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Many important problems in multiagent systems involve the allocation of multiple
resources among the agents. If agents are self-interested, they will lie about their valuations
for the resources if they perceive this to be in their interest. The well-known VCG
mechanism allocates the items efficiently, is strategy-proof (agents have no incentive to
lie), and never runs a deficit. Nevertheless, the agents may have to make large payments
to a party outside the system of agents, leading to decreased utility for the agents. Recent
work has investigated the possibility of redistributing some of the payments back to the
agents, without violating the other desirable properties of the VCG mechanism.
Previous research on redistribution mechanisms has resulted in a worst-case optimal
redistribution mechanism, that is, a mechanism that maximizes the fraction of VCG
payments redistributed in the worst case. In contrast, in this paper, we assume that a
prior distribution over the agents’ valuations is available, and our goal is to maximize the
expected total redistribution.
In the first part of this paper, we study multi-unit auctions with unit demand. We
analytically solve for a mechanism that is optimal among linear redistribution mechanisms.
We also propose discretized redistribution mechanisms. We show how to automatically
solve for the optimal discretized redistribution mechanism for a given discretization step
size, and show that the resulting mechanisms converge to optimality as the step size goes
to zero. We present experimental results showing that for auctions with many bidders,
the optimal linear redistribution mechanism redistributes almost everything, whereas
for auctions with few bidders, we can solve for the optimal discretized redistribution
mechanism with a very small step size.
In the second part of this paper, we study multi-unit auctions with nonincreasing marginal
values. We extend the notion of linear redistribution mechanisms, previously defined only
in the unit demand setting, to this more general setting. We introduce a linear program
for finding the optimal linear redistribution mechanism. This linear program is unwieldy,
so we also introduce one simplified linear program that produces relatively good linear
redistribution mechanisms. We conjecture an analytical solution for the simplified linear
program.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many important problems in multiagent systems can be seen as resource allocation problems. One natural way of allo-
cating resources among agents is to auction off the items. An allocation mechanism (or auction) takes as input the agents’
reported valuations for the items, and as output produces an allocation of the items to the agents, as well as payments to be
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made by or to the agents. We assume that agents are self-interested: an agent will reveal her true valuation function only if
doing so maximizes her utility. A mechanism is strategy-proof if it is a dominant strategy for the agents to report their true
valuations—that is, regardless of what the other agents do, an agent is best off reporting her true valuation. A mechanism
is efficient if it always chooses an allocation that maximizes the sum of the agents’ valuations (aka. the social welfare).

The well-known VCG (Vickrey–Clarke–Groves) mechanism [24,6,13] is both strategy-proof and efficient.1 In fact, in suf-
ficiently general settings, the wider but closely related class of Groves mechanisms coincides exactly with the class of
mechanisms that satisfy both properties [12,18]. The VCG mechanism has an additional nice property, which is that it satis-
fies the non-deficit property (in allocation settings): the sum of the payments from the agents is nonnegative, which means
that the mechanism does not need to be subsidized by an outside party. A stronger property than the non-deficit property
is that of (strong) budget balance, which requires that the sum of the payments from the agents is zero—so that no value
flows out of the system of agents. This property is not satisfied by the VCG mechanism. In the context of auctions, often,
this is not seen as a problem for the sake of maximizing the agents’ welfare: the idea is that the payments are collected
by the seller of the items, who is just another agent, so that nothing goes to waste. However, this reasoning does not apply
to many multiagent settings; in particular, it does not apply to settings in which there is no seller who is separate from
the agents. For example, consider the problem of dissolving a partnership: suppose there is a group of agents who have
started a company together, but due to personal disagreements can no longer work together, so that it becomes essential
to allocate the (currently jointly owned) company to just one of the agents. While it makes sense to auction off the com-
pany among the agents, ideally, the revenue of this auction is then distributed among the agents themselves—if the revenue
leaves the system of the agents, their welfare is reduced. Similarly, the agents may be deciding how to allocate a resource
that is not claimed by anyone—for example, the agents may have jointly discovered a valuable commodity (say, an oil field)
in unclaimed territory, which they now need to allocate to the one of them that can make the best use of it. Finally, the
agents may have a jointly owned resource (say, a powerful computer) that can only be used by one agent on any given
day, and may wish to use an auction to determine which agent gets to use it today. In all these cases, any payment that is
not redistributed to the agents truly goes to waste. Hence, to maximize social welfare (taking payments into account), we
would prefer a budget balanced mechanism to one that merely achieves the non-deficit property (assuming both are effi-
cient). Unfortunately, it is impossible to achieve budget balance together with strategy-proofness and efficiency [19,12,21].2

Incidentally, while these types of setting are perhaps not what one typically has in mind when considering “auctions” in
the common sense of the word, the fact that we use auctions does not significantly limit the generality of our approach.
Effectively, we just use “auctions” as a convenient word to describe resource allocation mechanisms that use payments.

Previous research has sacrificed either strategy-proofness or efficiency to achieve budget balance [11,22,10]. Another
approach is to allocate the items according to the VCG mechanism, and then to redistribute as much of the total VCG
payment as possible back to the agents, in a way that does not affect the desirable properties of the VCG mechanism.
Several papers have pursued this idea and proposed some natural redistribution mechanisms [2,23,3]. For example, in the
Bailey mechanism [2], each agent receives a redistribution payment that equals 1/n times the VCG revenue that would
result if this agent were removed from the auction. In the Cavallo mechanism [3], each agent receives a redistribution
payment that equals 1/n times the minimal VCG revenue that can be obtained by changing this agent’s own bid. For
revenue monotonic settings, Bailey’s and Cavallo’s mechanisms coincide; in this case we refer to this mechanism as the
Bailey–Cavallo mechanism. More recently, there has been some research on finding optimal redistribution mechanisms. For
the setting of multi-unit auctions with unit demand (that is, each agent wants at most one of the indistinguishable units)—
the setting that we study in most of this paper—a mechanism that maximizes the worst-case redistribution fraction has been
analytically characterized [16,20] (one of these papers [16] also generalizes beyond the unit-demand case, to nonincreasing
marginal values). In this paper, we continue the search for optimal redistribution mechanisms. Unlike the worst-case work,
we assume that a prior distribution over the agents’ valuations is available, and we aim to maximize the expected total
redistribution. (There are two related papers [17,5], in which the authors propose mechanisms that maximize the sum of
the agents’ utilities (taking payments into account) in expectation. However, these papers operate under the constraint that
every agent’s total payment must be nonnegative, which results in very different mechanisms.) In this paper, we restrict
ourselves to VCG redistribution mechanisms, so that the allocation is always efficient; other work has studied what can
be done when this constraint is relaxed [10,20,14,9] (all the resulting mechanisms are characterized analytically). We also
restrict ourselves to static mechanisms; good redistribution mechanism has also been analytically characterized in a dynamic
context [4].

The rest of this paper is presented as follows. From Section 2 to Section 5, we focus on multi-unit auctions with unit
demand. In Section 2, we cover the necessary background and introduce our notation. In Section 3, we recall the definition
of linear redistribution mechanisms and we solve for optimal-in-expectation linear (OEL) redistribution mechanisms in

1 We use the term “VCG mechanism” to refer to the Clarke mechanism. Sometimes people refer to the wider class of Groves mechanisms as “VCG
mechanisms,” but we will avoid this usage in this paper. In fact, the mechanisms proposed in this paper fall within the class of Groves mechanisms.

2 The dAGVA mechanism [8] is efficient, (strongly) budget balanced, and Bayes–Nash incentive compatible, which means that if each agent’s belief over
the other agents’ valuations is the distribution that results from conditioning the (common) prior distribution over valuations on the agent’s own valuation,
and other agents bid truthfully, then the agent is best off (in expectation) bidding truthfully. In practice, it is somewhat unreasonable to assume that
agents’ beliefs are so consistent with each other and with the mechanism designer’s belief, so we use the much stronger and more common notion of
dominant-strategies incentive compatibility (strategy-proofness) in this paper.
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our setting. We focus on deriving an analytical characterization of these OEL mechanisms. In Section 4, we show how to
automatically (using linear programming) solve for (possibly nonlinear) mechanisms that are close to optimal, based on a
discretization of the valuation space.3 This technique is only effective for cases with small number of agents. That is, it
does not scale very well. Fortunately, the experimental results in Section 5 show that for auctions with many bidders, the
optimal linear mechanism redistributes almost everything, whereas for auctions with few bidders, we can solve for the
optimal discretized redistribution mechanism with a very small step size. That is, the two approaches are in some sense
complementary. Finally, in Section 6, we study the more general setting of multi-unit auctions with nonincreasing marginal
values. We extend the notion of linear redistribution mechanisms to this more general setting, and propose several models
for finding optimal linear redistribution mechanisms. It is more difficult to work in this more general setting, since we also
need to consider a type of ordering information; we discuss these difficulties in that section.

2. Background

From this section to Section 5, we focus on multi-unit auctions with unit demand.
In a multi-unit auction, multiple indistinguishable units of the same good are for sale. In a multi-unit auction with unit

demand, each agent wishes to obtain at most one unit—that is, if the agent receives more than one unit, her utility is the
same as if she receives one unit. We note that an (unrestricted) single-item auction is a special case of multi-unit auctions
with unit demand.

In this setting, each agent has a privately held true value for receiving (at least) one unit. If an agent wins one unit,
her utility is her true value minus her payment; otherwise, her utility is the negative of her payment. In a (sealed-bid)
mechanism, every agent reports her value (her bid), and the mechanism determines which agents win a unit, as well as
how much each agent pays, as a function of these bids. A mechanism is strategy-proof if it is a dominant strategy for each
agent to bid her true valuation—that is, bidding truthfully is optimal regardless of what the other agents bid. Since we only
study strategy-proof mechanisms in this paper, we do not need to make a clear distinction in our notation between the true
values and the bids.

We assume that we know the number of agents n and the number of indistinguishable units m. If m � n, then we can
give every agent a unit without charging any payments. Thus, we only consider the case m < n.4 Let the set of agents be
I = {1, . . . ,n}, where agent i has the ith highest value vi . Let constants L and U be the lower bound and upper bound
of the possible values. Hence, ∞ > U � v1 � v2 � · · · � vn � L � 0. We also assume that we have a prior joint probability
distribution over the agents’ values vi . We denote the probability density function of this joint distribution by f (v1, . . . , vn).
We emphasize that we require neither that the agents’ values are drawn from identical distributions, nor that they are
independent.

In a multi-unit auction with unit demand, the VCG mechanism coincides with the (m+1)th price auction. In this auction,
the bidders with the highest m bids (bidders 1, . . . ,m) each win one unit, and each pay at the price of the (m + 1)th bid
(vm+1). (When m = 1, this is the well-known second-price auction.) Because it is a special case of the VCG mechanism, the
(m + 1)th price auction is strategy-proof, efficient, and never incurs a deficit.

A redistribution mechanism works as follows: after collecting a vector of bids v1 � v2 � · · · � vn , we first run the
VCG mechanism ((m + 1)th price auction). The resulting allocation is efficient (agents 1 . . .m each win a unit). However,
because each winner has to pay vm+1, a total VCG payment of mvm+1 leaves the system of agents. In order to achieve
higher social welfare (taking payments into account), we try to redistribute a large portion of the total VCG payment back
to the bidders, while maintaining the desirable properties of the VCG mechanism. Let ri be the redistribution received by
bidder i. To maintain strategy-proofness, ri must be independent of bidder i’s own bid vi . (It is not difficult to see that this
is sufficient for maintaining strategy-proofness: if an agent cannot affect her own redistribution payment, then she may as
well ignore it when she determines her strategy; hence, the incentives for bidding are the same as in the VCG mechanism,
which is strategy-proof. In general, because our allocation is efficient, the requirement that ri does not depend on vi is
also necessary for strategy-proofness [12,18].) Hence, we can write i’s redistribution as r(v−i), where v−i is the multiset
of bids other than vi ; functions r determines i’s redistribution. In this paper, unless otherwise specified, we consider only
anonymous redistribution mechanisms, for which the redistribution function is the same for all agents (denoted by r). This
may still result in different redistribution payments for the agents, because the input to the function, v−i , can be different
for different i.

Another property of the VCG mechanism that we want to maintain is the non-deficit property: the payments collected
by the mechanism are at least the payments redistributed by it. This is crucial if no external subsidy for the mechanism is
available.5 In our setting, this means that

∑n
i=1 r(v−i) � mvm+1.

3 This falls under the general research agenda of automated mechanism design [7], where we have an algorithm search through a space of possible
mechanisms for an optimal one. However, here we use a formulation that is specifically tailored to this context. In fact, the linear programs elsewhere in
this paper could in principle also be used for the purpose of automated mechanism design, but of course there is little purpose to doing so for the cases
where we also provide an analytical solution.

4 We remove this restriction in Section 6 where we consider settings without unit demand.
5 Without the non-deficit constraint, we can simply redistribute 1/n of the expected total VCG payment to every agent, which leaves no waste in

expectation.
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Finally, one property of mechanisms that we have not discussed so far is individual rationality (aka. voluntary participa-
tion): participating in the mechanism should not make agents worse off. Since our objective is to maximize social welfare, if
the prior distribution is symmetric across agents, then under any redistribution mechanism that redistributes a nonnegative
amount of payment in expectation, every agent benefits from participating in the mechanism (the agent receives nonneg-
ative expected utility). That is, ex-interim individual rationality is not a binding constraint. The techniques in this paper
can also be used to design mechanisms that are ex-interim individually rational when the prior is not symmetric across
agents, or mechanisms that satisfy the even stronger ex-post individual rationality. However, this would require additional
constraints and make the analytical characterization in Section 3 too complex. For the above reasons, we omit individual
rationality constraints in this paper.

3. Linear redistribution mechanisms

We first restrict our attention to the family of linear redistribution mechanisms. A linear redistribution mechanism is
characterized by a linear redistribution function of the following form:

r(v−i) = c0 + c1 v−i,1 + c2 v−i,2 + · · · + cn−1 v−i,n−1

where v−i, j is the jth highest bid among v−i (the set of bids other than vi ). The coefficients c j completely characterize the
redistribution mechanism. All previously proposed redistribution mechanisms for this setting [3,2,23,16,20] are in fact linear
redistribution mechanisms.

3.1. Optimal-in-expectation linear redistribution mechanisms

We will prove the following result, which characterizes a linear redistribution mechanism that maximizes the expected
total redistribution (among linear redistribution mechanisms). We call this mechanism OEL (optimal-in-expectation, linear).

Theorem 1. Given n, m, and a prior distribution over agents’ valuations, the following ci define a redistribution mechanism that
maximizes expected redistribution, under the constraints that the mechanism must be a linear redistribution mechanism, efficient,
strategy-proof, and satisfy the non-deficit property.

Let the oi be defined as follows:

o0 = U − E v1, oi = E vi − E vi+1 (i = 1,2, . . . ,n − 1), and on = E vn − L.

The oi are determined by the given prior distribution.
Let k be any integer satisfying

k ∈ arg min
i

{
oi

/(
n

i

) ∣∣∣ i − m odd, i = 0, . . . ,n

}
.

Let function G be defined as follows:

G(n,m, i) =
(

n − i − 1

n − m − 1

)/(
m − 1

i − 1

)
= (n − i − 1)!(i − 1)!

(n − m − 1)!(m − 1)! .

• If 0 < k < m, then
ci = (−1)m−i G(n,m, i) for i = k + 1, . . . ,m,
ck = m/n − ∑m

i=k+1(−1)m−i G(n,m, i),
and ci = 0 for other i.

• If k = 0, then
ci = (−1)m−i G(n,m, i) for i = 1, . . . ,m,
c0 = Um/n − U

∑m
i=1(−1)m−i G(n,m, i),

and ci = 0 for other i.
• If m < k < n, then

ci = (−1)m−i−1G(n,m, i) for i = m + 1, . . . ,k − 1,
ck = m/n − ∑k−1

i=m+1(−1)m−i−1G(n,m, i),
and ci = 0 for other i.

• If k = n, then
ci = (−1)m−i−1G(n,m, i) for i = m + 1, . . . ,n − 1,
c0 = Lm/n − L

∑n−1
i=m+1(−1)m−i−1G(n,m, i),

and ci = 0 for other i.

In expectation, this mechanism fails to redistribute

okm

(
n − 1

)/(
n
)

.

m k
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This mechanism is uniquely optimal among all linear redistribution mechanisms if and only if the choice of k is unique and there
does not exist an even i and an odd j such that oi = o j = 0.

The mechanism is complicated, and is perhaps easier to understand using the auxiliary variables that we define in the
derivation of this mechanism (in Appendix A).

The key property of the mechanisms in the theorem is that the waste is always a multiple of: 1) the expected difference
between two adjacent (in terms of size) bids, or 2) the expected difference between the upper bound and the largest
bid, or 3) the expected difference between the lowest bid and the lower bound. Moreover, the multiplication coefficient
is determined by m and n. Then, the OEL mechanism simply chooses the best of these options. In contrast, under the
worst-case optimal mechanism [16,20], the waste is a linear combination of all of the bids (except for the highest m).

We now present a special case that may give some further intuition. The case where k = m+1 in Theorem 1 corresponds
to the redistribution mechanism in which each agent receives a redistribution payment that is equal to m/n times the
(m + 1)th highest bid from the other agents. In our setting of multi-unit auctions with unit demand, this is exactly the
Bailey–Cavallo mechanism. This observation is formally stated in the following corollary.

Corollary 1. Given n, m, and a prior distribution over agents’ valuations, we define the oi as follows:

o0 = U − E v1, oi = E vi − E vi+1 (i = 1,2, . . . ,n − 1), and on = E vn − L.

If the following condition holds:

om+1 � oi

(
n

m + 1

)/(
n

i

)
for all 0 � i � n with i − m odd,

then the Bailey–Cavallo mechanism maximizes expected redistribution, under the constraints that the mechanism must be a linear
redistribution mechanism, efficient, strategy-proof, and satisfy the non-deficit property.

Next, we present two example OEL mechanisms.

Example 1. Consider the case where n = 3 and m = 1, and the bids are all drawn independently and uniformly from [0,1]. In
this case, E vi = 4−i

4 for i = 1, . . . ,3. So, U = 1, L = 0, oi = 1
4 for i = 0, . . . ,3. (We recall that o0 = U − E v1, on = E vn − L, and

oi = E vi − E vi+1 otherwise.) arg mini{oi/
(n

i

) | i − m odd, i = 0, . . . ,n} is then {m + 1} = {2}. The expected amount that fails

to be redistributed is o2m
(n−1

m

)
/
(n

2

) = 1
6 . (The expected total VCG payment is 1

2 .) The optimal solution is given by c2 = 1
3 ,

and ci = 0 for other i. Hence, this optimal-in-expectation linear redistribution mechanism is defined by ri = 1
3 v−i,2, which

is actually the Bailey–Cavallo mechanism. The total redistribution is
∑n

i=1 ri = 1
3 v2 + 2

3 v3. The expected amount that fails to

be redistributed is E(v2 − 1
3 v2 − 2

3 v3) = 2
3 E(v2 − v3) = 1

6 .

Example 2. Consider the case where n = 8 and m = 2, and the bids are all drawn independently and uniformly from [0,1].
In this case, E vi = 9−i

9 for i = 1, . . . ,8. So U = 1, L = 0, oi = 1
9 for i = 0, . . . ,8. arg mini{oi/

(n
i

) | i − m odd, i = 0, . . . ,n} is

then {3,5}. The expected amount that fails to be redistributed is o3m
(n−1

m

)
/
(n

3

) = 1
12 . (The expected total VCG payment is 4

3 .)

One optimal solution is given by c3 = 1
4 , and ci = 0 for other i. Hence this expectation optimal linear redistribution

mechanism is defined by ri = 1
4 v−i,3 (Bailey–Cavallo mechanism). The total redistribution is

∑n
i=1 ri = 5

4 v3 + 3
4 v4. The

expected amount that fails to be redistributed is E(2v3 − 5
4 v3 − 3

4 v4) = 3
4 E(v3 − v4) = 1

12 .
The other optimal solution is given by c3 = 2

5 , c4 = − 3
10 , c5 = 3

20 , and ci = 0 for other i. Hence this expectation optimal

linear redistribution mechanism is defined by ri = 2
5 v−i,3 − 3

10 v−i,4 + 3
20 v−i,5. The total redistribution is

∑n
i=1 ri = 2v3 −

3
4 v5 + 3

4 v6. The expected amount that fails to be redistributed is E( 3
4 (v5 − v6)) = 1

12 .

3.2. Properties of the OEL mechanism

In the remainder of this section, we present some properties of the OEL mechanism. First, we have that there cannot be
another redistribution mechanism that always redistributes at least as much in total as OEL, and strictly more in at least one
case. That is, the OEL mechanism is welfare undominated [1].6

Proposition 1. (See [1].) For any m, n and any prior distribution, there does not exist any redistribution mechanism that, for every
multiset of bids, redistributes at least as much in total as OEL, and redistributes strictly more in at least one case.

6 This immediately implies that there cannot be another redistribution mechanism that always redistributes at least as much for every agent as OEL. That
is, the OEL mechanism is also undominated [15].
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The above proposition was shown in [1]. More precisely, that paper shows that the OEL mechanisms characterized
in Theorem 1 are the only welfare undominated redistribution mechanisms that are anonymous and linear in multi-unit
auctions with unit demand.

It should be noted that Proposition 1 only applies to the OEL mechanism, as defined in Theorem 1. Under certain
circumstances (as detailed in Theorem 1), this mechanism is not uniquely optimal; and the other optimal mechanisms do
not always have the property of Proposition 1.

The next proposition shows that, if the prior distribution does not distinguish among agents, OEL is ex-interim individu-
ally rational—that is, in expectation, agents benefit from participating in the mechanism (they receive nonnegative expected
utilities).

Proposition 2. If the prior distribution is symmetric across agents (for example, the agents’ values are independent and identically
distributed), then the OEL redistribution mechanism is ex-interim individually rational.

Proof. The original VCG mechanism (redistributing nothing) is also a linear redistribution mechanism (corresponding to ci =
0 for all i). Hence, the OEL mechanism will always redistribute a nonnegative amount in expectation. That is, E(

∑n
i=1 ri) � 0.

If the distribution is symmetric across agents, E(ri) = E(r j) for any i and j (E(ri) is the expected redistribution received
by agent i, which is independent of her own report). So E(ri) � 0 for all i. However, the VCG mechanism is well-known to
be ex-interim (in fact, ex-post) individually rational in this setting, so that even if E(ri) = 0, agents’ expected utility from
participating in the mechanism is nonnegative. It follows that OEL must also be ex-interim individually rational. �

As an aside, if the prior is not symmetric across agents, then we can explicitly add the ex-interim individual rationality
constraint (or the stronger ex-post individual rationality constraint7) into our optimization model. This still results in a linear
program (but it does not admit an elegant analytical solution).

In Theorem 1, we gave an expression for the expected amount that OEL fails to redistribute, which depended on the
prior. In the next proposition, we give an upper bound on this that does not depend on the prior.

Proposition 3. For any prior, the OEL mechanism fails to redistribute at most

(U − L)m

(
n − 1

m

)/ ∑
i=0,1,...,n;i−m odd

(
n

i

)

in expectation. This bound is tight.

Proof. Given a prior distribution (and therefore, given the oi), the expected amount that fails to be redistributed is
okm

(n−1
m

)
/
(n

k

)
for any k ∈ arg mini{oi/

(n
i

) | i − m odd, i = 0, . . . ,n}. If a distribution is constructed such that oi = (U −
L)

(n
i

)
/
∑

i=0,...,n;i−m odd
(n

i

)
for all i with i −m odd, and oi = 0 for all other i (this is in fact a feasible setting of the oi—we can

just use a degenerate distribution where the agents’ valuations are not independent), then arg mini{oi/
(n

i

) | i − m odd, i =
0, . . . ,n} = {i | 0 � i � n, i − m odd}. So k can be any i as long as i − m is odd. In this case, the expected amount not
redistributed is exactly (U − L)m

(n−1
m

)
/
∑

i=0,...,n;i−m odd
(n

i

)
.

Now suppose that there is another distribution under which the mechanism fails to redistribute strictly more in expec-
tation. Then, the new set of o′

i must satisfy o′
im

(n−1
m

)
/
(n

k

)
> m

(n−1
m

)
/
∑

i=0,...,n;i−m odd
(n

i

) = oim
(n−1

m

)
/
(n

k

)
for any i with i − m

odd. It follows that o′
i > oi for any i with i − m odd. Since

∑
i=0,...,n;i−m odd oi = U − L and o′

i � 0 for any i with i − m even,
we have

∑
i=0,...,n o′

i > U − L, which is a contradiction. �
For Example 1, Proposition 3 gives an upper bound on the expected amount that fails to be redistributed of 0.5 (we

recall that the actual amount is 1
6 ). For Example 2, Proposition 3 gives an upper bound on the expected amount that fails

to be redistributed of 0.3281 (we recall that the actual amount is 1
12 ).

The next proposition shows that for fixed m, as n goes to infinity, the expected amount that fails to be redistributed goes
to 0; hence OEL is asymptotically optimal for fixed number of units.

Proposition 4. For fixed m, as n goes to infinity, the expected amount that fails to be redistributed by OEL goes to 0.

Proof. By Proposition 3, we only need to show that for fixed m, as n goes to infinity, (U − L)m
(n−1

m

)
/
∑

i=0,1,...,n;i−m odd
(n

i

)
goes to 0.

We have that (U − L)m
(n−1

m

)
/
∑

i=0,1,...,n;i−m odd
(n

i

)
� (U − L)m

(n−1
m

)
/
( n

m+1

) = (U − L)
m(n−1)!(m+1)!(n−m−1)!

m!(n−m−1)!n! = (U − L)(m +
1)m/n. The right-hand side goes to 0 as n goes to infinity. �

7 A mechanism is ex-post individually rational if every agent receives nonnegative utility for any bids.
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On the other hand, if we increase both n and m, and keep their difference within constant C , then the ex-
pected amount fails to redistributed by OEL also goes to 0: for large n, the expected amount fails to be redistributed
by OEL is at most (U − L)m

(n−1
m

)
/
∑

i=0,1,...,n;i−m odd
(n

i

)
� (U − L)n(n − 1)C−1/

∑
i=0,1,...,n;i−m odd

(n
i

) = (U − L)n(n −
1)C−1/(

∑
i=1,2,...,n−1;i−m odd(

(n−1
i−1

) + (n−1
i

)
) + ∑

i=0,n;i−m odd
(n

i

)
). Basically, the denominator is exponential in n, while the

numerator is polynomial in n. Therefore, as n increases, the amount fails to be redistributed by OEL approaches 0.
So far, we have only considered anonymous redistribution mechanisms (that is, mechanisms with the same redistribution

function r(·) for each agent).8 If we allow the redistribution mechanism to be nonanonymous, then we can use different
ci for different bidders. Moreover, even for the same bidder, we can use different ci depending on the order of the other
bidders (in terms of their bids), and there are (n − 1)! such orders. Thus, it is clear that to optimize among the class of
nonanonymous linear redistribution mechanisms, we need significantly more variables, and analytical solution of the linear
program no longer seems tractable. However, we do have the following proposition, which shows that the OEL mechanism
remains optimal even among nonanonymous linear redistribution mechanisms, if the prior is symmetric.

Proposition 5. If the prior distribution is symmetric across agents ( for example, the agents’ values are independent and identically
distributed), then no nonanonymous linear redistribution mechanism can redistribute strictly more than the OEL mechanism (which is
anonymous) in expectation.

Proof. Let us define the average of two (not necessarily anonymous) redistribution mechanisms as follows: for any multiset
of bids, for any agent i, if one redistribution mechanism redistributes x to agent i, and the other redistribution mechanism
redistributes y to i, then the average mechanism redistributes (x+ y)/2 to i. It is not difficult to see that if two redistribution
mechanisms both never incur a deficit, then the average of these two mechanisms also satisfies the non-deficit property.
This averaging operation is easily generalized to averaging over three or more mechanisms.

Now let us assume that r is a nonanonymous linear redistribution mechanism, and that r redistributes strictly more than
the OEL mechanism in expectation when the prior distribution is symmetric across agents. Let π be any permutation of n
elements. We permute the way r treats the agents according to π , and denote the new mechanism by rπ . That is, rπ treats
agent π(i) the way r treats i. Since we assumed that the prior distribution is symmetric across agents, the expected total
amount redistributed by rπ should be the same as that redistributed by r. Now, if we take the average of the rπ over all
permutations π , we obtain an anonymous linear redistribution mechanism that redistributes as much in expectation as r
(and hence more than the OEL mechanism). But this contradicts the optimality of the OEL mechanism among anonymous
linear redistribution mechanisms. �
4. Discretized redistribution mechanisms

In the previous section, we only considered linear redistribution mechanisms. This restriction allowed us to find the op-
timal linear redistribution mechanism by analytically solving a linear program. In this section, we consider a larger domain
of eligible mechanisms, and propose discretized redistribution mechanisms, which can be automatically designed [7] and can
outperform the OEL mechanism. (In this section, for simplicity and to be able to compare to the previous section, we only
consider anonymous mechanisms, and we do not impose an individual rationality constraint. However, all of the below can
be generalized to allow for nonanonymous mechanisms and an individual rationality constraint.)

We study the following problem: given a prior distribution f (the joint pdf of v1, v2, . . . , vn), we try to find a redistribu-
tion mechanism that redistributes the most in expectation among all redistribution mechanisms that can be characterized
by continuous functions. For simplicity, we will assume that f is continuous. The optimization model is the following:

Variable function: r : Rn−1 → R, r continuous
Maximize∫

U�v1�···�vn�L

∑n
i=1 r(v−i) f (v1, v2, . . . , vn)dv1 dv2 . . . dvn

Subject to:
For every bid vector U � v1 � v2 � · · · � vn � L∑n

i=1 r(v−i) � mvm+1

Let R∗ be the optimal objective value for this model. (To be precise, we have not proved that an optimal solution exists
for this model: it could be that the set of feasible solution values does not include its least upper bound. In this case, simply
let R∗ be the least upper bound.) Since we are not able to solve this model analytically, we try to solve it numerically.

We divide the interval [L, U ] (within which the bids lie) into N equal parts, with step size h = (U − L)/N . Let k denote
the subinterval: I(k) = [L + kh, L + kh + h] (k = 0,1, . . . , N − 1). Define rh : Rn−1 → R as follows: for all U � x1 � x2 �

8 An exception is Proposition 1, which shows that there is not even a nonanonymous mechanism that always redistributes at least as much in total as
OEL, and strictly more in at least one case.
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· · · � xn−1 � L, rh(x1, x2, . . . , xn−1) = zh[k1,k2, . . . ,kn−1] where ki = �(xi − L)/h� (except that ki = N − 1 if xi = U ). Here, the
zh[k1,k2, . . . ,kn−1] are variables. We call such a mechanism a discretized redistribution mechanism of step size h.

Proposition 6. A discretized redistribution mechanism satisfies the non-deficit constraint if and only if

n∑
i=1

zh[k1,k2, . . . ,ki−1,ki+1, . . . ,kn] � m(L + km+1h)

for every N − 1 � k1 � k2 � · · · � kn � 0.

Proof. For every N − 1 � k1 � k2 � · · · � kn � 0, if vi = L + kih for all i, then
∑n

i=1 zh[k1,k2, . . . ,ki−1,ki+1, . . . ,kn] is the
total redistribution and m(L + km+1h) is the total VCG payment. It follows that if the mechanism satisfies the non-deficit
property, the inequalities in the proposition must hold. Conversely, if all the inequalities in the proposition hold, then the
total redistribution of the mechanism is never more than m(L + km+1h), which is less than equal to the total VCG payment
mvm+1. So the mechanism never incurs a deficit if all the inequalities in the proposition hold. �

The following linear program finds the optimal discretized redistribution mechanism for step size h. The variables are
zh[k1,k2, . . . ,kn−1] for all integers ki satisfying N − 1 � k1 � k2 � · · · � kn−1 � 0. The objective is the expected total redistri-
bution, where p[k1,k2, . . . ,kn] = P (v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn)) (we note that the p[k1,k2, . . . ,kn] are constants).

Variables: zh[. . .]
Maximize∑

N−1�k1�k2�···�kn�0 p[k1,k2, . . . ,kn]∑n
i=1 zh[k1,k2, . . . ,ki−1,ki+1, . . . ,kn]

Subject to:
For every N − 1 � k1 � k2 � · · · � kn � 0∑n

i=1 zh[k1,k2, . . . ,ki−1,ki+1, . . . ,kn] � m(L + km+1h)

Let z∗h[. . .] denote the optimal solution of the above linear program, and let r∗h denote the corresponding optimal dis-
cretized redistribution mechanism. Let R∗h denote the optimal objective value. The next proposition shows that discretized
redistribution mechanisms cannot outperform the best continuous redistribution mechanisms.

Proposition 7. R∗h � R∗ .

Proof. For any ε > 0, we will show how to construct a continuous function r′
ε so that r′

ε � r∗h everywhere, and the measure
of the set {r∗h 	= r′

ε} is less than ε .
Let B be the greatest lower bound of r∗h (r∗h is bounded below because it is a piecewise constant function with finitely

many pieces). For given U � x1 � x2 � · · · � xn−1 � L, let d(x1, . . . , xn−1) be the minimal distance from any xi − L to the
nearest multiple of h. For any δ > 0, let rδ(x1, . . . , xn−1) = r∗h(x1, . . . , xn−1) if d(x1, . . . , xn−1) > δ, and rδ(x1, . . . , xn−1) =
r∗h(x1, . . . , xn−1) − (δ − d(x1, . . . , xn−1))(r∗h(x1, . . . , xn−1) − B)/δ otherwise.

It is easy to see that the function rδ is continuous at any point where d(x1, . . . , xn−1) > δ, because at these points,
r∗h is continuous. Furthermore, the function is continuous at any point where δ > d(x1, . . . , xn−1) > 0, because r∗h and d
are both continuous at these points. Moreover, it is also continuous at any point where d(x1, . . . , xn−1) = δ, because at
such a point r∗h(x1, . . . , xn−1) − (δ − d(x1, . . . , xn−1))(r∗h(x1, . . . , xn−1) − B)/δ = r∗h(x1, . . . , xn−1). Finally, at any point where
d(x1, . . . , xn−1) = 0, the function is continuous because on any point x′

1, . . . , x′
n−1 at distance at most γ > 0 from x1, . . . , xn−1,

the function will take value at most γ (H − B)/δ, where H is an upper bound on r∗h (H is finite).
As δ goes to 0, so does the measure of the set {r∗h 	= rδ}. Moreover, rδ � r∗h everywhere. Hence we can obtain r′

ε with
the desired property by letting it equal rδ for sufficiently small δ.

Now, r′
ε is a feasible redistribution mechanism, because it always redistributes less than r∗h . Moreover, because f is a

continuous pdf on a compact domain, as ε → 0, the difference in expected value between r′
ε and r∗h goes to 0. Hence,

we can create continuous redistribution functions that come arbitrarily close to R∗h in terms of expected redistribution,
and hence R∗ (the least upper bound of the expected redistributions that can be obtained with continuous functions) is at
least R∗h . �

The next proposition shows that if we make the discretization finer, we will do no worse.

Proposition 8. R∗h � R∗h/2 .
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Proof. For all 2N −1 � k1 � k2 � · · · � kn−1 � 0, let zh/2[k1,k2, . . . ,kn−1] = z∗h[�k1/2�, �k2/2�, . . . , �kn−1/2�]. The discretized
redistribution mechanism corresponding to zh/2[. . .] is exactly r∗h . The discretized redistribution mechanism r∗h satisfies
the non-deficit property. Hence the variables zh/2[. . .] form a feasible solution of the linear program corresponding to step
size h/2, so its expected redistribution must be less than or equal to that of the optimal solution of the linear program
corresponding to step size h/2. That is, R∗h � R∗h/2. �

The next proposition shows that as we make the discretization finer and finer, we converge to the optimal value for
continuous redistribution mechanisms.

Proposition 9. limh→0 R∗h = R∗ .

Proof. For any γ > 0, there exists a continuous redistribution mechanism r∗ such that its expected redistribution is at
least R∗ − γ . r∗ is continuous on a closed and bounded domain, so r∗ is uniformly continuous. Hence for any ε > 0, there
exists δ > 0 so that |r∗(x1, x2, . . . , xn−1) − r∗(x′

1, x′
2, . . . , x′

n−1)| � ε as long as maxi{|xi − x′
i |} � δ. Choose h � δ, and define

zh[k1,k2, . . . ,kn−1] by r∗(L + k1h, L + k2h, . . . , L + kn−1h) for all N − 1 � k1 � k2 � · · · � kn−1 � 0. zh[. . .] corresponds to a
feasible discretized mechanism rh . In addition, rh � r∗ − ε . Hence, the expected redistribution of the optimal discretized
mechanism with step size (at most) h is R∗h � R∗ − γ − nε . Since γ and ε are both arbitrarily small, limh→0 R∗h � R∗ . By
Proposition 7, limh→0 R∗h � R∗ . �

We note that a discretized redistribution mechanism rh is defined by a finite number of real-valued variables: namely,
one variable zh[k1,k2, . . . ,kn−1] for every N − 1 � k1 � k2 � · · · � kn−1 � 0. Because of this, we can use a standard LP solver
to solve for the optimal discretized redistribution mechanism rh (for given m,n,h and prior). In general, this linear program
involves exponential number of variables and does not scale. However, at least for small problem instances, we can set h to
very small values, and by Proposition 9, we expect the resulting mechanism to be close to optimal.

But how do we know how far from optimal we are? As it turns out, the discretization method can also be used to find
upper bounds on R∗ . Here, we will assume that agents’ values are independent and identically distributed. The following
linear program gives an upper bound on R∗ .

Variables: zh[. . .]
Maximize∑

N−1�k1�k2�···�kn�0 p[k1,k2, . . . ,kn]∑n
i=1 zh[k1,k2, . . . ,ki−1,ki+1, . . . ,kn]

Subject to:
For every N − 1 � k1 � k2 � · · · � kn � 0∑n

i=1 zh[k1,k2, . . . ,ki−1,ki+1, . . . ,kn] � mE(vm+1 | v1 ∈ I(k1), v2 ∈ I(k2), . . . , vn ∈ I(kn))

The intuition behind this linear program is the following. In the previous linear program, the non-deficit constraints were
effectively set for the lowest values within each discretized block, which guaranteed that they would hold for every value
in the block. In this linear program, however, we set the non-deficit constraints by taking the expectation over the values
in each block. Generally, this will result in deficits for values inside the block, so this program does not produce feasible
mechanisms.

Let ẑh[. . .] denote the optimal solution of the above linear program, and let r̂h denote the (not necessarily feasible) cor-
responding optimal discretized redistribution mechanism. Let R̂h denote the optimal objective value. We have the following
propositions:

Proposition 10. If the bids are independent and identically distributed, then R̂h � R∗ .

Proof. Let r be any feasible continuous (anonymous) redistribution mechanism. Now, consider the conditional expectation
of a bidder’s redistribution payment under r, given that, for each i ∈ {1, . . . ,n − 1}, the ith highest bid among other bidders
is in I(ki) = [L + kih, L + kih + h]. Let zh[k1,k2, . . . ,kn−1] denote this conditional expectation. (We emphasize that this does
not depend on which agent we choose, due to the i.i.d. assumption.)

Now, these zh[. . .] constitute a feasible solution of the above linear program, for the following reason. The left-hand side
of the constraint in the above linear program is now the expected total redistribution of r, given that for each i ∈ {1, . . . ,n},
the ith highest bid is in I(ki); and the right-hand side is the expected total VCG payment, given that for each i ∈ {1, . . . ,n},
the ith highest bid is in I(ki). Because r satisfies non-deficit by assumption, the constraint must be met by the zh[. . .].

Moreover, the objective value of the feasible solution defined by the zh[. . .] is identical to the expected total amount
redistributed by r. Hence, for every expected total amount redistributed by a feasible continuous mechanism, there exists a
feasible solution to the above linear program that attains that value. It follows that R̂h � R∗ . �
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Table 1
Expected redistribution by VCG, BC, OEL, and discretized mechanisms, for small numbers of agents.

n, m VCG BC OEL R∗h R̂h %

3, 1 0.5000 0.3333 0.3333 0.4218 (N = 100) 0.4269 84.4
4, 1 0.6000 0.5000 0.5000 0.5498 (N = 40) 0.5625 91.6
5, 1 0.6667 0.6000 0.6000 0.6248 (N = 25) 0.6452 93.7
6, 1 0.7143 0.6667 0.6667 0.6701 (N = 15) 0.7040 93.8

3, 2 0.5000 0.0000 0.3333 0.4169 (N = 100) 0.4269 83.4
4, 2 0.8000 0.5000 0.5000 0.6848 (N = 40) 0.7103 85.6
5, 2 1.0000 0.8000 0.8000 0.8944 (N = 25) 0.9355 89.4
6, 2 1.1429 1.0000 1.0000 1.0280 (N = 15) 1.0978 89.9

Table 2
Expected redistribution by VCG, BC, and OEL for large numbers of agents.

n, m VCG BC OEL % n, m VCG BC OEL %

10, 1 0.8182 0.8000 0.8143 99.5 20, 1 0.9048 0.9000 0.9048 100.0
10, 3 1.9091 1.8000 1.8000 94.3 20, 5 3.5714 3.5000 3.5564 99.6
10, 5 2.2727 2.0000 2.0000 88.0 20, 10 4.7619 4.5000 4.5000 94.5
10, 7 1.9091 1.4000 1.8000 94.3 20, 15 3.5714 3.0000 3.5564 99.6
10, 9 0.8182 0.0000 0.8143 99.5 20, 19 0.9048 0.0000 0.9048 100.0

So, we have that R∗h is a lower bound on R∗ , and R̂h is an upper bound. The next proposition considers how close these
two bounds are, in terms of the step size h.

Proposition 11. If the bids are independent and identically distributed, then R̂h � R∗h + mh.

Proof. Consider the right-hand side of the constraints of the above linear program. We have mE(vm+1 | v1 ∈ I(k1), v2 ∈
I(k2), . . . , vn ∈ I(kn)) � m(L + km+1h + h), since vm+1 ∈ I(km+1) implies that vm+1 � L + km+1h + h. Consider an optimal
solution of the linear program for determining R̂h . Now, from every variable zh[k1,k2, . . . ,kn−1], subtract mh/n. This results
in a feasible solution of the linear program for determining R∗h , and the decrease in the objective value is nmh/n = mh.
Hence, R̂h � R∗h + mh. �

Hence, by solving the linear program for determining R∗h , we get a lower bound on R∗ and a discretized redistribution
mechanism that comes close to it. If we also have that the bids are independent and identically distributed, by solving the
linear program for determining R̂h , we get an upper bound on R∗ that is close to R∗h .

5. Experimental results

We now have two different types of redistribution mechanisms with which we can try to maximize the expected total
redistributed. The OEL mechanism has the advantage that Theorem 1 gives a simple expression for it, so it is easy to scale
to large auctions. In addition, it is optimal among all linear redistribution mechanisms, although nonlinear redistribution
mechanisms may perform even better in expectation despite not being able to welfare dominate the OEL mechanism. On
the other hand, the discretized mechanisms have the advantage that, as we decrease the step size h, we will converge
to the maximum amount that can be redistributed by any continuous redistribution mechanism. The disadvantage of this
approach is that it does not scale to large auctions. Fortunately, the experimental results below show that for auctions with
many bidders, the OEL mechanism redistributes almost everything, whereas for auctions with few bidders, we can solve
for the optimal discretized redistribution mechanism with a very small step size. That is, the two types of redistribution
mechanisms are in some sense complementary.

In Table 1, for different n (number of agents) and m (number of units), we list the expected amount of redistribution by
both the OEL mechanism and the optimal discretized mechanism (for specific step sizes). The bids are independently drawn
from the uniform [0,1] distribution.

In Table 1, the column “VCG” gives the expected total VCG payment; the column “BC” gives the expected redistribution
by the Bailey–Cavallo mechanism; the column “OEL” gives the expected redistribution by the OEL mechanism; the column
“R∗h” gives the expected redistribution by the optimal discretized redistribution mechanism (step size 1/N); the column
“R̂h” gives the upper bound on the expected redistribution by any continuous redistribution mechanism (same step size as
that of R∗h). The last column gives the percentages of the VCG payment that are redistributed by the optimal discretized
redistribution mechanisms (rounding to the nearest tenth).

Finally, when the number of agents is large, the OEL mechanism is very close to optimal, as shown in Table 2.
The fifth and tenth columns give the percentages of the VCG payment that are redistributed by the OEL mechanisms

(rounding to the nearest tenth).
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6. Multi-unit auctions with nonincreasing marginal values

In this section, we consider a more general setting in which agents do not necessarily have unit demand, that is, they
may value receiving units in addition to the first. However, we assume that the marginal values are nonincreasing, that is,
they value the earlier units (weakly) more. (Units remain indistinguishable.) We still use n and m to denote the number
of agents and the number of available units, but we no longer require that m < n. An agent’s bid is now a nonincreasing
sequence of m elements. We denote agent i’s bid by Bi = 〈bi1,bi2, . . . ,bim〉, where bij is agent i’s marginal value for getting

her jth unit (so that bij � bi( j+1)). That is, agent i’s valuation for receiving j units is
∑ j

k=1 bik . A bid profile now consists of
n vectors Bi , with 1 � i � n, or equivalently mn elements bij , with 1 � i � n and 1 � j � m. We represent the bij in matrix
form as follows:⎡

⎢⎣
b1m b2m . . . bnm

. . . . . . . . . . . .

b12 b22 . . . bn2
b11 b21 . . . bn1

⎤
⎥⎦ .

Without loss of generality, we assume that b11 � b21 � · · · � bn1. That is, the agents are ordered according to their
marginal values for winning their first unit. We denote the kth highest element among all the bij by vk (1 � k � mn).

We assume that we know the joint distribution of the bij (and hence we also know the joint distribution of the vk). We
continue to use U to denote the known upper bound on the values that the bij can take (U is also the upper bound on
the vk). In this part of the paper, we will not consider the case where there is a lower bound L > 0 on all the bij (vk); that
is, we assume the lower bound is 0. (In fact, if there is a lower bound L > 0, we can simply require the agents to bid how
far above L their marginal values are, that is, require them to submit b′

i j = bij − L, in which case we arrive at the case that
we study below. The VCG payments under these modified bids will always be mL less than under the original bids, but we
can easily redistribute this additional mL. Hence, the restriction that L = 0 comes without loss of generality.)

Let B be a bid profile. We denote the set of bids other than Bi (agent i’s own bid) by B−i . B−i consists of mn − m
elements. We can write B−i in matrix form as follows:⎡

⎢⎣
b1m . . . bi−1,m bi+1,m . . . bnm

. . . . . . . . . . . . . . . . . . . . .

b12 . . . bi−1,2 bi+1,2 . . . bn2
b11 . . . bi−1,1 bi+1,1 . . . bn1

⎤
⎥⎦ .

We denote the kth highest element in B−i by v−i,k (1 � k � mn − m).
Our definition for VCG redistribution mechanisms in this setting is similar to our earlier definition. Namely, in a VCG

redistribution mechanism, we first allocate the units efficiently, according to the VCG mechanism; then, each agent receives
a redistribution payment that is independent of her own bid. An efficient allocation is obtained by accepting the m highest
marginal values (v1, v2, . . . , vm). That is, if x elements among v1, v2, . . . , vm come from agent i’s bid, then agent i wins x
units. Agent i’s redistribution equals r(B−i), where r is the function that characterizes the redistribution rule.

We now need a definition of linear redistribution mechanisms in this setting. We could define linear redistribution
mechanisms as follows:

r(B−i) = c0 + c1 v−i,1 + c2 v−i,2 + · · · + cmn−m v−i,mn−m.

We will study this particular definition later in the paper; however, it should immediately be noted that this definition
ignores some potentially valuable information in B−i , as shown by the following example.

Example 3. Let n = 3 and m = 2.

• Case 1: Let B−i be
[ 0 0

U U

]
.

• Case 2: Let B−i be
[ U 0

U 0

]
.

In both cases, we have v−i,1 = U , v−i,2 = U , v−i,3 = 0, and v−i,4 = 0. Hence, if we define the linear redistribution mecha-
nisms as above, then the redistribution payment must be the same in both cases.

We can see that the above definition loses some information about the ordering of the elements in the matrix. We will
show later that this information loss can in fact come at a cost (less payments can be redistributed). It would be good if we
can incorporate the information about the order of the bij in B−i in the definition of linear redistribution mechanisms. This
is what we will do next.

Let B and B ′ be two bid profiles. The elements in B and B ′ are denoted by bij and b′
i j , respectively, for 1 � i � n and

1 � j � m. We say B and B ′ are order consistent, denoted by B � B ′ , if for any i1, j1, i2, j2, we have that bi1 j1 > bi2 j2

implies b′ � b′ , and b′ > b′ implies bi1 j1 � bi2 j2 . An order consistent class of bid profiles consists of bid profiles
i1 j1 i2 j2 i1 j1 i2 j2
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that are all pairwise order consistent. The set of all allowable bid profiles can be divided into a finite number of maximal
order consistent classes (that is, order consistent classes that are not proper subsets of other order consistent classes).
(Specifically, we have one such class for every strict ordering < on the ordered pairs (i, j) (1 � i � m and 1 � j � n) such
that (i, j + 1) < (i, j) and (i + 1,1) < (i,1) everywhere. We note that some bid profiles are part of more than one of these
maximal order consistent classes: for example, the bid profile with all 0 elements belongs to all the classes.) We can apply
the same definitions of order consistency and (maximal) order consistent classes to the profiles of other bids, the B−i . Let
I(B−i) denote the maximal order consistent class that contains B−i .9

The following definition of linear redistribution mechanisms successfully captures the ordering information of B−i , by
having separate coefficients for every maximal order consistent class,

r(B−i) = cI(B−i),0 + cI(B−i),1 v−i,1 + · · · + cI(B−i),mn−m v−i,mn−m.

Since
[ 0 0

U U

]
and

[ U 0
U 0

]
are not order consistent, they can result in different redistribution payments in this class of

redistribution mechanisms.
Of course, this set of coefficients is unwieldy. As it turns out, we can simplify the representation of these mechanisms if

we assume that they are continuous.
Let r be a linear redistribution mechanism (as just defined). Let T (B−i,k) be the result of changing the largest k elements

of B−i into U , and changing the remaining elements of B−i into 0. (We assume that ties for the top k values are broken in
a consistent way.) We note that T (B−i,k) � B−i for all 0 � k � mn − m. For example, T (

[ 1 2
4 3

]
,1) = [ 0 0

U 0

]
and T (

[ 1 2
4 3

]
,2) =[ 0 0

U U

]
.

We define the following function r′:

r′(B−i) = r
(
T (B−i,0)

) + r(T (B−i,1)) − r(T (B−i,0))

U
v−i,1 + · · ·

+ r(T (B−i,mn − m)) − r(T (B−i,mn − m − 1))

U
v−i,mn−m.

Proposition 12. If r is continuous, then r = r′ .

Proof. We first restrict our attention to profiles B−i in a specific (but arbitrary) maximal order consistent class; moreover,
we only consider profiles B−i in which no two elements are equal. For any B−i in this class, we use the same mn − m + 1
coefficients of r, and T (B−i,k) (and hence r(T (B−i,k))) depends only on k. That is, both the coefficients and T (B−i,k) are
constant in B−i .

If r is continuous, then when B−i approaches T (B−i,k), we have that r(B−i) approaches r(T (B−i,k)). By the definition
of r′ , we also have that when B−i approaches T (B−i,k), that is, when the first k elements of B−i approach U and the
remaining elements of B−i approach 0, we have that r′(B−i) approaches r(T (B−i,k)). That is, r(T (B−i,k)) = r′(T (B−i,k))

for 0 � k � mn − m; that is, the functions agree in mn − m + 1 different places. Since r and r′ are both linear functions with
mn − m + 1 constant coefficients, r and r′ must be the same function when B−i is restricted to one class. Since the choice
of class was arbitrary, we have that r = r′ . �

From now on, we only consider continuous r. Hence, we can characterize r by the values it attains at all possible
T (B−i,k). T (B−i,k) consists of only the numbers U and 0. We represent T (B−i,k) by an integer vector of length n, where
the ith coordinate of the vector is the number of U in the ith column of T (B−i,k).

For example,

T

([
4 2
5 3

]
,2

)
=

[
U 0
U 0

]
→ 〈2,0〉,

T

([
1 2
4 3

]
,3

)
=

[
0 U
U U

]
→ 〈1,2〉.

Using this, r(T (B−i,k)) can be rewritten as r[x1, x2, . . . , xn−1], where 〈x1, x2, . . . , xn−1〉 is the vector representing T (B−i,k)

(with for each i, 0 � xi � m, and
∑

xi = k). Moreover, because we have, for example, that r(
[ 0 U

U U

]
) = r(

[ U 0
U U

]
), we can

assume without loss of generality that x1 � x2 � · · · � xn−1.
The following is an example of how to compute an agent’s redistribution payment based on the values of r[x1, x2, . . . ,

xn−1].

9 If B−i belongs to multiple maximal order consistent classes, then I(B−i) is the class with the smallest index in any predetermined order of all the
classes. If we assume continuity of the redistribution function, as we will do below, then in fact it does not matter which maximal order consistent class
we choose for B−i .
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Example 4. Let n = 3 and m = 2. Let B−i = [ 3 1
4 2

]
,

r(B−i) = r
(
T (B−i,0)

) + r(T (B−i,1)) − r(T (B−i,0))

U
v−i,1 + · · ·

+ r(T (B−i,mn − m)) − r(T (B−i,mn − m − 1))

U
v−i,mn−m

= r

([
0 0
0 0

])
+ r(

[ 0 0
U 0

]
) − r(

[ 0 0
0 0

]
)

U
· 4 + r(

[ U 0
U 0

]
) − r(

[ 0 0
U 0

]
)

U
· 3

+ r(
[ U 0

U U

]
) − r(

[ U 0
U 0

]
)

U
· 2 + r(

[ U U
U U

]
) − r(

[ U 0
U U

]
)

U
· 1

= r[0,0] + r[1,0] − r[0,0]
U

· 4 + r[2,0] − r[1,0]
U

· 3 + r[2,1] − r[2,0]
U

· 2 + r[2,2] − r[2,1]
U

· 1.

Since the values of the r[x1, x2, . . . , xn−1] completely characterize the continuous linear redistribution mechanism, we
can solve for values of the r[x1, x2, . . . , xn−1] for which the corresponding linear redistribution mechanism satisfies the
non-deficit property and produces the least waste in expectation under this constraint.

The following proposition characterizes the non-deficit linear redistribution mechanisms.

Proposition 13. A linear redistribution mechanism satisfies the non-deficit property if and only if the corresponding r[x1, x2, . . . , xn−1]
satisfy the following inequalities: For all m � x1 � x2 � x3 � · · · � xn � 0,

n∑
i=1

r[x1, . . . , xi−1, xi+1, . . . , xn] � U ·
(

n∑
i=1

min

{(
n∑

j=1

x j

)
− xi,m

}
− (n − 1)min

{
n∑

j=1

x j,m

})
.

(The right-hand side of the inequality corresponds to the total VCG payment for the profile 〈x1, x2, . . . , xn〉.)

Proof. To see why the right-hand side U · (
∑n

i=1 min{(∑n
j=1 x j) − xi,m} − (n − 1)min{∑n

j=1 x j,m}) corresponds to
the total VCG payment, we note that U · min{(∑n

j=1 x j) − xi,m} is the total efficiency when i is removed, so that
U · ∑n

i=1 min{(∑n
j=1 x j) − xi,m} is the sum of all the terms corresponding to efficiencies when one agent is removed.

U · (n −1)min{∑n
j=1 x j,m} corresponds to the sum of the basic Groves terms in the payments from the agents: in this term,

each agent receives the total efficiency obtained by the other agents (when the agent is not removed), and if we sum over
all the agents, that means each agent is counted n − 1 times.

Now we can prove the main part of the proposition. If the non-deficit property is satisfied for all bid profiles, then it
should also be satisfied when the marginal values are restricted to be either U or 0. This proves the “only if” direction.
Now we prove the “if” direction. Let B be any bid profile from a fixed maximal order consistent class. This implies that
the maximal order consistent class of B−i is fixed as well, for every i. The total VCG payment equals the sum over all i
of the m highest elements in B−i , minus n − 1 times the sum of the m highest elements in B . In either case, because we
are restricting attention to a fixed class, the m highest elements are the same ones for any B in the class. Because of this,
the VCG payments are linear in the vi . Additionally, again because we are restricting attention to one particular class, the
redistribution payments are also linear in the vi .

Now, if the inequalities hold, that means that the total VCG payment minus the total redistribution is nonnegative when
the marginal values are restricted to either U or 0. That is, the non-deficit constraints hold for these extreme cases. But
by Lemma 1, if a non-deficit constraint is violated anywhere, then a non-deficit constraint must be violated for one of
these extreme cases. It follows that the non-deficit constraints hold everywhere in the class that we were considering, and
because this class was arbitrary, the non-deficit constraint must hold everywhere. �

Let z be the total number of maximal order consistent classes. Let Z j be an arbitrary bid profile that is (only) in the jth
class. Let P (B ∈ I(Z j)) be the probability that a bid profile is drawn that is (only) in the jth class, and let E(v−i,k | B ∈ I(Z j))

be the expectation of the kth-highest marginal value among B−i , given that B is (only) in the jth class. We assume that the
probability that we draw a bid vector that is in more than one class is zero (this would require that two values are exactly
equal).

Now we are ready to introduce a linear program that solves for the optimal-in-expectation linear redistribution mech-
anism.10 This linear program is based on the alternative representation of linear redistribution mechanisms, whose cor-

10 Incidentally, we can give a similar linear program for finding the linear redistribution mechanism that is worst-case optimal, that is, it maximizes the
fraction of total VCG payment redistributed in the worst case. In previous work [16], we have already identified a worst-case optimal linear mechanism
for the nonincreasing marginal values case; however, that mechanism is only optimal under the requirement of ex-post individual rationality. The linear
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rectness was established by Proposition 12, and on the characterization of the non-deficit constraints established for this
representation by Proposition 13.

Variables: r[x1, x2, . . . , xn−1] for all integer m � x1 � x2 � · · · � xn−1 � 0
Maximize∑

j P (B ∈ I(Z j))
∑

i[r(T (Z j
−i,0)) + r(T (Z j

−i ,1))−r(T (Z j
−i ,0))

U E(v−i,1 | B ∈ I(Z j)) + · · ·
+ r(T (Z j

−i ,mn−m))−r(T (Z j
−i ,mn−m−1))

U E(v−i,mn−m | B ∈ I(Z j))]
Subject to:
For all m � x1 � x2 � x3 � · · · � xn � 0,∑n

i=1 r[x1, . . . , xi−1, xi+1, . . . , xn] � U · (∑n
i=1 min{(∑n

j=1 x j) − xi,m} − (n − 1)min{∑n
j=1 x j,m})

We do not have an analytical solution to this linear program; all that we can do is solve for the optimal mechanism
for specific values of m and n. More problematically, in general it is not easy to compute the constants P (B ∈ I(Z j)) and
E(v−i,k | B ∈ I(Z j)). One way to work around this problem is to approximate the final result. That is, instead of computing
an exact optimal linear redistribution mechanism, we can draw a few sample bid profiles, and solve for a linear redistri-
bution mechanism that is optimal for the samples. This way, we do not need to compute any probabilities or conditional
expectations; we simply sum over the profiles in the sample in the objective. (However, we still enforce the constraints
everywhere, not just on the samples.) Because the linear redistribution mechanisms are continuous and we assume contin-
uous and bounded prior distributions for the valuations, it follows that as the number of samples grows, we approach an
optimal mechanism.

We now return to the original idea for the definition of linear redistribution mechanisms: what if we ignore the ordering
information and just use coefficients ck for 0 � k � mn − m, which do not depend on the maximal order consistent class?
This will be a more scalable approach, although it will come at a loss. To find an optimal mechanism in this class, we
can take a similar approach as we did above for the more general definition of linear redistribution mechanisms (and
this approach is correct for similar reasons). We consider the extreme bid vectors where all marginal values are U or 0,
represented by vectors of integers x1, x2, . . . , xn , as before. The fact that we ignore the ordering information now implies
that we require that r[x1, x2, . . . , xn−1] = r[y1, y2, . . . , yn−1] whenever

∑n−1
i=1 xi = ∑n−1

i=1 yi . So, we can rewrite r[x1, . . . , xn−1]
as r[∑n−1

i=1 xi]. That is, the variables now are r[k] for k = 0,1, . . . ,mn − m. The redistribution function now becomes:

r(B−i) = r[0] + r[1] − r[0]
U

v−i,1 + · · · + r[mn − m] − r[mn − m − 1]
U

v−i,mn−m.

The linear program for finding an optimal mechanism becomes:

Variables: r[k] for integer 0 � k � mn − m
Maximize∑

i[r[0] + r[1]−r[0]
U E(v−i,1) + · · · + r[mn−m]−r[mn−m−1]

U E(v−i,mn−m)]
Subject to:
For all m � x1 � x2 � x3 � · · · � xn � 0,∑n

i=1 r[(∑n
j=1 x j) − xi] � U · (∑n

i=1 min{(∑n
j=1 x j) − xi,m} − (n − 1)min{∑n

j=1 x j,m})

While this linear program is much more manageable, it may lead to worse results than the earlier linear program, which
optimizes over the more general class of linear redistribution mechanisms that take the ordering information into account.
We now study some example solutions to this linear program, and compare them to the Bailey–Cavallo redistribution
mechanism [2,3]. We recall that the Bailey–Cavallo mechanism redistributes to every agent 1

n times the VCG payment
that would result if this agent were removed from the auction. If we only consider bid profiles from a specific maximal
order consistent class, then for any i, the VCG payment that would result if i is removed is a linear combination of the
v−i,k . Therefore, the Bailey–Cavallo mechanism belongs to the family of linear redistribution mechanisms that consider the
ordering information (and hence, the optimal solution to the earlier linear program will do at least as well as the Bailey–
Cavallo mechanism). The Bailey–Cavallo mechanism does not belong to the family of linear redistribution mechanisms that
ignore the ordering information: in fact, we will see that it sometimes performs better than the optimal mechanism among
linear redistribution mechanisms that ignore the ordering information. Hence, ignoring the ordering information in general
comes at a cost.

programming technique here can be used to find the worst-case optimal mechanism when individual rationality is not required. For the sake of coherence
of this paper, we will not go into further detail on this here.
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For these examples, let us recall that agent i’s bid vector Bi consists of m elements bi1,bi2, . . . ,bim . In both examples,
we assume that the values of bi1,bi2, . . . ,bim are drawn independently from the uniform [0,1] distribution, with bij being
the jth highest among the m drawn values. We also assume that B1, B2, . . . , Bn are independent.

Example 5. Suppose that n = 3 and m = 2. By solving the above linear program (the one that ignores the ordering infor-
mation), we get the following linear redistribution mechanism that ignores ordering information: r(B−i) = 2

3 v−i,3. That is,
an agent’s redistribution is equal to two thirds of the third highest marginal value among the set of other bids. The ex-
pected waste of this mechanism is 0.2571. In contrast, the expected waste of the Bailey–Cavallo mechanism is 0.4571. (The
expected total VCG payment is 1.0571.) So, for this example, the optimal linear redistribution mechanism that ignores the
ordering information outperforms the Bailey–Cavallo mechanism.

Example 6. Suppose that n = 7 and m = 2. By solving the above linear program (the one that ignores the ordering informa-
tion), we get the following linear redistribution mechanism that ignores ordering information: r(B−i) = 1

5 v−i,3 + 3
35 v−i,4.

That is, an agent’s redistribution is equal to 1
5 times the third highest marginal value among the set of other bids, plus 3

35
times the fourth highest marginal value among the set of other bids. The expected waste of this mechanism is 0.0923. In
contrast, the expected waste of the Bailey–Cavallo mechanism is 0.0671. (The expected total VCG payment is 1.5846.) So,
for this example, the Bailey–Cavallo mechanism outperforms the optimal linear redistribution mechanism that ignores the
ordering information.

In both of these examples (as well as in other examples for which we solved the linear program, including examples
with other distributions), the optimal linear redistribution mechanism that ignores the ordering information is a special
case of the following more general mechanism.

Mechanism M∗ is defined as follows, where t = m + �m(n−2)
n �,

• r[k] = U k−m
n−2 for k = m + 1,m + 2, . . . , t ,

• r[k] = U m
n for k > t .

The redistribution an agent receives is:

r(B−i) =
∑

m+1�k�t

1

n − 2
v−i,k +

(
m

n
− t − m

n − 2

)
v−i,t+1.

We conjecture that there are some more general conditions under which M∗ is the optimal linear redistribution mecha-
nism that ignores the ordering information.

7. Conclusion

The well-known VCG mechanism allocates the items efficiently, is strategy-proof, and never runs a deficit. Nevertheless,
the agents may have to make large payments to a party outside the system of agents, leading to decreased utility for
the agents. Recent work has investigated the possibility of redistributing some of the payments back to the agents, without
violating the other desirable properties of the VCG mechanism. Previous research on redistribution mechanisms has resulted
in a worst-case optimal redistribution mechanism, that is, a mechanism that maximizes the fraction of VCG payments
redistributed in the worst case. In contrast, in this paper, we assumed that a prior distribution over the agents’ valuations
is available, and studied the goal of maximizing the expected total redistribution.

For the setting of multi-unit auctions with unit demand, we first considered linear redistribution mechanisms. We gave
an analytical solution for a redistribution mechanism that, among linear redistribution mechanisms, maximizes the ex-
pected redistribution, and gave conditions under which it is unique. We also proved some other desirable properties of this
mechanism—it is asymptotically optimal for fixed number of units and welfare undominated. We then proposed discretized
redistribution mechanisms, which discretize the space of possible valuations, and determine redistributions solely based on
the discretized values (however, the strategy-proofness and non-deficit constraints still hold over the non-discretized space).
Given a discretization step size, we showed how to solve for the optimal discretized redistribution mechanism using a linear
program. We also showed that as the step size goes to 0, the mechanism converges to the optimal value for all continuous
mechanisms (and we proved a bound on how close to optimal we are). We presented experimental results showing that
for auctions with many bidders, the optimal linear redistribution mechanism redistributes almost everything, whereas for
auctions with few bidders, we can solve for the optimal discretized redistribution mechanism with a very small step size.

For the setting of multi-unit auctions with nonincreasing marginal values, we first generalized the definition of linear
redistribution mechanisms. We then introduced a linear program for finding the optimal linear redistribution mechanism.
Because this linear program is unwieldy, we also introduced a simplified linear program that produces relatively good
(though not necessarily optimal) linear redistribution mechanisms. We also conjectured an analytical solution to the linear
program, which we expect to be correct for most reasonable distributions.
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Future research on optimal-in-expectation redistribution mechanisms can take a number of directions. For the setting
of nonincreasing marginal utilities, one can try to find subclasses of the linear redistribution mechanisms that are more
general than the subclass we considered but still lead to more tractable optimization problems. In general, one can also
try to solve for an optimal-in-expectation redistribution mechanism that is not necessarily linear. Another direction is to
extend the results of this paper to more general settings, for example, combinatorial auctions. Finally, inefficient mechanisms
sometimes achieve higher social welfare than efficient mechanisms [14,9] in the worst case. It would be interesting to see
whether agents’ expected social welfare can also be improved by allocating units inefficiently, and if so, by how much.
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Appendix A. Deriving an optimal linear redistribution mechanism

Here we derive the OEL mechanism and prove its optimality. Our objective is to find a linear redistribution mechanism
that redistributes the most in expectation. To optimize among the family of linear redistribution mechanisms, we must solve
for the optimal values of the ci . We want the resulting redistribution mechanism to be strategy-proof and efficient, and we
want it to satisfy the non-deficit property. The first two properties are satisfied by all the mechanisms inside the linear
family, so the only constraint is the non-deficit property. The following optimization model can be used to find the linear
redistribution mechanism (the ci) that redistributes the most in expectation, while satisfying the non-deficit property.

Variables: c0, c1, . . . , cn−1
Maximize E(

∑n
i=1 ri)

Subject to:
For every bid vector U � v1 � v2 � · · · � vn � L∑n

i=1 ri � mvm+1
ri = c0 + c1 v−i,1 + c2 v−i,2 + · · · + cn−1 v−i,n−1

Given the prior distribution, E(mvm+1) is a constant, so the objective of the above model may be rewritten as Minimize
E(mvm+1 − ∑n

i=1 ri).
Since ri = c0 + c1 v−i,1 + c2 v−i,2 + · · · + cn−1 v−i,n−1, where v−i, j is the jth highest bid among bids other than i’s own

bid, we have the following:

r1 = c0 + c1 v2 + c2 v3 + c3 v4 + · · · + cn−2 vn−1 + cn−1 vn,

r2 = c0 + c1 v1 + c2 v3 + c3 v4 + · · · + cn−2 vn−1 + cn−1 vn,

r3 = c0 + c1 v1 + c2 v2 + c3 v4 + · · · + cn−2 vn−1 + cn−1 vn,

· · ·
rn−1 = c0 + c1 v1 + c2 v2 + c3 v3 + · · · + cn−2 vn−2 + cn−1 vn,

rn = c0 + c1 v1 + c2 v2 + c3 v3 + · · · + cn−2 vn−2 + cn−1 vn−1.

We can write mvm+1 − ∑n
i=1 ri as q0 + q1 v1 + q2 v2 + · · · + qn vn , where the coefficients qi are listed below:

q0 = −nc0,

qi = −(i − 1)ci−1 − (n − i)ci for i = 1,2, . . . ,m,m + 2, . . . ,n,

qm+1 = m − mcm − (n − m − 1)cm+1.

(We note that we introduced a dummy variable cn in the above equations—since there are only n − 1 other bids, cn will
always be multiplied by 0, but adding this variable makes the definition of the qi more elegant.) Given n and m, q0, . . . ,qn
(n + 1 values) are determined by c0, . . . , cn−1 (n values). Conversely, if q0, . . . ,qn−1 are fixed, then we can completely solve
for the values of c0, . . . , cn−1 (and hence also for qn). This results in the following relation among the qi :

q1 − n − 1

1! q2 + (n − 1)(n − 2)

2! q3 − (n − 1)(n − 2)(n − 3)

3! q4 + · · · + (−1)n−1 (n − 1)(n − 2) . . . 2 · 1

(n − 1)! qn

= (−1)mm
(n − 1)(n − 2) . . . (n − m)

.

m!
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After simplification we obtain:

n∑
i=1

(−1)i−1
(

n − 1

i − 1

)
qi = (−1)mm

(
n − 1

m

)
.

Now, we can use the qi as the variables of the optimization model, since from them we will be able to infer the ci . Be-
cause mvm+1 −∑n

i=1 ri = q0 +q1 v1 +q2 v2 +· · ·+qn vn , we can rewrite the non-deficit constraint by requiring that the latter
summation is nonnegative. Also, the qi must satisfy the previous inequality (otherwise there will be no corresponding ci).

Variables: q0,q1, . . . ,qn

Minimize E(q0 + q1 v1 + q2 v2 + · · · + qn vn)

Subject to:
For every bid vector U � v1 � v2 � · · · � vn � L
q0 + q1 v1 + q2 v2 + · · · + qn vn � 0∑n

i=1(−1)i−1
(n−1

i−1

)
qi = (−1)mm

(n−1
m

)

In what follows, we will cast the above model into a linear program. We begin with the following lemma [16]:

Lemma 1. The following are equivalent:

(1) q0 + q1 v1 + q2 v2 + · · · + qn vn � 0 for all U � v1 � v2 � · · · � vn � L;
(2) q0 + L

∑n
i=1 qi + (U − L)

∑k
i=1 qi � 0 for k = 0, . . . ,n.

Proof. (1) ⇒ (2): (2) can be obtained from (1) by setting v1 = v2 = · · · = vk = U and vk+1 = vk+2 = · · · = vn = L.
(2) ⇒ (1): Let us rewrite T = q0 + q1 v1 + q2 v2 + · · · + qn vn as q0 + L

∑n
i=1 qi + (v1 − v2)

∑1
i=1 qi + (v2 − v3)

∑2
i=1 qi +

· · · + (vn−1 − vn)
∑n−1

i=1 qi + (vn − L)
∑n

i=1 qi . If
∑k

i=1 qi � 0 for every k = 1, . . . ,n, then T � q0 + L
∑n

i=1 qi � 0 (because

v1 − v2, v2 − v3, . . . , vn − L are all nonnegative). Otherwise, let k′ be the index so that
∑k′

i=1 qi is minimal (hence negative).

To make T minimal, we want vk′ − vk′+1 (which is multiplied by
∑k′

i=1 qi ) to be maximal. So the minimal value for T is

q0 + L
∑n

i=1 qi + (U − L)
∑k′

i=1 qi � 0, which is attained when v1 = v2 = · · · = vk′ = U and vk′+1 = vk′+2 = · · · = vn = L.
Hence T is always nonnegative. �

Let xk = (q0 + L
∑n

i=1 qi)/(U − L) + ∑k
i=1 qi for k = 0, . . . ,n. The xi correspond (one to one) to the qi , so we can use

the xi as the variables in the optimization model. The first constraint of the optimization model now becomes xk � 0 for
every k. Since xk − xk−1 = qk for k = 1, . . . ,n, the second constraint becomes

n∑
i=1

(−1)i−1
(

n − 1

i − 1

)
(xi − xi−1) = (−1)mm

(
n − 1

m

)
.

After simplification we get:

n∑
i=0

(−1)i
(

n

i

)
xi = (−1)m−1m

(
n − 1

m

)
.

Let o0 = U − E v1, oi = E vi − E vi+1 (i = 1, . . . ,n − 1) and on = E vn − L. The oi are all nonnegative constants that we
know from the prior distribution. The objective of the optimization model can be rewritten as follows:

E(q0 + q1 v1 + q2 v2 + · · · + qn vn)

= q0 + q1 E v1 + q2 E v2 + · · · + qn E vn

= x0(U − L) + q1(E v1 − L) + q2(E v2 − L) + · · · + qn(E vn − L)

= x0
(
(U − L) − (E v1 − L)

) + (x0 + q1)
(
(E v1 − L) − (E v2 − L)

) + (x0 + q1 + q2)
(
(E v2 − L) − (E v3 − L)

) + · · ·
+ (x0 + q1 + · · · + qn)(E vn − L)

= o0x0 + o1x1 + · · · + onxn.

We finally obtain the following linear program:
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Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + · · · + onxn

Subject to:
xi � 0∑n

i=0(−1)i
(n

i

)
xi = (−1)m−1m

(n−1
m

)

At this point, for any given n and m, for any prior distribution, it is possible to solve this linear program using any
LP solver; then, using the above, the resulting xi can be transformed back to ci to obtain an optimal-in-expectation linear
redistribution mechanism. However, this will not be necessary. The following proposition gives an analytical solution of this
linear program.

Proposition 14. Let k be any integer satisfying

k ∈ arg min
i

{
oi

/(
n

i

) ∣∣∣ i − m odd, i = 0, . . . ,n

}
.

The above linear program has the following optimal solution:

xk = m

(
n − 1

m

)/(
n

k

)
and xi = 0 for i 	= k.

The optimal objective value is

okm

(
n − 1

m

)/(
n

k

)
.

This solution is the unique optimal solution if and only if the choice of k is unique and there does not exist an even i and an odd j
such that oi = o j = 0.

Proof. We can rewrite the second constraint as
n∑

i=0

(
(−1)i−m+1

(
n

i

))/(
m

(
n − 1

m

))
xi = 1.

This results in the program

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + · · · + onxn

Subject to:
xi � 0∑

i=0...n;i−m odd
(n

i

)
/(m

(n−1
m

)
)xi = ∑

i=0...n;i−m even
(n

i

)
/(m

(n−1
m

)
)xi + 1

The oi are nonnegative. To minimize the objective, we want all the xi to be as small as possible. It is not hard to see
that it does not hurt to set the xi for which i − m is even to zero: in fact, setting them to a larger value will only force the
xi for which i − m is odd to take on larger values, by the last constraint. (It should be noted that if there exists an even i
and an odd j such that oi = o j = 0, then we can increase the corresponding xi and x j at no cost to the objective without
breaking the constraint, hence the solution is not unique in that case.) This results in the following linear program:

Variables: x0, x1, . . . , xn

Minimize o0x0 + o1x1 + · · · + onxn

Subject to:
xi � 0∑

i=0...n;i−m odd
(n

i

)
/(m

(n−1
m

)
)xi = 1

We want the xi to be as small as possible. However, the second constraint makes it impossible to set all the xi to 0.
For each xi with i − m odd, if we increase it by δ, the left side of the second constraint is increased by

(n
i

)
/(m

(n−1
m

)
)δ and

the objective value is increased by oiδ. We need the left side of the second constraint to increase to 1 (starting from 0),
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while minimizing the increase in the objective value. To do so, we want to find the xi (with i − m odd) that has the
minimal cost-gain ratio (where the cost is oiδ, and the gain is

(n
i

)
/(m

(n−1
m

)
)δ). It follows that for any integer k satisfying

k ∈ arg mini{oi/
(n

i

) | i − m odd, i = 0, . . . ,n}, the linear program has the following optimal solution: xk = m
(n−1

m

)
/
(n

k

)
and

xi = 0 for i 	= k. The resulting optimal objective value is okm
(n−1

m

)
/
(n

k

)
.

In the above argument, there were only two conditions under which we made a choice that is not necessarily uniquely
optimal: if (and only if) there exists an even i and an odd j such that oi = o j = 0, then, as we explained, there exist optimal
solutions where some xi with m − i even is set to a positive value (in fact, it can be set to any value in this case); and if
(and only if) arg mini{oi/

(n
i

) | i − m odd, i = 0, . . . ,n} is not a singleton set, then there exists another optimal solution with
another xk set to a positive value (in fact, in this case, multiple xk may simultaneously be set to a positive value). �

By transforming the xi from Proposition 14 to the corresponding ci , we obtain the OEL mechanism from Theorem 1.
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