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We extend Halphen’s theorem which characterizes solutions of certain nth-order
differential equations with rational coefficients and meromorphic fundamental sys-
tems to a first-order n × n system of differential equations. As an application of
this circle of ideas we consider stationary rational algebro-geometric solutions of
the KdV hierarchy and illustrate some of the connections with completely inte-
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1. INTRODUCTION

The purpose of this paper is twofold. First we prove an extension of
Halphen’s theorem, which characterizes the fundamental system of solu-
tions of certain nth-order ordinary differential equations with rational coef-
ficients to first-order n × n systems. In the second part of this paper we
show how to apply Halphen’s theorem to completely integrable systems of
the Calogero–Moser type, recovering a complete characterization of the
isospectral class of all algebro-geometric rational solutions of the KdV
hierarchy.

We start by describing Halphen’s original result. Consider the nth-order
differential equation

qn�z�y�n��z� + qn−1�z�y�n−1��z� + · · · + q0�z�y�z� = 0� (1.1)

where qj are polynomials, and the order of qn is at least the order of qj for
all 0 ≤ j ≤ �n− 1�; that is,

qm are polynomials, 0 ≤ m ≤ n, (1.2a)

qm�z�/qn�z� are bounded near ∞ for all 0 ≤ m ≤ n− 1	 (1.2b)

Then the zeros of qn are the possible singularities of solutions of (1.1).
Assuming the fundamental system of solutions of (1.1) to be meromor-

phic, the following theorem due to Halphen holds.

Theorem 1.1 [21; 22, pp. 372–375]. Assume (1.2) and suppose (1.1) has
a meromorphic fundamental system of solutions. Then the general solution
of (1.1) is of the form

y�z� =
n∑

m=1

cmrm�z�eλmz� (1.3)

where rm are rational functions, λm ∈ �, 1 ≤ m ≤ n, and cm, 1 ≤ m ≤ n are
arbitrary complex constants.

Moreover, the converse of Halphen’s theorem holds as well.

Theorem 1.2 [22, pp. 374–375]. Suppose rm are rational functions and
λm� cm ∈ �, 1 ≤ m ≤ n. If r1�z�eλ1z� 	 	 	 � rn�z�eλnz are linearly independent,
then

y�z� =
n∑

m=1

cmrm�z�eλmz (1.4)

is the general solution of an nth-order equation of the type (1.1), whose coef-
ficients satisfy (1.2).
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Remark 1.3. We note that Halphen’s main idea of the proof in [21]
consists of replacing the rational coefficients in (1.1) by appropriate ellip-
tic coefficients (as discussed in [20]) followed by an application of Picard’s
theorem (cf., e.g., [22, pp. 375–378]). A closer examination of his argument
seems to reveal a lack of proof of the crucial fact that the associated differ-
ential equation with elliptic coefficients necessarily has a meromorphic fun-
damental system of solutions. A proof of Theorem 1.1 (and Theorem 1.2),
using a completely different strategy, is provided in Ince’s monograph [22,
pp. 372–375].

One of the principal aims of this note is to prove a first-order
n × n system generalization of Halphen’s Theorem 1.1 and its converse,
Theorem 1.2, in Section 2.

Analogous results hold for nth-order equations and first-order systems
with periodic and elliptic coefficients. For a glimpse at the vast literature in
these cases and their applications to completely integrable systems we refer
the interested reader to [15–18, 38, 39] and the literature therein.

In Section 3 we then apply Halphen’s theorem to the problem of char-
acterizing the isospectral class of all stationary rational KdV solutions. All
such (nonconstant) solutions q are well known to be necessarily of the form

q�z� = q∞ −
M∑
�=1

s��s� + 1��z − ζ��−2 (1.5)

for some q∞ ∈ �, �ζ��1≤�≤M ⊂ �, ζ ′� �= ζ� for �′ �= �, and

s� ∈ �� 1 ≤ � ≤M with
M∑
�=1

s��s� + 1� = g�g + 1� (1.6)

for some g ∈ �, and the underlying spectral curve is then of the especially
simple rational type

y2 = �E − q∞�2g+1	 (1.7)

On the other hand, not every q of the type (1.5), (1.6) is an algebro-
geometric solution of the KdV hierarchy. In general, the points ζ� must
satisfy a set of intricate constraints. In fact, necessary and sufficient condi-
tions on ζ� for q in (1.5) to be a rational KdV solution are given by

M∑
�′=1
�′ �=�

s�′ �s�′ + 1�
�ζ� − ζ�′ �2k+1 = 0 for k = 1� 	 	 	 � s� and � = 1� 	 	 	 �M . (1.8)

This result was first derived by Duistermaat and Grünbaum [10, p. 199] in
1986, as a by-product of their investigations of bispectral pairs of differential
operators. We will provide an elementary derivation of this result on the
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basis of Halphen’s theorem and an explicit Frobenius-type analysis in
Section 3.

For a fixed g ∈ �, (1.6) and (1.8) yield a complete parametrization of
all rational KdV solutions belonging to the spectral curve (1.7). In other
words, they provide a complete characterization of the isospectral class of
KdV solutions corresponding to (1.7). The constraints (1.8) represent the
proper generalization of the locus of poles introduced by Airault, McKean,
and Moser [5] in the sense that they explicitly describe the situation where
poles are permitted to collide (i.e., where some of the s� > 1).

2. HALPHEN’S THEOREM FOR FIRST-ORDER SYSTEMS

This section is devoted to a generalization of Halphen’s theorem (and its
converse) to first-order systems. We briefly describe some of the notation
used in this section. In denotes the identity in �n. An m×m diagonal matrix
D = �djδj� k�1≤j� k≤m will occasionally be denoted by diag�d1� 	 	 	 � dm�. The
operation of transposition is denoted by the superscript t. Moreover, it will
be convenient to denote the set of all m × n matrices whose entries are
rational functions with respect to z ∈ � by �m×n, the subset of �m×n with
rational entries bounded at infinity by �m×n

∞ .
We recall that for T ∈ �n×n invertible and differentiable with respect

to z, the transformation y�z� = T �z�u�z� turns the first-order system of
differential equations y ′�z� = A�z�y�z� into the system u′�z� = B�z�u�z�,
where B�z� = T �z�−1�A�z�T �z� − T ′�z��.
Definition 2.1. (i) Two matrices A�B ∈ �n×n are called of the same

kind if there exists an invertible matrix T ∈ �n×n such that

B�z� = T �z�−1�A�z�T �z� − T ′�z��	 (2.1)

(ii) B ∈ �n×n is called reduced of order k if Bj� � = δj+1� � for all
1 ≤ j ≤ k and 1 ≤ � ≤ n.

Our approach, including the notion of matrices being “of the same kind,”
was inspired by Loewy [29]. The relation of being of the same kind is
obviously an equivalence relation on �n×n.

Lemma 2.2. Suppose that A ∈ �n×n
∞ is reduced of order k− 1. Then either

Ak�k+1 = · · · = Ak�n = 0, or else there exists a matrix B ∈ �n×n
∞ of the same

kind as A and also reduced of order k − 1 but with the additional property
that Bk�k+1�∞� �= 0. Moreover, A�∞� and B�∞� have the same eigenvalues
counting algebraic multiplicities.
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Proof. We assume not all of the entries Ak�k+1� · · · � Ak� n are equal to
zero. Consider the �n− k+ 1� × �n− k� matrix in the lower right corner of
A and denote it by R. Suppose that r is the largest nonnegative integer such
that zrR1� j�z� remains bounded near infinity for every j ∈ �1� · · · � n− k�.
Then there exists an � ∈ �1� 	 	 	 � n− k� such that zrR1� ��z� does not vanish
at infinity. Denote the constant �n−k�× �n−k� matrix, which achieves the
exchange of columns 1 and � of R�z�, by C. Then the first row of zrR�z�C
is bounded at infinity and the first entry in that row does not vanish at
infinity. Next, define

T �z� =
(
Ik 0
0 zrC

)
� (2.2)

where Ik is the k× k identity matrix. Let

A�z� =
(
Ã1� 1�z� Ã1� 2�z�
Ã2� 1�z� Ã2� 2�z�

)
� (2.3)

where Ã1� 1�z� and Ã2� 2�z� are square matrices with k and n − k rows,
respectively. Then

T �z�−1A�z�T �z� =
(

Ã1� 1�z� zrÃ1� 2�z�C
z−rC−1Ã2� 1�z� C−1Ã2� 2�z�C

)
	 (2.4)

Since only the last row of Ã1� 2�z� is different from zero, and since that row
equals the first row of R�z�, the matrix T �z�−1A�z�T �z� remains bounded
at infinity and its first k− 1 rows are the same as those of A�z�. The matrix
C was chosen so that the first entry in the last row of zrÃ1� 2�z�C does not
vanish at infinity. Since

lim
z→∞T �z�

−1T ′�z� = 0� (2.5)

we conclude that B = T−1�AT − T ′� ∈ �n×n
∞ is reduced of order k− 1 and

that Bk�k+1�∞� �= 0.
Finally we prove that A�∞� and B�∞� have the same eigenvalues count-

ing algebraic multiplicities. Since T �∞� might not exist, we first compute

det
(

lim
z→∞��T−1AT ��z� − λIn�

)
= lim

z→∞ det��T−1AT ��z� − λIn�

= lim
z→∞ det�A�z� − λIn� = det

(
lim
z→∞�A�z� − λIn�

)
	 (2.6)

By (2.5), the left-hand side of (2.6) is the characteristic polynomial of B�∞�,
while the right-hand side is the characteristic polynomial of A�∞�. This
completes the proof.
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Lemma 2.3. Assume that A ∈ �n×n
∞ is reduced of order k− 1 and suppose

that Ak�k+1�∞� �= 0. Then there exists a matrix B ∈ �n×n
∞ of the same kind

as A, which is reduced of order k. Moreover, A�∞� and B�∞� are similar
and hence isospectral (i.e., their eigenvalues, including algebraic and geometric
multiplicities, coincide).

Proof. Let T ∈ �n×n denote the n× n matrix obtained from the identity
matrix In by replacing its �k+ 1�st row by

�−Ak� 1� 	 	 	 �−Ak�k� 1�−Ak�k+2� 	 	 	 �−Ak�n�/Ak�k+1	 (2.7)

T−1 is then the matrix obtained from the identity matrix In by replacing
the �k+ 1�st row by �Ak� 1� 	 	 	 �Ak� n�. Note that the entries of T and T−1

are rational and bounded at infinity. Hence the matrix B = T−1�AT −
T ′� has rational entries bounded at infinity. A straightforward calculation
then shows that the first k rows of B have the desired form. Since T and
T ′ are bounded at infinity, limz→∞ T �z�−1T ′�z� = 0 and hence B�∞� =
T �∞�−1A�∞�T �∞�.

Theorem 2.4. Let Q ∈ �n×n
∞ and suppose that the first-order system

y ′�z� = Q�z�y�z� has a meromorphic fundamental system of solutions. Then
y ′�z� = Q�z�y�z� has a fundamental matrix of the type

Y �z� = R�z� exp�diag�λ1z� 	 	 	 � λnz��� (2.8)

where λ1� 	 	 	 � λn are the eigenvalues of Q�∞� and R ∈ �n×n.

Proof. The theorem will be proved by induction on n. Let n = 1. Any
pole of Q�z� must be of first-order with an integer residue; that is,

Q�z� = λ1 +
N∑
�=1

m�

z − a�
� (2.9)

with m1� 	 	 	 �mN ∈ �. Then Y �z� = ∏N
�=1�z − a��m� exp�λ1z� proves the

claim for n = 1.
Next, let n be any natural number and assume that Theorem 2.4 has been

proven for any natural number strictly less than n.
By hypothesis, Q ∈ �n×n

∞ and Q�z� can be regarded to be reduced at
least of order zero. We denote the eigenvalues of Q�∞� by λ1� 	 	 	 � λn.
Repeated, perhaps alternating, applications of Lemmas 2.2 and 2.3 then
yield the existence of an integer k ∈ �1� 	 	 	 � n�, a k × k matrix B1�z�, an
�n− k� × k matrix B3�z�, and an �n− k� × �n− k� matrix B4�z�, such that

B�z� =
(
B1�z� 0
B3�z� B4�z�

)
(2.10)
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has the following properties:

1. B ∈ �n×n
∞ .

2. B is of the same kind as Q; that is, there exists an invertible matrix
T ∈ �n×n such that B�z� = T �z�−1�Q�z�T �z� − T ′�z��.

3. B1�z� is reduced of order k− 1.

4. After a suitable relabeling of the eigenvalues of Q�∞� the
eigenvalues of B1�∞� are λ1� 	 	 	 � λk and the eigenvalues of B4�∞� are
λk+1� 	 	 	 � λn.

5. The first-order system u′�z� = B�z�u�z� has a meromorphic fun-
damental system of solutions with respect to z ∈ �.

We now have to distinguish whether k = n or k < n. In the case k = n,
B�z� = B1�z�, and the system u′�z� = B�z�u�z� is equivalent to the scalar
equation

u
�n�
1 �z� = Bn� 1�z�u1 + · · · + Bn�n�z�u�n−1�

1 �z�	 (2.11)

In this case Halphen’s theorem, Theorem 1.1, and the relations uk�z� =
u
�k−1�
1 �z� and y�z� = T �z�u�z� prove our claim.
Next, assume that k < n. If w is any solution of w′�z� = B1�z�w�z�,

choose a solution v of the nonhomogeneous system

v′�z� − B4�z�v�z� = B3�z�w�z�	 (2.12)

Then u = �w� v�t is a solution of u′�z� = B�z�u�z� and hence meromorphic.
Thus every solution of w′�z� = B1�z�w�z� and, choosing w�z� = 0 in (2.12),
also every solution of v′�z� = B4�z�v�z� is meromorphic. By the induction
hypothesis, there exist matrices R1 ∈ �k×k and R4 ∈ ��n−k�×�n−k� such that

U1�z� = R1�z�diag�exp�λ1z�� 	 	 	 � exp�λkz�� (2.13)

is a fundamental matrix of w′�z� = B1�z�w�z� and

U4�z� = R4�z�diag�exp�λk+1z�� 	 	 	 � exp�λnz�� (2.14)

is a fundamental matrix of v′�z� = B4�z�v�z�.
Next define

U3�z� = U4�z�
∫ z
dζ U−1

4 �ζ�B3�ζ�U1�ζ�	 (2.15)

Then each column of

U�z� =
(
U1�z� 0
U3�z� U4�z�

)
(2.16)
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is a solution of u′�z� = B�z�u�z� and U is indeed a fundamental matrix of
u′�z� = B�z�u�z� since det�U�z�� = det�U1�z�� det�U4�z�� �= 0. It remains
to show that

U3�z� = R3�z�diag�exp�λ1z�� 	 	 	 � exp�λkz�� (2.17)

for some matrix R3 ∈ ��n−k�×k. The entry in row j and column � of the
matrix U−1

4 �ζ�B3�ζ�U1�ζ� equals ρj� ��ζ�exp��λ� − λk+j�ζ�, where ρj� � is a
rational function; that is,

ρj� ��ζ� =
N∑
r=0

aj� �� rζ
r +

M∑
r=1

Mr∑
s=1

bj� �� r� s

�ζ − zr�s
(2.18)

for appropriate choices of the parameters aj� �� r , bj� �� r� s, and pairwise dis-
tinct zr . Next we recall that∫ z

dζ ζseλζ = f �s� λ� z��mod�eλz��z���� (2.19)

where

f �s� λ� z� =


0 if s ≥ 0
λ−s−1

�−s−1�! Ei�λz� if λ �= 0 and s ≤ −1
ln�z� if λ = 0 and s = −1
0 if λ = 0 and s ≤ −2

(2.20)

and that the exponential integral Ei�·� has a logarithmic branch point at
zero. Therefore, if λ� �= λk+j ,

�U−1
4 U3�j� ��z� =

∫ z
dζ ρj� ��ζ�e�λ�−λk+j�ζ

= e�λ�−λk+j�zSj� ��z� +
M∑
r=1

cj� �� re
�λ�−λk+j�zr Ei��λ� − λk+j��z − zr��� (2.21)

for appropriate rational functions Sj� � and appropriate complex numbers
cj� �� r . However, since the entries of U3�z� and U4�z� must be meromorphic,
all of the numbers cj� �� r must necessarily vanish. If λ� = λk+j , a similar
conclusion shows that no logarithmic terms appear so that in either case
�U−1

4 U3�j� ��z� ∈ e�λ�−λk+j�z��z�. Hence we obtain

U−1
4 �z�U3�z� = diag�e−λk+1z� 	 	 	 � e−λnz�S�z� diag�eλ1z� 	 	 	 � eλkz�� (2.22)

where S ∈ ��n−k�×k is the matrix with entries Sj� �. Thus, R3 = R4S ∈
��n−k�×k.
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Remark 2.5. If Q�∞� = 0, the transformation z = 1
ζ

immediately shows
that ζ = 0 is a regular singular point of our differential equation. This
implies that the fundamental system at ζ = 0 is of the form (cf., e.g., [36,
Sect. 23]) Y �ζ� = U�ζ�ζm for �ζ� < ζ0, where U�ζ� is a holomorphic matrix
for �ζ� < ζ0. Hence our fundamental system is meromorphic on the whole
Riemann sphere and must therefore be a purely rational matrix.

Next we consider two examples.

Example 2.6. The first-order 2 × 2 system

y ′�z� =
(

1 0
z 1 + 1

z

)
y�z�

is solved by

Y �z� =
(

1 1
z2 z2 + z

)
ez	

This seems to suggest consideration of even more general systems of the
type z−qY ′�z� = A�z�Y �z�, with q > 0, rather than the case q = 0 only. But
Theorem 2.4 cannot hold in general for q > 0 as shown by the following
elementary counterexample.

Example 2.7. The first-order 2 × 2 system

y ′�z� =
(

0 1
zm 0

)
y�z�� m ∈ �

has no solution in terms of elementary functions, although it clearly has a
meromorphic fundamental system. The particular case m = 1 represents the
well-known Airy equation.

Remark 2.8 In the case where all eigenvalues 1 ≤ λj ≤ n of Q�∞� are
distinct, we now sketch an alternative proof of Theorem 2.4, based on [37,
Theorem 12.3]. Since Theorem 12.3 in [37] only applies to appropriate
sectors of the complex plane with vertex at the origin, we argue as follows.
First one can find a sufficiently small sector S3, which does not contain any
separation rays. (We recall that a ray (i.e., a half line), where Re�λjz −
λkz� = 0 for some pair of distinct integers j� k, is called a separation ray.)
Then one chooses two other sectors S1� S2 with opening angles φj < π� j =
1� 2, such that S1 ∪ S2 ∪ S3 = � \ �0�. It is then possible to show that the
transition matrix from sector S1 to sector S2 equals the identity matrix.
Hence, the solution of the form Y �z� = R�z� exp�diag�λ1� 	 	 	 � λn�z� in
sector S1 is valid in sector S2 too and thus can be continued into S3 since
by hypothesis, the sector S3 contains no separation rays.

Finally, we turn to a converse of Theorem 2.4.
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Theorem 2.9. Suppose R ∈ �n×n, det�R� �= 0, and λ1� 	 	 	 � λn ∈ �.
Then

Y �z� = R�z� exp�diag�λ1z� 	 	 	 � λnz�� (2.23)

is a fundamental matrix of a first-order linear system of differential equa-
tions y ′�z� = Q�z�y�z�, where Q ∈ �n×n and Q is of the same kind as a
matrix in �n×n

∞ . In fact, Q is of the same kind as the constant diagonal matrix
diag�λ1� 	 	 	 � λn�.
Proof. Since

Q�z� = R�z�diag�λ1� 	 	 	 � λn�R�z�−1 + R′�z�R�z�−1� (2.24)

we choose T �z� = R�z�−1 and hence obtain T ′ = −R−1R′R−1 and thus,

Q = T−1�diag�λ1� 	 	 	 � λn�T − T ′�	 (2.25)

Hence, Q�z� is of the same kind as the constant matrix diag�λ1� 	 	 	 � λn�.

3. SOME APPLICATIONS TO RATIONAL SOLUTIONS OF THE
STATIONARY KdV HIERARCHY

In this section we describe the connections between the preceding results
and infinite-dimensional completely integrable Hamiltonian systems. For
reasons of brevity we will only consider the simplest case of the KdV hier-
archy and, in accordance with Sections 1 and 2, only study its stationary
rational solutions bounded at infinity (cf. [1, 3–7, 19, 23–28, 30–33, 35, 40]
and the literature cited therein). The principal results on the stationary
KdV hierarchy as needed in this section are summarized in the Appendix,
and we freely use these results and the notation established there in what
follows.

The rational KdV solutions bounded at infinity are usually discussed in
a time-dependent setting and the dynamics of their poles is in an intimate
relationship with completely integrable systems of the Calogero–Moser
type. In our discussion below, the time-dependence will generally be sup-
pressed and only occasionally be mentioned in connection with particular
isospectral deformations of rational solutions of the KdV hierarchy. Our
principal focus will be on stationary (isospectral) aspects of these rational
KdV solutions and the implications of Halphen’s theorem in this context.

We start by quoting a number of known results on stationary rational
KdV solutions bounded at infinity.

Theorem 3.1. Let N ∈ � and �zj�1≤j≤N ⊂ �.
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(i) Any rational solution q of (some, and hence infinitely many equa-
tions of ) the KdV hierarchy, or equivalently, any rational algebro-geometric
potential q, is necessarily of the form

q�z� = q∞ − 2
N∑
j=1

�z − zj�−2� (3.1)

for some q∞ ∈ � and with N ∈ � of the special type N = g�g + 1�/2 for
some g ∈ � [5].

(ii) If one allows for “collisions” between the zj , that is, if the set
�zj�1≤j≤N clusters into groups of points, then the corresponding rational
algebro-geometric potential q is necessarily of the form

q�z� = q∞ −
M∑
�=1

s��s� + 1��z − ζ��−2� (3.2)

where for some g ∈ �,

�zj�1≤j≤N = �ζ��1≤�≤M ⊂ �� with ζ� pairwise distinct� (3.3a)

s� ∈ �� 1 ≤ � ≤M�

M∑
�=1

s��s� + 1� = 2N for some

N ∈ � of the type N = g�g + 1�/2 (3.3b)

[5, 38].
(iii) The extreme case of all zj colliding into one point, say ζ1, that

is, �zj�1≤j≤N = �ζ1� ⊂ �, yields an algebro-geometric KdV potential of the
elementary form

q�z� = q∞ − g�g + 1��z − ζ1�−2� g ∈ � (3.4)

and no additional constraints on ζ1 ∈ �.
(iv) In all cases (i)–(iii), if q is a rational KdV potential (i.e., if g ∈ �

and the points zj (resp. ζ�) satisfy appropriate restrictions, cf. Theorem 3.5),
the underlying rational hyperelliptic curve �g is of the especially simple form

�g : y2 = �E − q∞�2g+1	 (3.5)

In particular, the potentials (3.1), (3.2), and (3.4) are all isospectral (assum-
ing (3.1) and (3.2) are algebro-geometric KdV potentials, of course).

(v) q is a rational KdV potential if and only if ψ′′ + �q−E�ψ = 0 has
a meromorphic fundamental solutions (w. r.t. z) for all values of the spectral
parameter E ∈ � [38].
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(vi) If q is a rational KdV potential of the form (3.2), then y ′′ + qy =
Ey has linearly independent solutions of the Baker–Akhiezer type

ψ±�E� z� =
(± E1/2)−g( g∏

j=1

(± E1/2 − νj�z�
))
e±E

1/2z� (3.6)

E ∈ �\�q∞�� z ∈ ��

with µj�z� = νj�z�2, 1 ≤ j ≤ g, the zeros of Fg�z� x� as defined in (A.12).

To avoid annoying case distinctions we will in almost all circumstances
exclude the trivial case N = g = 0 in this section.

Remark 3.2. (i) It must be emphasized that for N > 1, not any poten-
tial q of the type (3.1) is an algebro-geometric KdV potential. In fact, for
N > 1, there exist nontrivial constraints on the set �zj�1≤j≤N for (3.1)
to represent an algebro-geometric KdV potential. For instance, if the zj
in (3.1) are pairwise distinct, then Airault et al. [5] proved that

N∑
j′=1
j′ �=j

1
�zj − zj′ �3 = 0 for j = 1� 	 	 	 �N (3.7)

are necessary conditions for q in (3.1) to be a stationary KdV potential. In
the case of collisions (i.e., if s�0

> 1 for some 1 ≤ �0 ≤ M) the necessary
constraints on �ζ��1≤�≤M are more involved than in the nondegenerate case
above and a complete description of all constraints were originally obtained
by Duistermaat and Grünbaum [10] in 1986. An alternative proof of their
result will be given in Theorem 3.5 below.

(ii) In connection with Theorem 3.1 (ii) one might naively expect
that any decomposition of g�g + 1� = ∑M

�=1 s��s� + 1� can actually be real-
ized for some choice of �ζ��1≤�≤M with ζ� �= ζ�′ for � �= �′. However, the
simple counterexample q�z� = −6�z − ζ1�−2 − 6�z − ζ2�−2, which satis-
fies KdV3�q� = −5670�ζ1 − ζ2�2�ζ1 + ζ2 − 2z��z − ζ1�−6�z − ζ2�−6, quickly
destroys such hopes.

(iii) Strictly speaking, the version of Theorem 3.1 (v) proven in [38]
assumes, in addition to q being rational, that q is bounded at infinity. How-
ever, assuming that

q�z� =
z→∞αz

k +O�zk−1� for some α �= 0 and k ∈ �,

a simple inductive argument using (A.1) proves

f̂ ′j �z� =
kαj

2

( j−1∏
�=1

2�+ 1
2�

)
zjk−1 +O�zjk−2�� j ≥ 1�
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using the usual convention (for j = 1) that products over empty sets are
put equal to one. Thus, since f̂ ′j cannot vanish in this case, a rational q
unbounded at infinity cannot satisfy any of the stationary KdV equations
(cf. (A.8)).

Before we discuss additional facts, we briefly pause and mention some of
the ingredients entering the proof of items (i)–(v) in Theorem 3.1. We start
with a fairly complete treatment of item (iii) and for simplicity of notation
put q∞ = ζ1 = 0 and

qg�z� = −g�g + 1�z−2� g ∈ �� z ∈ �\�0�	 (3.8)

From [2, Chap. 10] one infers that (E ∈ �\�0�, z ∈ �)

ψ±�E� z� =
(

g∑
k=0

�g + k�!
k!�g − k�!�±2E1/2z�−k

)
e∓E

1/2z (3.9)

are linearly independent solutions of ψ′′ + �qg−E�ψ = 0, E ∈ �\�0�. Thus,
one concludes that

ψ+�E� z�ψ−�E� z� =
g∏
j=1

(
1 − κj

Ez2

)
for some κj ∈ �� 1 ≤ j ≤ g	 (3.10)

Hence a comparison with (A.12)–(A.15), (A.19)–(A.24) yields

F̂g�E� z� =
g∏
j=1

(
E − µj�z�

)
� µj�z� = κjz

−2� 1 ≤ j ≤ g� (3.11)

where F̂g�E� z� denotes the polynomial of degree g with respect to E asso-
ciated with qg�z� in 3.8, as introduced in the Appendix. Thus, qg�z� is a
KdV potential satisfying K̂dVg�qg� = 0 for a particular set of constants
�c��1≤�≤g in (A.10). However, taking into account the simple form of qg�z�
in (3.8), homogeneity considerations in connection with the corresponding
f̂j and (A.25) then yield in the special case q�z� = qg�z�,

c� = 0� 1 ≤ � ≤ g� (3.12)

F̂g�E� z� = Fg�E� z�� f̂j�z� = fj�z�� 1 ≤ j ≤ g� (3.13)

fj�z� = djx
−2j for some dj ∈ �\�0�� 1 ≤ j ≤ g� (3.14)

fk+1�z� = 0� s − KdVk�qg� = 0� k ≥ g� (3.15)

y2 = E2g+1� that is, Êm = 0, 0 ≤ m ≤ 2g (3.16)

(and of course c0 = f̂0�z� = f0�z� = 1). This yields item (iii) and part
of item (iv). Since q in (3.1) and (3.2) in the special case q∞ = 0 sat-
isfies q�z� =

�z�→∞
2Nz−2

(
1 + O

(�z�−1
))

, one infers that fk+1 = 0 for some
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k ∈ � can only happen if N = k�k + 1�/2 for some k ∈ �. This illus-
trates N = g�g + 1�/2 and (3.3b). Item (v) in [38] follows from a careful
combination of Frobenius theory for second-order linear ordinary differ-
ential equations in the complex domain, Halphen’s theorem, Theorem 1.1
(for n = 2), and some of the algebro-geometric formalism briefly sketched
in the Appendix. As a by-product of a proof of item (v) one shows that
ψ′′�z� − cz−2ψ�z� = Eψ�z�, z ∈ �\�0�, has a meromorphic fundamental
system of solutions for all E ∈ � if and only if c ∈ � is of the special
form c = s�s + 1� for some s ∈ �0. This illustrates why collisions neces-
sarily must happen as described in (3.3a). This fact was already known to
Kruskal [28] in 1974. That q in (3.1), (3.2), and (3.4) are all isospectral KdV
potentials, that is, they all belong to the same algebraic curve (3.5) (assum-
ing (3.1) and (3.2) satisfy the additional restrictions to make them algebro-
geometric KdV potentials, of course), can be shown by several methods,
either by invoking time-dependent KdV flows as in [5], or by commuta-
tion techniques (i.e., Darboux-type transformations) as in [3, 11, 30, 31]
(cf. also [14]). This fact also follows from the results in [38]. Finally, iden-
tifying ψ±�E� z�/ψ±�E� z0� with the two branches of the Baker–Akhiezer
function ψ�P� z� z0�, P = �E� y� in (A.20), a combination of (A.12), (A.23),
and the normalizations

lim
�z�→∞

ψ±�E� z� exp�∓E1/2z� = 1� lim
�E�→∞

ψ±�E� z� exp�∓E1/2z� = 1

then proves ψ+�E� z�ψ−�E� z� = E−gFg�E� z� = ∏g
j=1�1 − µj�z�/E�, and

hence (3.6).
Finally, we study the precise restrictions on the set of poles �zj�1≤j≤N =

�ζ��1≤�≤M for q in (3.2) to be a KdV potential.

Lemma 3.3. Suppose the function q has a Laurent expansion about the
point z0 ∈ � of the type

q�z� =
∞∑
j=0

qj�z − z0�j−2� (3.17)

where q0 = −s�s + 1� and, without loss of generality, Re�2s + 1� ≥ 0. Define
for σ ∈ �,

f0�σ� = −σ�σ − 1� − q0 = �s + σ��s + 1 − σ�� (3.18)

c0�σ� =
2s+1∏
j=1

f0�σ + j�� cj�σ� =
∑j−1
m=0 qj−mcm�σ�
f0�σ + j� � j ∈ �� (3.19)
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w�σ� z� =
∞∑
j=0

cj�σ��z − z0�σ+j� (3.20)

v�σ� z� = ∂w

∂σ
�σ� z� =

∞∑
j=0

(
∂cj

∂σ
+ cj log�z − z0�

)
�z − z0�σ+j 	 (3.21)

If 2s + 1 is not an integer, then y ′′ + qy = 0 has the linearly independent
solutions y1 = w�s + 1� ·� and y2 = w�−s� ·�. If 2s + 1 is an integer, then
y ′′ + qy = 0 has the linearly independent solutions y1 = w�s + 1� ·� and y2 =
v�−s� ·�.

Moreover, y ′′ + qy = 0 has a meromorphic fundamental system of solutions
near z0 if and only if s ∈ �0 and c2s+1�−s� = 0.

This is a classical result in ordinary differential equations (cf., e.g., [22,
Chaps. XV, XVI). A recent proof can be found in [38, Sect. 3].

Definition 3.4. Let q be a rational function. Then q is called a Halphen
potential if it is bounded near infinity and if y ′′ + qy = Ey has a meromor-
phic fundamental system of solutions (w.r.t. z) for each value of the complex
spectral parameter E ∈ �.

Of course every constant is a Halphen potential. Moreover, by
Theorem 3.1 (v), q is a Halphen potential if and only if it is a ratio-
nal KdV potential (i.e., if and only if it satisfies one and hence infinitely
many of the equations of the stationary KdV hierarchy).

Theorem 3.5. Let q be a nonconstant rational function. Then q is a
Halphen potential if and only if there are M ∈ �, s� ∈ �, 1 ≤ � ≤M , q∞ ∈ �,
and pairwise distinct ζ� ∈ �, � = 1� 	 	 	 �M , such that

q�z� = q∞ −
M∑
�=1

s��s� + 1��z − ζ��−2 (3.22)

and

M∑
�′=1
�′ �=�

s�′ �s�′ + 1�
�ζ� − ζ�′ �2k+1 = 0 for k = 1� 	 	 	 � s� and � = 1� 	 	 	 �M	 (3.23)

Moreover, q is a rational KdV potential if and only if q is of the type (3.22)
and the constraints (3.23) hold. In particular, for fixed g, the constraints (3.23)
characterize the isospectral class of all rational KdV potentials associated with
the curve y2 = �E − q∞�2g+1, where g�g + 1� =∑M

�=1 s��s� + 1�.
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Proof. By Theorem 3.1 (v), it suffices to prove the characterization of
Halphen potentials. Suppose that q is a nonconstant Halphen potential.
Then a pole z0 of q is a regular singular point of y ′′ + qy = Ey and hence

q�z� − E =
∞∑
j=0

Qj�z − z0�j−2

in a sufficiently small neighborhood of z0, where Q2 is a first-order polyno-
mial in E, while Qj for j �= 2 are independent of E. The indices associated
with z0, defined as the roots of σ�σ − 1� + Q0 = 0 (hence they are E-
independent), must be distinct integers whose sum equals one. We denote
them by −s and s+ 1 where s > 0 and note that Q0 = −s�s+ 1�. We intend
to prove that Q2j+1 = 0 whenever j ∈ �0� 	 	 	 � s� by applying Lemma 3.3.
Proceeding by way of contradiction, we thus assume that for some nonneg-
ative integer k ∈ �0� 	 	 	 � s�, Q2k+1 �= 0 and k is the smallest such integer.

We note that f0�· + j� are positive in �−s − 1�−s + 1� for j = 1� 	 	 	 � 2s,
whereas f0�· + 2s+ 1� has a simple zero at −s and its derivative is negative
at −s. Next one defines

γ0�σ� =
2s+1∏
j=1

f0�σ + j� and γ1�σ� =
2s+1∏
j=2

f0�σ + j�	 (3.24)

γ0 and γ1 have simple zeros at −s and and γ′0�−s� and γ′1�−s� are negative.
The functions c0 = γ0 and c1 = Q1γ1 are polynomials with respect to

E. Actually, c0 has degree zero in E and c1 is constant but might equal
zero. Hence the relations (3.25), (3.26), and (3.27) below are satisfied for
j = 1. Next we assume that for some integer � ∈ �1� 	 	 	 � s�, the functions
c0� 	 	 	 � c2�−1 are polynomials in E and that the relations

c2j−2�σ� = γ2j−2�σ�Qj−1
2 +O�Ej−2�� (3.25)

c2j−1�σ� =
{
γ2j−1�σ�Q2k+1Q

j−k−1
2 +O�Ej−k−2�� j − 1 ≥ k,

0� j − 1 < k,
(3.26)

γ2j−2�−s� = γ2j−1�−s� = 0� γ′2j−2�−s�� γ′2j−1�−s� < 0 (3.27)

are satisfied for 1 ≤ j ≤ �. Using the recursion relation (3.19) we then
obtain that c2��σ� and c2�+1�σ� are polynomials in E and that

c2��σ� =
γ2�−2�σ�
f0�σ + 2��Q

�
2 +O�E�−1��

c2�+1�σ� =
{
γ2�−1�σ�+γ2��−k��σ�

f0�σ+2�+1� Q2k+1Q
�−k
2 +O�E�−k−1�� � ≥ k�

0� � < k	

Letting γ2� = γ2�−2/f0�· + 2�� and γ2�+1 = �γ2�−1 + γ2��−k��/f0�· + 2�+ 1�
we find that the relations (3.25), (3.26), and (3.27) are satisfied for j = �+ 1.
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Hence an inductive argument proves that c2s+1 is a polynomial in E and
that

c2s+1�σ� =
γ2s−1�σ� + γ2�s−k��σ�

f0�σ + 2s + 1� Q2k+1Q
s−k
2 +O�Es−k−1�

= γ2s+1�σ�Q2k+1Q
s−k
2 +O�Es−k−1�	

But both γ2s−1 + γ2�s−k� and f0�· + 2s + 1� have simple zeros at −s so that
γ2s+1�−s� is different from zero. Lemma 3.3 then shows that y ′′ + qy = Ey
has a solution which is not meromorphic whenever E is not a root of the
polynomial c2s+1�−s�. This contradiction proves our assumption Q2k+1 �= 0
wrong.

Since Q1 = 0, we proved that if q is a Halphen potential with pairwise
distinct poles ζ1� 	 	 	 � ζM , then the principal part of q about any pole ζ� is of
the form −s��s� + 1�/�z − ζ��2 for an appropriate positive integer s�. Since
q is bounded at infinity a partial fraction expansion then proves (3.22). This
immediately implies that for z0 = ζ�,

Q2k+1 = 2k
M∑
�′=1
�′ �=�

s�′ �s�′ + 1�
�ζ� − ζ�′ �2k+1 	 (3.28)

This proves necessity of the conditions (3.22) and (3.23) for q to be a
Halphen potential. To prove their sufficiency we now assume that (3.22)
and (3.23) hold. Then, if z0 denotes any of the points ζ�, one infers that
the corresponding c2s�+1�−s�� = 0. Lemma 3.3 then guarantees that all
solutions of y ′′ + qy = Ey are meromorphic and hence that q is a Halphen
potential.

Remark 3.6 (i) We emphasize again that the necessary and sufficient
conditions on ζ� for q in (3.22) to be a rational KdV potential were first
obtained by Duistermaat and Grünbaum [10] in their analysis of bispectral
pairs of differential operators. Our approach based on Halphen’s theorem
and a direct Frobenius-type analysis is a bit more streamlined since we aim
directly at rational KdV solutions (and do not cover the case of the Airy
equation) but there are undoubtedly some similarities in both approaches.

(ii) We note that the restrictions (3.23) simplify in the absence
of collisions, where s� = 1, 1 ≤ � ≤ N . In this case (3.23) reduces to∑N
j′=1� j′ �=j�zj − zj′ �−3 = 0, 1 ≤ j ≤ N , which represents the well-known

locus introduced by Airault, McKean, and Moser [5]. This locus gener-
ated considerable interest, and especially its generalizations to elliptic KdV
potentials and (elliptic) KP potentials were intensively studied (cf., e.g., [4,
6–8, 12, 13, 23–28, 32–34, 40]). The current derivation of (3.23) properly
extends this locus to the case of collisions (i.e., to cases where some of the
s� > 1).
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(iii) For k = 1, conditions (3.23) coincide with the necessary con-
ditions at collision points found by Airault et al. [5, Remark 1, p. 113].
However, since there are additional necessary conditions in (3.23) corre-
sponding to k ≥ 2, this disproves the conjecture made at the end of the
proof of their Remark 1.

(iv) The genus g = 2 (N = 3) example, q̃2�z� t� = −6z�z3 + 6t��z3 −
3t�−2, t ∈ �, with zj = �3t�1/3ωj , ωj = exp�2πij/3�, 1 ≤ j ≤ 3, explicitly
illustrates the locus in (3.23). One verifies that q̃2�t� satisfies the kth station-
ary KdV equation, s-KdVk�q̃2�t�� = 0 for all k ≥ 2 and all t ∈ �, as well as
the first time-dependent KdV equation q̃2� t = 4−1q̃2� xxx + 2−13q̃2q̃2� x (see,
e.g., [4, 10]).

Extensions of the stationary formalism described in this section to elliptic
KdV potentials are in preparation.

APPENDIX: THE STATIONARY KdV HIERARCHY

In this section we review basic facts on the stationary KdV hierarchy.
Since this material is well known, we confine ourselves to a brief account.
Assuming q to be meromorphic in �, consider the recursion relation

f̂0�z� = 1� f̂ ′j+1�z� = 4−1f̂ ′′′j �z� + q�z�f̂ ′j �z� + 2−1q′�z�f̂j�z� (A.1)

for j ∈ �0 (with ′ denoting differentiation with respect to z and �0 =
� ∪ �0�) and the associated differential expressions (Lax pair)

L2 = d2

dz2 + q�z�� (A.2)

P̂2g+1 =
g∑
j=0

[
−1

2
f̂ ′j �z� + f̂j�z�

d

dz

]
L
g−j
2 � g ∈ �0	 (A.3)

One can show that [
P̂2g+1� L2

]
= 2f̂ ′g+1 (A.4)

([·� ·] the commutator symbol) and explicitly computes from (A.1),

f̂0=1� f̂1=2−1q+c1� f̂2=8−1q′′+8−13q2+c12−1q+c2� etc.� (A.5)

where cj ∈ � are integration constants. Using the convention that the cor-
responding homogeneous quantities obtained by setting c� = 0 for � =
1� 2� 	 	 	 are denoted by fj , that is,

fj = f̂j
∣∣
c�=0� 1≤�≤j� j ∈ �� (A.6)
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one obtains

f̂j =
j∑
�=0

c�fj−�� 0 ≤ j ≤ g	 (A.7)

The (homogeneous) stationary KdV hierarchy is then defined as the
sequence of equations

s-KdVg�q� = 2f ′g+1 = 0� g ∈ �0	 (A.8)

Explicitly, this yields

s-KdV0�q� = q′ = 0� s-KdV1�q� = 4−1q′′′ + 2−13qq′ = 0� etc. (A.9)

The corresponding nonhomogeneous version of s − KdVg�q� = 0 is defined
by

s-K̂dVg�q� = 2f̂ ′g+1 = 2
g∑
j=0

cg−jf
′
j+1 = 0� (A.10)

where c0 = 1 and c1� 	 	 	 � cg are arbitrary complex constants.
If one assigns to q��� = d�q/dz� the degree deg�q���� = � + 2� � ∈ �0,

then the homogeneous differential polynomial fj with respect to q turns
out to have degree 2j; that is,

deg�fj� = 2j� j ∈ �0	 (A.11)

Next, introduce the polynomial F̂g�E� z� in E ∈ �,

F̂g�E� z� =
g∑
j=0

f̂g−j�z�Ej =
g∏
j=1

�E − µj�z��	 (A.12)

Since f̂0�z� = 1,

−2−1F̂ ′′
g �E� z�F̂g�E� z� + 4−1F̂ ′

g�E� z�2

+�E − q�z��F̂g�E� z�2 = R̂2g+1�E� z� (A.13)

is a monic polynomial in E of degree 2g + 1. However, Eqs. (A.1) and
(A.10) imply that

2−1F̂ ′′′
g − 2�E − q�F̂ ′

g + q′F̂g = 0 (A.14)

and this shows that R̂2g+1�E� z� is in fact independent of z. Hence it can
be written as

R̂2g+1�E� =
2g∏
m=0

�E − Êm�� �Êm�0≤m≤2g ⊂ �	 (A.15)
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By (A.4) the nonhomogeneous KdV equation (A.10) is equivalent to the
commutativity of L2 and P̂2g+1. This shows that

�P̂2g+1� L2� = 0� (A.16)

and therefore, if L2ψ = Eψ, this implies that P̂2
2g+1ψ = R̂2g+1�E�ψ. Thus

�P̂2g+1� L2� = 0 implies P̂2
2g+1 = R̂2g+1�L2� by the Burchnall and Chaundy

theorem. This illustrates the intimate connection between the stationary
KdV equation f̂ ′g+1 = 0 in (A.10) and the compact (possibly singular) hyper-
elliptic curve �̂g of (arithmetic) genus g obtained upon one-point compact-
ification of the curve

y2 = R̂2g+1�E� =
2g∏
m=0

�E − Êm� (A.17)

by joining the point at infinity, denoted by P∞. Points P ∈ �̂g\�P∞� will
be denoted by P = �E� y�; moreover, the involution (hyperelliptic sheet
exchange map) ∗ on �̂g is defined by

∗: �̂g → �̂g� P = �E� y� �→ P∗ = �E�−y�� P∗
±∞ = P∓∞	 (A.18)

Introducing the meromorphic function φ�·� z� on �̂g,

φ�P� z� = [
y�P� + �1/2�F̂ ′

g�E� z�
]
/F̂g�E� z�� P = �E� y� ∈ �̂g (A.19)

and the stationary Baker–Akhiezer function ψ�·� z� z0� by

ψ�P� z� z0� = exp
( ∫ z

z0

dz′ φ�P� z′�
)
� P ∈ �̂g\�P∞�� (A.20)

one infers (for P = �E� y� ∈ �̂g\�P∞�, �z� z0� ∈ �2)

L2ψ�P� ·� z0� = Eψ�P� ·� z0�� (A.21)

P2g+1ψ�P� ·� z0� = yψ�P� ·� z0�� (A.22)

ψ�P� z� z0�ψ�P∗� z� z0� = F̂g�E� z�/F̂g�E� z0�� (A.23)

W �ψ�P� ·� z0�� ψ�P∗� ·� z0�� = −2y�P�/F̂g�E� z0�� (A.24)

where W �f� g��z� = f �z�g′�z� − f ′�z�g�z� denotes the Wronskian of f and
g. Thus, ψ�P� z� z0� and ψ�P∗� z� z0� are linearly independent solutions of
L2ψ = Eψ as long as E ∈ �\�Êm�0≤m≤2g. The two branches of ψ�P� z� z0�
will be denoted by ψ±�E� z� z0�, respectively.

The above formalism leads to the following standard definition.

Definition A.1. Any solution q of one of the stationary KdV equations
(A.10) is called an algebro-geometric KdV potential.
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For brevity of notation we will occasionally call such q simply KdV
potentials.

Finally, denoting Ê = �Ê0� 	 	 	 � Ê2g�, consider( 2g∏
m=0

(
1 − Êm

z

))1/2

=
∞∑
k=0

ck�Ê�z−k�

where c0�Ê� = 1� c1�Ê� = −1
2

N∑
m=0

Êm� etc.

Assuming that q satisfies the gth stationary (nonhomogeneous) KdV equa-
tion (A.10), the integration constants c� in (A.7) become a functional of
the Êm in the underlying curve (A.17) and one verifies

c� = c�
(
Ê
)
� � = 0� 	 	 	 � g	 (A.25)
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29. A. Loewy, Über einen Fundamentalsatz für Matrizen oder lineare homogene Differ-
entialsysteme, Sitzungsberichte der Heidelberger Akademie der Wissenschaften, 5.
Abhandlung, pp. 1–36 (1918).

30. J. Moser, On a class of polynomials connected with the Korteweg–de Vries equation,
in “Differential Equations,” (G. Berg, M. Essén, and Å. Pleijel, Eds.), pp. 144–154,
Almquist & Wiksell, Stockholm, 1977.

31. M. Ohmiya, On the Darboux transformation of the second order differential operator of
Fuchsian type on the Riemann sphere, Osaka J. Math. 25 (1988), 607–632.

32. D. Pelinovsky, Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynam-
ics of their poles. I. New form of a general rational solution, J. Math. Phys. 35 (1994),
5820–5830.

33. T. Shiota, Calogero–Moser hierarchy and KP hierarchy, J. Math. Phys. 35 (1994),
5844–5849.

34. A. O. Smirnov, Finite-gap elliptic solutions of the KdV equation, Acta Appl. Math. 36
(1994), 125–166.



526 gesztesy, unterkofler, and weikard

35. V. V. Sokolov, Examples of commutative rings of differential operators, Funct. Anal. Appl.
12 (1978), 65–66.

36. W. Walter, “Ordinary Differential Equations,” Springer, New York, 1998.
37. W. Wasow, “Asymptotic Expansions for Ordinary Differential Equations,” Dover,

New York, 1987.
38. R. Weikard, On rational and periodic solutions of stationary KdV equations, Doc. Math.

4 (1999), 109–126.
39. R. Weikard, On commuting differential operators, Electron. J. Differential Equations

(2000), 1–11.
40. G. Wilson, Collisions of Calogero–Moser particles and an adelic Grassmannian, Invent.

Math. 133 (1998), 1–41.


	1.INTRODUCTION
	2.HALPHEN ’S THEOREM FOR FIRST-ORDER SYSTEMS
	3.SOME APPLICATIONS TO RATIONAL SOLUTIONS OF THE STATIONARY KdV HIERARCHY
	APPENDIX:THE STATIONARY KdV HIERARCHY
	ACKNOWLEDGMENT
	REFERENCES

