basic feasible solution, only once. Alternatively, the optimal
solution of a primal problem on one point yields a basic feasible solution of the dual for any other point.

Consider now the computation of thev̄-distance of all points inZk+1 that have their firstk coordinates
equal top̄ ∈ Z

k, once thēv-distance of this latter point has been computed. Incrementingk means adding
a new constraint to the primal program (2′). Equivalently, it creates a new free variableyk+1 in the dual,
which appears in all constraints as well as the maximization function. Just as before, (basic) feasible
solutions of the dual remain so whenk is incremented, and the optimal solution of the primal gives a
basic feasible solution of the dual for an augmentedk.



156 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

An analogous primal-dual transformation is possible for program (1). In either case, working with
the dual presents the advantage of reducing the number of variables from O(nm) to O(n), whereas the
number of constraints is in both cases in O(nm).

6. Asymptotic complexity

This section analyzes the worst-case asymptotic complexity of Algorithm 2 in terms of the sparsity
parameters. Most bounds apply to Algorithm 1 too, since the improvements concern primarily the
practical complexity and are hard to capture in an asymptotic analysis.

A direct application of the Aleksandrov–Fenchel inequality proves the following; see [17,38]:

Proposition 13. (MV(Q1, . . . ,Qn))
n � (n!)n vol(Q1) · · ·vol(Qn), for any convex polytopesQi ∈R

n.

Consider a family ofn+ 1 polytopesQi and denote byQµ the polytope of minimum volume. The
system’s scaling factors is the minimum real such thats � 1 andQi + ti ⊂ sQµ, for i = 0, . . . , n and
some translation vectorsti ∈ R

n. We denote by e the basis of the natural logarithm.

Corollary 14. Given a family of polytopesQi ⊂ R
n such thatvol(Qi) > 0 for i = 0, . . . , n, defineQµ

and the system’s scaling factors as above. Thenvol(Q−i)=O(ensn)MV(Q0, . . . ,Qi−1,Qi+1, . . . ,Qn).

This bound generalizes the case of identical polytopes in whichs = 1. Moreover, it is asymptotically
quite tight, except whens→∞ (hence the requirement of positive volumes).

To state our asymptotic bounds the following hypothesis is needed on the inputs, which is always
satisfied in the examples we have considered.

Hypothesis 15. For anyk ∈ {1, . . . , n} andp̄ in the orthogonal projection ofQ(n) into Z
k−1, we assume

that the number of points̄p for whichmn>mxat step (2) of Algorithm 2 is bounded above by a constant
multiple of the total number of points̄p examined for thatk.

This intuitively prohibits long and thin polytopes that contain a large number of integer points in
their projections with respect to theirn-dimensional euclidean volume. An immediate consequence is
that the number of integer points inside any one of the Minkowski sum’s orthogonal projections is
asymptotically bounded by the sum’s volume. The hypothesis can be explicitly checked during execution
of the algorithm, and the number of times it fails can be reported in the end. Failure of the hypothesis is
equivalent tomn>mx for some integer point̄p in an orthogonal projection of the Minkowski sum.

Now let L be the maximum bit-size of any Newton polytope vertex coordinate. Consider any
subsystem ofn polytopes withQ(n) as their Minkowski sum andMV their mixed volume.

Theorem 16. Let m bound the number of vertices per Newton polytope, for a system ofn + 1
polynomials. The bit complexity of the Mayan Pyramid algorithm to compute an integer point set
T = Q(n) ∩ Z

n and the respectivev-distances isO((#T )n3.5m1.5L2 logL), for any i = 0, . . . , n. If s
is the system’s scaling factor, then the bit complexity isO(ensnMVn3.5m1.5L2 logL).



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 157

Proof. In the dual formulations of the linear programming problems, the number of variables and
constraints is O(m) and O(nm) respectively, and the bit size of the coefficients isL, so the bit complexity
becomes O(n2.5m1.5L2 logL) [47].

By Ehrart’s famous result [16] which bounds asymptotically the cardinality of the integer point set
by the euclidean volume (or alternative results from Section 2), in conjunction with Hypothesis 15,
we can bound the number of integer points in every orthogonal projection by O(vol(Q(n))). Thus the
number of linear programs is bounded by O(vol(Q(n))n), because at every dimension there is at most
two optimization problems solved per point in the polytope’s projection. Finally, apply Corollary 14.✷

The number of integer points in a projection could be eventually refined by better bounding the volume
of the orthogonal projection. For hypercubes, for instance, as well as similar polytopes, every time we
project, the number of points is divided roughly by the edge length.

To simplify complexity bounds, we may ignore polylogarithmic factors in the arguments, which is
denoted by O∗(·).
Corollary 17. LetdegR denote the total degree of the input polynomials’ sparse resultant. Suppose that
the system’s scaling factors =O(1) and the maximum bit size of any vertex is bounded by a polynomial
in n. Then the total bit complexity of the Mayan pyramid algorithm for computing some setsT0, . . . , Tn,
Ti ⊂Q−i ∩Z

n, is O∗(enm1.5 degR).

Proof. Applying the previous theorem and summing overi = 0, . . . , n, the total bit complexity is∑n
i=0 O∗(enMV−im1.5). Then use the fact that degR =∑n

i=0 MV−i , where degR is the total degree of
the sparse resultant.✷

To model the situation when the Improved Mayan Pyramid algorithm is used, we may assume that
the total number of points computed in any setTi is a linear multiple inn of the number of points
MV−i needed for a matrix of minimum size. Then, the bit complexity for theith point set would be
O(MV−in4.5m1.5L2 logL). The assumption on the output-sensitive behaviour of the Improved Mayan
Pyramid algorithm is verified experimentally at Table 2. This proves the following asymptotic bound in
terms of the main sparsity parameter, namely the total degree of the sparse resultant degR, which is the
sum of alln-fold mixed volumes.

Proposition 18. Let us suppose that Hypothesis 15 holds and that Algorithm 2 has to enumerate
only O(nMV−i) integer points in every setTi . Then the total bit complexity of this algorithm is
O∗(n4.5m1.5L2 degR).

The point enumeration complexity dominates the computation of theNewton polytope vertices: for
each polytope, we may test every support point by a linear program with at mostm variables, O(n+m)
constraints. Assumingn=O(m), the complexity is O(m3L2 logL), whereL is as above [47]. Hence the
total bit complexity is in O(nm3L2 logL).

Computing alln-fold mixed volumesis in O∗(m2n+2), but in practice this cost is also largely dominated.
Assuming that a constant number of vectorsv is used and that the matrix dimension is a constant
multiple of the optimal dimension, which is always the case in practice, thenmatrix constructionhas
bit complexity O∗(e3n(degR)3) [19]. These results provide a theoretic explanation of the bottleneck
observed at point computation.



158 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

Let us estimate the complexity if Minkowski sumQ(n) were explicitly computed, represented by
its vertices or by its facets. In the former case, the number ofQ(n) vertices is in O(m2(n−1)nn−1)

[28, Corollary 2.1.11], and this is the best possible bound. So, the complexity of computing a vertex
representation of the Minkowski sum is exponential inn, irrespective of the output size; see also [28,
Remark 2.1.3]. The number of facets in the Minkowski sum is in O(gn) [28, Theorem 2.1.10], where
g denotes the number of nonparallel edges of the initial polytopes. Therefore, the complexity is again
exponential inn, but will be higher than in the case of a vertex representation for most inputs. Hence,
computing explicitly the Minkowski sum makes sense only if (almost) the entire point setsQ−i ∩Z

n are
needed and the vertex cardinality ofQ(n) is small. See the next section for practical complexity.

7. Implementation and experiments

The implementation is inC and can be retrieved freely from

http://www-sop.inria.fr/galaad/logiciels/emiris/soft_geo.html.

This is research open-source software, using our implementation of the simplex method for linear
programming based on the code from [42], and hence of limited efficiency. The main file of interest
is points.c. Compilation is using the option-DONLY_POINTS, so that the sparse resultant matrix is
not constructed. Input and output formats, as well as command-line options are explained in theREADME
file. In the current version, point coordinates should be non-negative. The most important options include
• -mc c, with integerc providing a bound on the point set cardinalities,
• -ms k, with k ∈ {0, . . . , n+ 1} indicating the number of point sets already computed and stored in

the appropriate file,k = 0 implying that all sets must be computed,
• -mu b, with rationalb providing a bound on thev-distances.
We report on execution times on a SunUltra 1/170 workstation running SunOS 5.6, with a 167 MHz CPU
and 64 MB of main memory. All running times are reported to the nearest integer number of user CPU
seconds byC library functiongetrusage.

Let us list here the three main tuning parameters that may be adjusted before compilation; they are
introduced in Algorithm 2 or the discussion that follows it.
• A choice ofk for which δv̄ is computed (in order to be compared against the available boundβ > 0).

The associated cost is analyzed in Table 6; in the present examples it pays off to apply this test for all
k.
• A possible choice of when to update boundβ: hasty updates eliminate too many points, whereas

delayed updates neutralize this pruning test. This update is not included in the description of
Algorithm 2 but has been implemented.
• A choice ofλ in step (5) of Algorithm 2 such thatλc indicates the number of points that must be

collected in someTi before the algorithm rejects any candidate (projection) point, wherec denotes the
target cardinality ofTi . λ should be sufficiently larger than 1 (typically between 2 and 4) so that it does
not reject projected points which may eventually yield a largev-distance.
We concentrate on 3 classes of systems: multihomogeneous systems where all polytopes are identical

(identified by their type) as described in Section 3, the standard algebraic benchmark of cyclicn-roots,
and a system encountered in robot calibration withn= 6 andQ0 �=Q1= · · · =Q6, discussed at the end
of Section 3. The cyclicN -roots family is now defined, which is encountered in Fourier analysis. It is



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 159

Table 1
CPU secs for computing the facet structure of the Minkowski sum and all interior points
by porta

System n #facets #T Time forQ(n) Time forT Total

cyclic-6 4 29 215 1 0 1

cyclic-7 5 99 1400 93 1 94

(2,1,1;1,2,2) 4 7 1215 2 0 2

defined byfk =∑N
i=1

∏i+k−1
j=i xj , wherexN+t = xt , for k = 1, . . . ,N − 1, andfN = x1x2 · · ·xN − 1. This

is a square system of dimensionN . We use an equivalent formulation that decreases the dimension by
settingyi = xi/xN andyN = 1 in the firstN − 1 equations, then employx−nN = y1 · · ·yN−1 to solve for
theN th variable. The new system containsN − 1 polynomials inN − 1 variables:

fk =
N∑
i=1

i+k−1∏
j=i

yj , yN = 1 and yN+t = yt , k = 1, . . . ,N − 1.

Here we consider the overconstrained system resulting from “hiding”y1 in the coefficient field. Setting
n = N − 2 yields a system ofn+ 1 equations inn variables. This is a particularly sparse system since
every Newton polytope has zeron-dimensional volume.

We compare with the approach that first computes a facet representation of Minkowski sumQ(n) (from
all distinctsums ofn vertices) and then computesall integer points inT =Q(n) ∩ Z

n. For this, we used
porta, v.1.3.2 [13] which offers both functionalities, though it requires a facet representation of
Q(n) in order to compute the integer points in its closed interior. Of course, the facet representation of
the convex hull can be obtained by any arbitrary-dimension convex hull software, includingcdd, lrs,
porta or qhull. Running times in Table 1 ignore the time to compute the points definingQ(n), the
v-distances, and the sorting phase. The table reports the number of facets ofQ(n), #T , and the times
for computingQ(n) andT respectively, on 3 instances. As expected, computing the convex hull is very
expensive and clearly dominates point enumeration; it also makes the overall timings much larger as
compared to those of our algorithm, as reported in the last two columns of Table 2. This is, clearly,
not a comment aboutporta but only about the method that requires the explicit construction of the
Minkowski sum. One thing that has not been exploited is that the point sums definingQ(n) form a “dense”
subset ofT , often of the same cardinality (which is the case in the examples of Table 1).

To compare with the algorithm of [19], we use an improved version of that code which implements
Algorithm 1. Timings in CPU seconds are reported in column “Alg. 1” of Table 2. Our current
implementation uses all pruning techniques incorporated in Algorithm 2 and yields the CPU timings
in the corresponding column. All computedTi ⊂Q−i ∩ Z

n have a prescribed bound on the number of
points (denotedc above) and reported in the fourth column of the same table. The sixth column (#Bi )
shows the cardinalities of the point subsets actually used in the matrix. The first input set is drawn from
the cyclicN -roots family. For cyclic-8, the matrix takes rather long to construct, hence the cardinalities
of Bi are not reported. For the multihomogeneous systems, which comprise the last group of examples
and where there is a single distinct setT0= B0, both programs exploit the fact that the cardinality ofT0

is known (and equal to then-fold mixed volume).



160 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

Table 2
CPU seconds of original algorithm and two versions of the current algorithm

System n MV−i Compute #Ti #Bi Alg. 1 Alg. 2 Semi

cyclic-6 4 12,14 T0, . . . , T4 30 18–30 1 1 1

cyclic-7 5 43–47 T0, . . . , T5 250 164–198 10 6 6

cyclic-8 6 128–152 T0, . . . , T6 500 − > 180 60 60

robotics 6 10,20 T0, T1 60 10,50 65 46 3

(2,1,1;1,2,2) 4 48 T0 48 48 0 0 0

(1,1,1,1;2,2,1,1) 4 96 T0 96 96 3 1 0

(1,1,1,1;3,3,1,1) 4 216 T0 216 216 5 3 0

(1,1,1,1;3,3,2,1) 4 432 T0 432 432 11 6 1

(1,1,1,1;3,3,3,1) 4 648 T0 648 648 16 12 2

Table 3
CPU seconds on the cyclic-N family (N = n+ 2)

System n MV−i degR [sec]

cyclic-4 2 2 6 0.017

cyclic-5 3 5 20 0.047

cyclic-6 4 12,14 66 0.517

cyclic-7 5 43–47 270 5.988

cyclic-8 6 128–152 948 59.967

A class of special interest aresemi-mixedsystems, with eachQ−i defined byk summand polytopes
S1, . . . , Sk, wherek < n is the number ofdistinctQj, j �= i. Of course, ifQj is repeatedr times in the
Minkowski sum, then the correspondingSj = rQj , and replaces allr Newton polytopes equal toQj . This
drastically reduces the number of variables in the linear programs at a small cost, because the program
has already computed the classification into distinct Newton polytopes. The running times resulting from
exploiting identical polytopes (i.e., semi-mixed polytope sets) are reported in the last column of Table 2.

Table 3 looks into more detail in the running times of the cyclic family, each taken as the average of
at least 3 runs. This will serve to test the assumptions used in deriving the output-sensitive asymptotic
bounds in terms of the sparsity parameters in the previous section, in particular Proposition 18. The
table includes the parameters needed for this proposition’s bound, which becomes O(n6 degR) for this
family, sincem andn never differ by more than 1 and the input point coordinates have constant size. The
logarithm of base 10 of functionn6 degR is plotted in Fig. 3 with a solid line. The dashed line is the same
logarithm of the running times from Table 3 multiplied by 10 so that the ranges of the two functions are
close to each other. We see that in this small sample the behaviour of the practical complexity is indeed
exponential inn and grows at a rate bounded by that of the asymptotic bound we have derived.



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 161

Fig. 3. Logarithms of the asymptotic bound function of Proposition 18 (solid line) and the running times for the
cyclic-N family,N = n+ 2 (dashed line), from Table 3.

Table 4
CPU seconds on multihomogeneous systems with fixedn = 4
andm polytope vertices

System m MV−i degR [sec]

(2,1,1;1,2,2) 27 48 240 0.4

(1,1,1,1;2,2,1,1) 36 96 480 1

(1,1,1,1;3,3,1,1) 64 216 1080 3

(1,1,1,1;3,3,2,1) 96 432 2160 6

(1,1,1,1;3,3,3,1) 128 648 3240 12

Table 4 considers the running times of the multihomogeneous systems examined above, as an
additional test of the assumptions used in deriving the asymptotic bounds. The bound of Proposition 18
becomes O(m1.5 degR) for this family, sincen= 4 andL is constant; the functionm1.5 degR divided by
a constant power of 10 is plotted in Fig. 4 with a dashed line. The solid line represents the running times
from Table 4, multiplied by 10 to make the two ranges approach each other. Despite the small size of our
sample, the growth rate of the practical complexity remains below that of our asymptotic bound function.

Testing for feasibility instead of optimizing linear program (2), as explained after Algorithm 2,
does not reduce significantly the running time even if, for certain inputs like the cyclic systems, this



162 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

Fig. 4. The asymptotic bound function of Proposition 18 (dashed line) and the running times for the
multihomogeneous systems (solid line) from Table 4.

Table 5
Improved performance by boundingv-distance on
system(1,1,1,1; 2,2,1,1)

β #candidates total#LPs [sec]

ε→ 0+ 1141 3018 3

dynamic 466 1314 1

represents about 1/3 of the linear optimization problems. In terms of worst-case complexity, testing for
feasibility runs in a constant fraction of the time needed for optimizing, especially in what concerns our
implementation of the simplex method. This agrees with theory, which states that finding the feasible
solution is roughly half the overall complexity of simplex-based methods. Specialized code could be
used to decide this question faster; one possibility is to usecdd+ with optionfind_interior [22].

The significance of tight bounds on thev-distance is illustrated on Table 5 for system(1,1,1,1;
2,2,1,1), for which #Bi = 96. The first row of Table 5 has a trivialβ, whereas a dynamicβ eliminates
289 candidateprojectedpoints for whichδv̄(p̄) < β. For subsequent point setsβ is seldom lowered, even
when theQ−i are quite different, as in cyclic-7. The columns of Table 5 report, respectively, the number
of candidate points, of linear programs, and running time.

Application of such bounding rules is not a boon, because of the cost associated to the computation of
δv(p), which can become the dominating source of practical complexity, so careful tuning is in general



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 163

Table 6
Overall fraction of tableau construction and linear programming
cost. Cost of computingv, v̄-distances vs. computingmn,mx

System Tableau LP δv, δv̄ mn,mx

cyclic-6 12% 87% 57 43

cyclic-7 12% 87% 59 41

cyclic-8 4.8% 95% 58 42

(2,1,1;1,2,2) 13% 81% 78 22

(1,1,1,1;3,3,3,1) 11% 85% 70 30

required. Table 6 shows the percentage of overall time spent on building the linear programming tableaus
and on linear programming itself. We note that sorting the integer points is largely dominated as is the
time to compute the Newton polytopes: at most 0.5% and 3.1%, respectively, on the systems of Table 6.
Moreover, the table shows the breakdown of the total linear programming costs for computingv- or
v̄-distances as opposed to computingmn,mx. Nonetheless, in both families of examples (cyclic and
multihomogeneous), the checks onδv̄(p̄) helped reduce the number of candidate points to such a degree
that payed off for these checks’ cost.

The remainder of this section focuses on linear programming and discusses our experiments with
different software. All timings reported so far are based on our implementation of the simplex method
based on the code from [42]. Here we consider the linear programming capabilities oflrs andcdd+ and
find out that they do not offer any speedup. Both software has been tested on the particular subproblem
of computingv- and v̄-distances. Our code generates hyperplane-represented linear programs using
rationals (in order to express vectorv or v̄).

We used version4.0 of lrs [2] which provides two main programs: the fasterlrs1 that runs with
fixed-length long integers but provides no overflow checking, andglrs using the arbitrary-precision
integers of theGNU MP 2.0.2 library. Both implement the reverse search paradigm. Certain options
are provided in order to better specify the number of digits used and the cache size; namelydigits
was set to a value between 20 and 32, whereas a typical value forcache was 500. Moreover option
lponlywas set, which accelerated execution considerably, andlinearitywas used to specify those
constraints that were exact equalities.lrs1 was not sufficiently accurate for our problems. On the other
handglrs, was definitely slower on the cyclic-8̄v-distance computations. The main reason is that it
performs exact arithmetic over long integers. A secondary reason is that the positivity of the variables,
implied by the simplex algorithm, must be explicitly stated thus increasing the number of constraints
considerably. In particular, calling the stand-aloneglrs program with file inputs ran at least 100 times
slower.

Of theC++ implementation of the double description method [22], we used version0.76 of cddf+
which runs on floating-point arithmetic, with optionslponly, stdout_off, dynout_off, but no
scaling of the input nor any kind oflinearity option. More importantly, we reduced space allocation
to arrays of at most 200 elements, then tried the code on cyclic-8.cddf+ was able to compute allv- and
v̄-distances and produced exactly the same integer point set, though the distances differed from those of
our program in their third significant digit (which did not affect the points’ ordering).



164 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

We experimented with optionsdual-simplex (the default) andcriss-cross, which calls upon
the Terlaky–Wang method. For each algorithm, we tried 6 options for sorting the constraints:lexmin
(the default),lexmax, mincutoff, maxcutoff, maxindex and random. The dual simplex
method was faster for every ordering, whereas we could not observe significant differences between
the orderings; a slight advantage should be recognized formaxindex andrandom. Yet, cddf+ was
about 2 times slower than the simplex code we have been using in calculating thev- andv̄-distances for
cyclic-8; overall execution was slowed down to about 117 seconds from the 60 seconds of Table 2.

8. Further work

Most of the aforementioned methods for computing the Minkowski sum in low dimensions exploit
the interplay between convolution and Minkowski addition. The former provides an economical
representation of the sum and might thus be exploited for the problem at hand [5,43].

Efficient linear programming software, adapted to the type of our problems may dramatically
accelerate the program: first, there is a large difference between the number of variables to that of
constraints. Second, the input is very sparse and the current code that fills in a dense matrix spends
considerable time in creating the tableaus (see Table 6). Furthermore, in computing intervals[mn,mx],
the same set of constraints is processed with the same objective function, once to minimize it and once
to maximize it. In addition, successive linear programs are very similar, since only a few coordinates
in the equations change or a large subset of common constraints is common to several of them. In both
cases, dimension is an input variable, which rules out direct use of the algorithms conceived under the
hypothesis of fixed dimension, discussed in Section 2.

It is conceivable to computemn,mx in step (2) of Algorithm 2 so that the new point̄p has
δv̄(p̄)� β, for k > 1. This eliminates explicit tests onδv̄(p̄) but has not been experimentally validated.
Implementation improvements are possible to reduce the most critical parameter of complexity, namely
the number of variables in linear programming. For instance, projections of the Minkowski sum are now
defined by the projections of all the vertices in the summands, which can have a significantly higher
cardinality than if we first projected the vertices and computed their convex hull.

A related combinatorial question in sparse elimination concerns the modelling of the algebraic
system. Given a system of (sparse) polynomials, there is no automatic procedure to decide whether it
is multihomogeneous or even close to such. An interesting open problem is to devise a combinatorial
algorithm that will determine the optimal multihomogeneous structure valid for the given system, namely
to find the number of variable subsetsr and the type of a system whose single Newton polytope includes
all given (possibly different) supports. Optimality is equivalent to minimizing the number of points that
may have to be added to the supports in order to fill in the multihomogeneous Newton polytope. A
simpler measure would be to minimize the latter’s volume. This problem is NP-hard [20]. Decomposing
an integral polytope into a sum of polytopes is actually known to be NP-complete, even for polygons [24].

Acknowledgements

With acknowledgement to the France/Hong-Kong Joint Research Scheme PROCORE for its financial
support.



I.Z. Emiris / Computational Geometry 22 (2002) 143–166 165

References

[1] I. Adler, R. Shamir, A randomized scheme for speeding up algorithms for linear and convex programming
with high constraints-to-variables ratio, Math. Programming 61 (1993) 39–52.

[2] D. Avis, User’s guide for lrs—version 4.0, 2000, http://www.lab2.kuis.kyoto-u.ac.jp/~avis.
[3] D. Avis, D. Bremner, R. Seidel, How good are convex hull algorithms?, Computational Geometry Theory and

Applications 7 (1997) 265–301.
[4] A.I. Barvinok, J. Pommersheim, An algorithmic theory of lattice points in polyhedra, in: L.J. Billera,

A. Björner, C. Greene, R. Simion, R.P. Stanley (Eds.), New Perspectives in Algebraic Combinatorics, MSRI
Publications, Vol. 38, Cambridge Univ. Press, Cambridge, UK, 1999, pp. 91–147.

[5] J. Basch, L.J. Guibas, G.D. Ramkumar, L. Ramshaw, Polyhedral tracings and their convolution, in: J.-P.
Laumond, M. Overmars (Eds.), Algorithms for Robotic Motion and Manipulation, A.K. Peters, Wellesley,
MA, 1996.

[6] D.N. Bernstein, The number of roots of a system of equations, Funct. Anal. Appl. 9 (2) (1975) 183–185.
Translated from Funktsional’nyi Analiz i Ego Prilozheniya 9 (3) (1975) 1–4.

[7] D.N. Bernstein, The number of integral points in integral polyhedra, Funct. Anal. Appl. 10 (1976) 223–224.
Transl. from Funktsional’nyi Analiz i Ego Prilozheniya 10 (3) (1976) 72–73.

[8] D. Bertsimas, J. Tsitsiklis, Introduction to Linear Optimization, Series in Optimization and Neural
Computation, Athena Scientific, Belmont, MA, 1997.

[9] J.-D. Boissonnat, E. de Lange, M. Teillaud, Slicing Minkowski sums for satellite antenna layout, Computer-
Aided Design 30 (1998) 255–265.

[10] J. Canny, P. Pedersen, An algorithm for the Newton resultant, Technical Report 1394, Comp. Science Dept.,
Cornell University, Ithaca, NY, 1993.

[11] J.F. Canny, I.Z. Emiris, A subdivision-based algorithm for the sparse resultant, J. ACM 47 (3) (2000) 417–451.
[12] T. Chan, Fixed-dimensional linear programming queries made easy, in: Proc. 12th Annual ACM Symp. on

Computational Geometry, Philadelphia, PA, 1996, pp. 284–290.
[13] T. Christof, A. Loebel, M. Stoer, PORTA, version 1.3, University of Heidelberg and ZIB Berlin, 1999,

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/PORTA.
[14] K.L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension is small, J.

ACM 42 (2) (1995) 488–499.
[15] D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Graduate Texts in Mathematics, Vol. 185, Springer-

Verlag, New York, 1998.
[16] E. Ehrart, Sur un problème de géométrie diophantienne, I. Polyèdres et réseaux, J. Reine Angew. Math. 226

(1967) 1–29.
[17] I.Z. Emiris, On the complexity of sparse elimination, J. Complexity 12 (1996) 134–166.
[18] I.Z. Emiris, Computing integer points in Minkowski sums, in: Proc. 16th Annual ACM Symp. on

Computational Geometry, Hong Kong, 2000, pp. 29–36.
[19] I.Z. Emiris, J.F. Canny, Efficient incremental algorithms for the sparse resultant and the mixed volume, J.

Symbolic Comput. 20 (2) (1995) 117–149.
[20] I.Z. Emiris, M. Rojas, Sparse results in sparse elimination, Draft, 2000.
[21] D. Eppstein, Zonohedra and zonotopes, Mathematica in Education and Research 5 (4) (1996) 15–21.
[22] K. Fukuda, cdd/cdd+ reference manual, version 0.61/0.76, EPF Lausanne, Switzerland, 1999, http://www.

ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html.
[23] K. Fukuda, H. Brönnimann, Personal communication, 1999.
[24] S. Gao, A.G.B. Lauder, Decomposition of polytopes and polynomials, Discret. Comput. Geometry 26 (1)

(2001) 89–104.
[25] B. Gärtner, E. Welzl, Random sampling in geometric optimization: New insights and applications, in: Proc.

16th Annual ACM Symp. on Computational Geometry, Hong Kong, 2000, pp. 91–99.



166 I.Z. Emiris / Computational Geometry 22 (2002) 143–166

[26] M. Giusti, J. Heintz, J.E. Morais, J. Morgenstern, L.M. Pardo, Straight-line programs in geometric elimination
theory, J. Pure Appl. Algebra 124 (1998) 101–146.

[27] P. Gritzmann, V. Klee, On the complexity of some basic problems in computational convexity II: Volume
and mixed volumes, in: T. Bisztriczky, P. McMullen, R. Schneider, A. Ivic Weiss (Eds.), Polytopes: Abstract,
Convex and Computational, Kluwer, Boston, MA, 1994, pp. 373–466.

[28] P. Gritzmann, B. Sturmfels, Minkowski addition of polytopes: computational complexity and applications to
Groebner bases, SIAM J. Disc. Math. 6 (2) (1993) 246–269.

[29] P. Gritzmann, J.M. Wills, Lattice points, in: P.M. Gruber, J.M. Wills (Eds.), Handbook for Convex Geometry,
Vol. B, North Holland, Amsterdam, 1993.

[30] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, 2nd edn.,
Springer-Verlag, Berlin, 1993.

[31] B. Grünbaum, Convex Polytopes, Wiley-Interscience, New York, 1967.
[32] L.J. Guibas, R. Seidel, Computing convolutions by reciprocal search, in: Proc. 2nd Annual ACM Symp. on

Computational Geometry, Yorktown, Heights, NY, 1986, pp. 90–99.
[33] B. Huber, B. Sturmfels, Bernstein’s theorem in affine space, Discr. Comput. Geom. 17 (2) (1997) 137–142.
[34] A. Kaul, M.A. O’Connor, V. Srinivasan, Computing Minkowski sums of regular polygons, in: Proc. 3rd

Canadian Conf. on Computational Geometry, Vancouver, BC, 1991, pp. 74–77.
[35] A.G. Khovanskii, Newton polyhedra and the genus of complete intersections, Funktsional’nyi Analiz i Ego

Prilozheniya 12 (1) (1978) 51–61.
[36] A.G. Khovanskii, Fewnomials, AMS Press, Providence, RI, 1991.
[37] A.G. Kushnirenko, The Newton polyhedron and the number of solutions of a system ofk equations ink

unknowns, Uspekhi Mat. Nauk. 30 (1975) 266–267.
[38] E. Lutwak, Volume of mixed bodies, Trans. AMS 294 (2) (1986) 487–500.
[39] J. Matoušek, Linear optimization queries, J. Algorithms 14 (1993) 432–448.
[40] E. Mayr, A. Meyer, The complexity of the word problem for commutative semigroups and polynomial ideals,

Adv. Math. 46 (1982) 305–329.
[41] Optimization Technology Center, Linear programming frequently asked questions, Northwestern University

and Argonne National Laboratory, 2000, http://www.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.
html.

[42] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific
Computing, 2nd edn., Cambridge University Press, Cambridge, 1992.

[43] G.D. Ramkumar, An algorithm to compute the Minkowski sum outer-face of two simple polygons, in: Proc.
12th Annual ACM Symp. on Computational Geometry, Philadelphia, PA, 1996, pp. 234–241.

[44] E.A. Ramos, Linear programming queries revisited, in: Proc. 16th Annual ACM Symp. on Computational
Geometry, Hong Kong, 2000, pp. 176–181.

[45] J.M. Rojas, A convex geometric approach to counting the roots of a polynomial system, Theor. Comput.
Sci. 133 (1) (1994) 105–140.

[46] S.S. Skiena, The Algorithm Design Manual, Springer-Verlag, Berlin, 1997.
[47] P. Vaidya, An algorithm for linear programming which requires O((m+ n)n2 + (m+ n)1.5n)L) arithmetic

operations, Math. Programming 41 (1990) 175–201.


